Articles | Volume 5-opsr
https://doi.org/10.5194/sp-5-opsr-19-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-5-opsr-19-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The representation of rivers in operational ocean forecasting systems: a review
Meteorological Research Division, Environment and Climate Change Canada, Québec, QC, Canada
John Wilkin
Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
Joanna Staneva
Institute of Coastal Systems – Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Related authors
Angelique Melet, Begoña Pérez Gómez, and Pascal Matte
State Planet, 5-opsr, 11, https://doi.org/10.5194/sp-5-opsr-11-2025, https://doi.org/10.5194/sp-5-opsr-11-2025, 2025
Short summary
Short summary
Forecasting the sea level is crucial for supporting coastal management through early warning systems and for adopting adaptation strategies to mitigate climate change impacts. We provide here an overview on models commonly used for sea level forecasting, which can be based on storm surge models or ocean circulation ones, integrated on structured or unstructured grids, including an outlook on new approaches based on ensemble methods.
Joanna Staneva, Angelique Melet, Jennifer Veitch, and Pascal Matte
State Planet, 5-opsr, 4, https://doi.org/10.5194/sp-5-opsr-4-2025, https://doi.org/10.5194/sp-5-opsr-4-2025, 2025
Short summary
Short summary
Coastal services are essential to society, requiring accurate prediction of ocean variables in complex, high-resolution environments. This paper outlines key aspects of coastal modelling and emphasizes the importance of capturing nonlinear interactions and feedbacks. Advances in coastal modelling, observational integration, and predictive skills are highlighted as being vital for supporting sustainability and strengthening climate resilience.
Huayang Cai, Ping Zhang, Erwan Garel, Pascal Matte, Shuai Hu, Feng Liu, and Qingshu Yang
Hydrol. Earth Syst. Sci., 24, 1871–1889, https://doi.org/10.5194/hess-24-1871-2020, https://doi.org/10.5194/hess-24-1871-2020, 2020
Short summary
Short summary
Understanding the morphological changes in estuaries due to natural processes and human interventions is especially important with regard to sustainable water management and ecological impacts on the estuarine environment. In this contribution, we explore the morphological evolution in tide-dominated estuaries by means of a novel analytical approach using the observed water levels along the channel. The method could serve as a useful tool to understand the evolution of estuarine morphology.
Mauro Cirano, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Emanuela Clementi, Boris Dewitte, Matias Dinápoli, Ghada El Serafy, Patrick Hogan, Sudheer Joseph, Yasumasa Miyazawa, Ivonne Montes, Diego A. Narvaez, Heather Regan, Claudia G. Simionato, Gregory C. Smith, Joanna Staneva, Clemente A. S. Tanajura, Pramod Thupaki, Claudia Urbano-Latorre, and Jennifer Veitch
State Planet, 5-opsr, 5, https://doi.org/10.5194/sp-5-opsr-5-2025, https://doi.org/10.5194/sp-5-opsr-5-2025, 2025
Short summary
Short summary
Operational ocean forecasting systems (OOFSs) are crucial for human activities, environmental monitoring, and policymaking. An assessment across eight key regions highlights strengths and gaps, particularly in coastal and biogeochemical forecasting. AI offers improvements, but collaboration, knowledge sharing, and initiatives like the OceanPrediction Decade Collaborative Centre (DCC) are key to enhancing accuracy, accessibility, and global forecasting capabilities.
Angelique Melet, Begoña Pérez Gómez, and Pascal Matte
State Planet, 5-opsr, 11, https://doi.org/10.5194/sp-5-opsr-11-2025, https://doi.org/10.5194/sp-5-opsr-11-2025, 2025
Short summary
Short summary
Forecasting the sea level is crucial for supporting coastal management through early warning systems and for adopting adaptation strategies to mitigate climate change impacts. We provide here an overview on models commonly used for sea level forecasting, which can be based on storm surge models or ocean circulation ones, integrated on structured or unstructured grids, including an outlook on new approaches based on ensemble methods.
Joanna Staneva, Angelique Melet, Jennifer Veitch, and Pascal Matte
State Planet, 5-opsr, 4, https://doi.org/10.5194/sp-5-opsr-4-2025, https://doi.org/10.5194/sp-5-opsr-4-2025, 2025
Short summary
Short summary
Coastal services are essential to society, requiring accurate prediction of ocean variables in complex, high-resolution environments. This paper outlines key aspects of coastal modelling and emphasizes the importance of capturing nonlinear interactions and feedbacks. Advances in coastal modelling, observational integration, and predictive skills are highlighted as being vital for supporting sustainability and strengthening climate resilience.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Wei Chen and Joanna Staneva
State Planet, 4-osr8, 7, https://doi.org/10.5194/sp-4-osr8-7-2024, https://doi.org/10.5194/sp-4-osr8-7-2024, 2024
Short summary
Short summary
Marine heatwaves (MHWs), which are the unusually warm periods in the ocean, are becoming more frequent and lasting longer in the northwest European Shelf (NWES), particularly near the coast, from 1993 to 2023. However, thermal stratification is weakening, implying that the sea surface warming caused by MHWs is insufficient to counteract the overall stratification decline due to global warming. Moreover, the varying salinity has a notable impact on the trend of density stratification change.
Carolina B. Gramcianinov, Joanna Staneva, Celia R. G. Souza, Priscila Linhares, Ricardo de Camargo, and Pedro L. da Silva Dias
State Planet, 1-osr7, 12, https://doi.org/10.5194/sp-1-osr7-12-2023, https://doi.org/10.5194/sp-1-osr7-12-2023, 2023
Short summary
Short summary
We analyse extreme wave event trends in the south-western South Atlantic in the last 29 years using wave products and coastal hazard records. The results show important regional changes associated with increased mean sea wave height, wave period, and wave power. We also find a rise in the number of coastal hazards related to waves affecting the state of São Paulo, Brazil, which partially agrees with the increase in extreme waves in the adjacent ocean sector but is also driven by local factors.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Bronwyn E. Cahill, Piotr Kowalczuk, Lena Kritten, Ulf Gräwe, John Wilkin, and Jürgen Fischer
Biogeosciences, 20, 2743–2768, https://doi.org/10.5194/bg-20-2743-2023, https://doi.org/10.5194/bg-20-2743-2023, 2023
Short summary
Short summary
We quantify the impact of optically significant water constituents on surface heating rates and thermal energy fluxes in the western Baltic Sea. During productive months in 2018 (April to September) we found that the combined effect of coloured
dissolved organic matter and particulate absorption contributes to sea surface heating of between 0.4 and 0.9 K m−1 d−1 and a mean loss of heat (ca. 5 W m−2) from the sea to the atmosphere. This may be important for regional heat balance budgets.
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023, https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary
Short summary
Knowledge of what causes maximum water levels is often key in coastal management. Processes, such as storm surge and atmospheric forcing, alter the predicted tide. Whilst most of these processes are modeled in present-day ocean forecasting, there is still a need for a better understanding of situations where modeled and observed water levels deviate from each other. Here, we will use machine learning to detect such anomalies within a network of sea-level observations in the North Sea.
Elias J. Hunter, Heidi L. Fuchs, John L. Wilkin, Gregory P. Gerbi, Robert J. Chant, and Jessica C. Garwood
Geosci. Model Dev., 15, 4297–4311, https://doi.org/10.5194/gmd-15-4297-2022, https://doi.org/10.5194/gmd-15-4297-2022, 2022
Short summary
Short summary
ROMSPath is an offline particle tracking model tailored for use with output from Regional Ocean Modeling System (ROMS) simulations. It is an update to an established system, the Lagrangian TRANSport (LTRANS) model, including a number of improvements. These include a modification of the model coordinate system which improved accuracy and numerical efficiency, and added functionality for nested grids and Stokes drift.
Wei Chen, Joanna Staneva, Sebastian Grayek, Johannes Schulz-Stellenfleth, and Jens Greinert
Nat. Hazards Earth Syst. Sci., 22, 1683–1698, https://doi.org/10.5194/nhess-22-1683-2022, https://doi.org/10.5194/nhess-22-1683-2022, 2022
Short summary
Short summary
This study links the occurrence and persistence of density stratification in the southern North Sea to the increased number of extreme marine heat waves. The study further identified the role of the cold spells at the early stage of a year to the intensity of thermal stratification in summer. In a broader context, the research will have fundamental significance for further discussion of the secondary effects of heat wave events, such as in ecosystems, fisheries, and sediment dynamics.
Alexander G. López, John L. Wilkin, and Julia C. Levin
Geosci. Model Dev., 13, 3709–3729, https://doi.org/10.5194/gmd-13-3709-2020, https://doi.org/10.5194/gmd-13-3709-2020, 2020
Short summary
Short summary
This article describes a regional circulation model, Doppio, for the Mid-Atlantic Bight and the Gulf of Maine. The model demonstrates useful skill in comparison to a comprehensive suite of observations. Development focused on achieving a model configuration that allows decadal-scale simulations of physical ocean circulation that can underpin studies of ecosystems and biogeochemistry. Doppio captures the temperature and salinity stratification well, along with the large-scale mean circulation.
Huayang Cai, Ping Zhang, Erwan Garel, Pascal Matte, Shuai Hu, Feng Liu, and Qingshu Yang
Hydrol. Earth Syst. Sci., 24, 1871–1889, https://doi.org/10.5194/hess-24-1871-2020, https://doi.org/10.5194/hess-24-1871-2020, 2020
Short summary
Short summary
Understanding the morphological changes in estuaries due to natural processes and human interventions is especially important with regard to sustainable water management and ecological impacts on the estuarine environment. In this contribution, we explore the morphological evolution in tide-dominated estuaries by means of a novel analytical approach using the observed water levels along the channel. The method could serve as a useful tool to understand the evolution of estuarine morphology.
Johannes Pein, Annika Eisele, Richard Hofmeister, Tina Sanders, Ute Daewel, Emil V. Stanev, Justus van Beusekom, Joanna Staneva, and Corinna Schrum
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-265, https://doi.org/10.5194/bg-2019-265, 2019
Revised manuscript not accepted
Short summary
Short summary
The Elbe estuary is subject to vigorous tidal forcing from the sea side and considerable biological inputs from the land side. Our 3D numerical coupled physical-biogeochemical integrates these forcing signals and provides highly realistic hindcasts of the associated dynamics. Model simulations show that the freshwater part of Elbe estuary is inhabited by plankton. According to simulations these organism play a key role in converting organic inputs into nitrate, the major inorganic nutrient.
Huw W. Lewis, Juan Manuel Castillo Sanchez, John Siddorn, Robert R. King, Marina Tonani, Andrew Saulter, Peter Sykes, Anne-Christine Pequignet, Graham P. Weedon, Tamzin Palmer, Joanna Staneva, and Lucy Bricheno
Ocean Sci., 15, 669–690, https://doi.org/10.5194/os-15-669-2019, https://doi.org/10.5194/os-15-669-2019, 2019
Short summary
Short summary
Forecasts of ocean temperature, salinity, currents, and sea height can be improved by linking state-of-the-art ocean and wave models, so that they can interact to better represent the real world. We test this approach in an ocean model of north-west Europe which can simulate small-scale details of the ocean state. The intention is to implement the system described in this study for operational use so that improved information can be provided to users of ocean forecast data.
Johannes Schulz-Stellenfleth and Joanna Staneva
Ocean Sci., 15, 249–268, https://doi.org/10.5194/os-15-249-2019, https://doi.org/10.5194/os-15-249-2019, 2019
Short summary
Short summary
Errors of observations and numerical model data are analysed with a focus on heterogeneous coastal areas. An extension of the triple collocation method is proposed, which takes into account gradients in the collocation of datasets separated by distances which may not be acceptable for a nearest-neigbour approximation, but still be feasible for linear or higher order interpolations. The technique is applied to wave height data from in situ stations, models, and the Sentinel-3A altimeter.
Anne Wiese, Joanna Staneva, Johannes Schulz-Stellenfleth, Arno Behrens, Luciana Fenoglio-Marc, and Jean-Raymond Bidlot
Ocean Sci., 14, 1503–1521, https://doi.org/10.5194/os-14-1503-2018, https://doi.org/10.5194/os-14-1503-2018, 2018
Short summary
Short summary
The increase of data quality of wind and wave measurements provided by the new Sentinel-3A satellite in coastal areas is demonstrated compared to measurements of older satellites with in situ data and spectral wave model simulations. Furthermore, the sensitivity of the wave model to wind forcing is evaluated using data with different temporal and spatial resolution, where an hourly temporal resolution is necessary to represent the peak of extreme events better.
Burkard Baschek, Friedhelm Schroeder, Holger Brix, Rolf Riethmüller, Thomas H. Badewien, Gisbert Breitbach, Bernd Brügge, Franciscus Colijn, Roland Doerffer, Christiane Eschenbach, Jana Friedrich, Philipp Fischer, Stefan Garthe, Jochen Horstmann, Hajo Krasemann, Katja Metfies, Lucas Merckelbach, Nino Ohle, Wilhelm Petersen, Daniel Pröfrock, Rüdiger Röttgers, Michael Schlüter, Jan Schulz, Johannes Schulz-Stellenfleth, Emil Stanev, Joanna Staneva, Christian Winter, Kai Wirtz, Jochen Wollschläger, Oliver Zielinski, and Friedwart Ziemer
Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, https://doi.org/10.5194/os-13-379-2017, 2017
Short summary
Short summary
The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the heavily used German Bight in the North Sea. The automated observing and modelling system is designed to monitor real-time conditions, to provide short-term forecasts and data products, and to assess the impact of anthropogenically induced change.
Kathrin Wahle, Joanna Staneva, Wolfgang Koch, Luciana Fenoglio-Marc, Ha T. M. Ho-Hagemann, and Emil V. Stanev
Ocean Sci., 13, 289–301, https://doi.org/10.5194/os-13-289-2017, https://doi.org/10.5194/os-13-289-2017, 2017
Short summary
Short summary
Reduction of wave forecasting errors is a challenge, especially in dynamically complicated coastal ocean areas such as the southern part of the North Sea area. We study the effects of coupling between an atmospheric and two nested-grid wind wave models. Comparisons with data from in situ and satellite altimeter observations indicate that two-way coupling improves the simulation of wind and wave parameters of the model and justifies its implementation for both operational and climate simulation.
Joanna Staneva, Kathrin Wahle, Wolfgang Koch, Arno Behrens, Luciana Fenoglio-Marc, and Emil V. Stanev
Nat. Hazards Earth Syst. Sci., 16, 2373–2389, https://doi.org/10.5194/nhess-16-2373-2016, https://doi.org/10.5194/nhess-16-2373-2016, 2016
Short summary
Short summary
This study addresses the impact of wind, waves, tidal forcing and baroclinicity on the sea level of the German Bight during extreme storm events. The role of wave-induced processes, tides and baroclinicity is quantified, and the results are compared with in situ measurements and satellite data. Considering a wave-dependent approach and baroclinicity, the surge is significantly enhanced in the coastal areas and the model results are closer to observations, especially during the extreme storm.
Emil V. Stanev, Johannes Schulz-Stellenfleth, Joanna Staneva, Sebastian Grayek, Sebastian Grashorn, Arno Behrens, Wolfgang Koch, and Johannes Pein
Ocean Sci., 12, 1105–1136, https://doi.org/10.5194/os-12-1105-2016, https://doi.org/10.5194/os-12-1105-2016, 2016
Short summary
Short summary
This paper describes coastal ocean forecasting practices exemplified for the North Sea and Baltic Sea. It identifies new challenges, most of which are associated with the nonlinear behavior of coastal oceans. It describes the assimilation of remote sensing, in situ and HF radar data, prediction of wind waves and storm surges, as well as applications to search and rescue operations. Seamless applications to coastal and estuarine modeling are also presented.
Joanna Staneva, Kathrin Wahle, Heinz Günther, and Emil Stanev
Ocean Sci., 12, 797–806, https://doi.org/10.5194/os-12-797-2016, https://doi.org/10.5194/os-12-797-2016, 2016
Short summary
Short summary
This study addresses the impact of coupling between wind wave and circulation models on the quality of coastal ocean predicting systems. This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales. The improved skill of the coupled forecasts compared to the non-coupled ones, in particular during extreme events, justifies the further enhancements of coastal operational systems by including wind wave models.
Cited articles
Akpoti, K., Mekonnen, K., Leh, M., Owusu, A., Dembélé, M., Tinonetsana, P., Seid, A., and Velpuri, N. M.: State of continental discharge estimation and modelling: challenges and opportunities for Africa, Hydrolog. Sci. J., 69, 2124–2152, https://doi.org/10.1080/02626667.2024.2402938, 2024.
Aragão, L., Mentaschi, L., Pinardi, N., Verri, G., Senatore, A., and di Sabatino, S.: The freshwater discharge into the Adriatic Sea revisited, Front. Clim., 6, 1368456, https://doi.org/10.3389/fclim.2024.1368456, 2024.
Arheimer, B., Pimentel, R., Isberg, K., Crochemore, L., Andersson, J. C. M., Hasan, A., and Pineda, L.: Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation, Hydrol. Earth Syst. Sci., 24, 535–559, https://doi.org/10.5194/hess-24-535-2020, 2020.
Bao, D., Xue, Z. G., Warner, J. C., Moulton, M., Yin, D., Hegermiller, C. A., Zambon, B., and He, R.: A Numerical Investigation of Hurricane Florence-Induced Compound Flooding in the Cape Fear Estuary Using a Dynamically Coupled Hydrological-Ocean Model, J. Adv. Model. Earth Sy., 14, e2022MS003131, https://doi.org/10.1029/2022MS003131, 2022.
Bao, S., Wang, H., Zhang, R., Yan, H., and Chen, J.: Comparison of Satellite-Derived Sea Surface Salinity Products from SMOS, Aquarius, and SMAP, J. Geophys. Res.-Oceans, 124, 1932–1944, https://doi.org/10.1029/2019JC014937, 2019.
Barron, C. N. and Smedstad, L. F.: Global river inflow within the Navy Coastal Ocean Model, OCEANS '02 MTS/IEEE, 29–31 October 2002, Biloxi, MI, USA, 2002, 3, 1472–1479, https://doi.org/10.1109/OCEANS.2002.1191855, 2002.
Blayo, E. and Debreu, L.: Revisiting open boundary conditions from the point of view of characteristic variables, Ocean Model., 9, 231–252, https://doi.org/10.1016/j.ocemod.2004.07.001, 2005.
Blockley, E. W., Martin, M. J., McLaren, A. J., Ryan, A. G., Waters, J., Lea, D. J., Mirouze, I., Peterson, K. A., Sellar, A., and Storkey, D.: Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts, Geosci. Model Dev., 7, 2613–2638, https://doi.org/10.5194/gmd-7-2613-2014, 2014.
Bonamano, S., Federico, I., Causio, S., Piermattei, V., Piazzolla, D., Scanu, S., Madonia, A., Madonia, N., de Cillis, G., Jansen, E., Fersini, G., Coppini, G., and Marcelli, M. River–coastal–ocean continuum modeling along the Lazio coast (Tyrrhenian Sea, Italy): Assessment of near river dynamics in the Tiber delta, Estuar. Coast. Shelf S., 297, 108618, https://doi.org/10.1016/j.ecss.2024.108618, 2024.
Bourdallé-Badie, R. and Treguier, A.: A climatology of runoff for the global ocean-ice model ORCA025, Mercator-Ocean report, MOO-RP-425-365-MER, MOO-RP-425-365-MER, 2006.
Cameron, W. M. and Pritchard, D. W.: Estuaries, in: The Sea, vol. 2, edited by: Hill, M. N., John Wiley & Sons, New York, 306–324, 1963.
Campuzano, F., Brito, D., Juliano, M., Fernandes, R., de Pablo, H., and Neves, R.: Coupling watersheds, estuaries and regional ocean through numerical modelling for Western Iberia: a novel methodology, Ocean Dynam., 66, 1745–1756, https://doi.org/10.1007/s10236-016-1005-4, 2016.
Capet, A., Fernández, V., She, J., Dabrowski, T., Umgiesser, G., Staneva, J., Mészáros, L., Campuzano, F., Ursella, L., Nolan, G., and El Serafy, G.: Operational Modeling Capacity in European Seas – An EuroGOOS Perspective and Recommendations for Improvement, Front. Mar. Sci., 7, 1–19, https://doi.org/10.3389/fmars.2020.00129, 2020.
Chandanpurkar, H. A, Lee, T., Wang, X., Zhang, H., Fournier, S., Fenty, I., Fukimori, I., Memnemnlis, D., Piecuc, C. G., Reager, J. T., Wang, O., and Worden, J.: Influence of Nonseasonal River Discharge on Sea Surface Salinity and Height, J. Adv. Model. Earth Sy., 14, e2021MS002715, https://doi.org/10.1029/2021MS002715, 2022.
Chen, S. and Hu, C.: Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements, Remote Sens. Environ., 201, 115–132, https://doi.org/10.1016/j.rse.2017.09.004, 2017.
Cheng, H., Cheng, J. C., Hunter, R. M., and Lin, H.: Demonstration of a Coupled Watershed-Nearshore Model, U.S. Army Engineer Research and Development Center, Vicksburg, MS, https://apps.dtic.mil/sti/citations/ADA518953 (last access: 28 July 2024), 2010.
Choi, B.-J. and Wilkin, J. L.: The Effect of Wind on the Dispersal of the Hudson River Plume, J. Phys. Oceanogr., 37, 1878–1897, https://doi.org/10.1175/JPO3081.1, 2007.
Ciliberti, S. A., Alvarez Fanjul, E., Pearlman, J., Wilmer-Becker, K., Bahurel, P., Ardhuin, F., Arnaud, A., Bell, M., Berthou, S., Bertino, L., Capet, A., Chassignet, E., Ciavatta, S., Cirano, M., Clementi, E., Cossarini, G., Coro, G., Corney, S., Davidson, F., Drevillon, M., Drillet, Y., Dussurget, R., El Serafy, G., Fennel, K., Garcia Sotillo, M., Heimbach, P., Hernandez, F., Hogan, P., Hoteit, I., Joseph, S., Josey, S., Le Traon, P.-Y., Libralato, S., Mancini, M., Matte, P., Melet, A., Miyazawa, Y., Moore, A. M., Novellino, A., Porter, A., Regan, H., Romero, L., Schiller, A., Siddorn, J., Staneva, J., Thomas-Courcoux, C., Tonani, M., Garcia-Valdecasas, J. M., Veitch, J., von Schuckmann, K., Wan, L., Wilkin, J., and Zufic, R.: Evaluation of operational ocean forecasting systems from the perspective of the users and the experts, in: 7th edition of the Copernicus Ocean State Report (OSR7), edited by: von Schuckmann, K., Moreira, L., Le Traon, P.-Y., Grégoire, M., Marcos, M., Staneva, J., Brasseur, P., Garric, G., Lionello, P., Karstensen, J., and Neukermans, G., Copernicus Publications, State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023.
Cirano, M., Alvarez-Fanjul, E., Capet, A., Ciliberti, S., Clementi, E., Dewitte, B., Dinápoli, M., El Serafy, G., Hogan, P., Joseph, S., Miyazawa, Y., Montes, I., Narvaez, D., Regan, H., Simionato, C. G., Tanajura, C. A. S., Thupaki, P., Urbano-Latorre, C., and Veitch, J.: A description of existing Operational Ocean Forecasting Services around the Globe, in: Ocean prediction: present status and state of the art (OPSR), edited by: Álvarez Fanjul, E., Ciliberti, S. A., Pearlman, J., Wilmer-Becker, K., and Behera, S., Copernicus Publications, State Planet, 5-opsr, 5, https://doi.org/10.5194/sp-5-opsr-5-2025, 2025.
Cossarini, G., Moore, A., Ciavatta, S., and Fennel, K.: Numerical Models for Monitoring and Forecasting Ocean Biogeochemistry: a short description of present status, in: Ocean prediction: present status and state of the art (OPSR), edited by: Álvarez Fanjul, E., Ciliberti, S. A., Pearlman, J., Wilmer-Becker, K., and Behera, S., Copernicus Publications, State Planet, 5-opsr, 12, https://doi.org/10.5194/sp-5-opsr-12-2025, 2025.
Dai, A. and Trenberth, K. E.: Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations, J. Hydrometeorol., 3, 660–687, https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2, 2002.
Dai, A., Qian, T., Trenberth, K. E., and Milliman, J. D.: Changes in Continental Freshwater Discharge from 1948 to 2004, J. Climate, 22, 2773–2792, https://doi.org/10.1175/2008JCLI2592.1, 2009.
Demargne, J., Wu, L., Regonda, S. K., Brown, J. D., Lee, H., He, M., Seo, D.-J., Hartman, R., Herr, H. D., Fresch, M., Schaake, J., and Zhu, Y.: The Science of NOAA's Operational Hydrologic Ensemble Forecast Service, B. Am. Meteorol. Soc., 95, 79–98, https://doi.org/10.1175/BAMS-D-12-00081.1, 2014.
De Mey-Frémaux, P., Ayoub, N., Barth, A., Brewin, R., Charria, G., Campuzano, F., Ciavatta, S., Cirano, M., Edwards, C. A., Federico, I., Gao, S., Garcia Hermosa, I., Garcia Sotillo, M., Hewitt, H., Hole, L. R., Holt, J., King, R., Kourafalou, V., Lu, Y., Mourre, B., Pascual, A., Staneva, J., Stanev, E. V., Wang, H., and Zhu, X.: Model-observations synergy in the coastal ocean, Front. Mar. Sci., 6, 436, https://doi.org/10.3389/fmars.2019.00436, 2019.
Do, H. X., Gudmundsson, L., Leonard, M., and Westra, S.: The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata, Earth Syst. Sci. Data, 10, 765–785, https://doi.org/10.5194/essd-10-765-2018, 2018.
Donnelly, C., Andersson, J. C. M., and Arheimer, B.: Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe, Hydrolog. Sci. J., 61, 255–273, https://doi.org/10.1080/02626667.2015.1027710, 2015.
Durand, F., Piecuch, C. G., Becker, M., Papa, F., Raju, S. V., Khan, J. U., and Ponte, R. M.: Impact of Continental Freshwater Runoff on Coastal Sea Level, Surv. Geophys., 40, 1437–1466, https://doi.org/10.1007/s10712-019-09536-w, 2019.
Durand, M., Gleason, C. J., Pavelsky, T. M., Prata de Moraes Frasson, R., Turmon, M., David, C. H., Altenau, E. H., Tebaldi, N., Larnier, K., Monnier, J., Malaterre, P. O., Oubanas, H., Allen, G. H., Astifan, B., Brinkerhoff, C., Bates, P. D., Bjerklie, D., Coss, S., Dudley, R., Fenoglio, L., Garambois, P.-A., Getirana, A., Lin, P., Margulis, S. A., Matte, P., Minear, J. T., Muhebwa, A., Pan, M., Peters, D., Riggs, R., Sikder, M. S., Simmons, T., Stuurman, C., Taneja, J., Tarpanelli, A., Schulze, K., Tourian, M. J., and Wang, J.: A Framework for Estimating Global River Discharge From the Surface Water and Ocean Topography Satellite Mission, Water Resour. Res., 59, e2021WR031614, https://doi.org/10.1029/2021WR031614, 2023.
Dzwonkowski, B., Greer, A. T., Briseño-Avena, C. Krause, J. W., Soto, I. M., Hernandez, F. J., Deary, A. L., Wiggert, J. D., Joung, D., Fitzpatrick, P. J., O'Brien, S. J., Dykstra, S. L., Lau, Y., Cambazoglu, M. K., Lockridge, G., Howden, S. D., Shiller, A. M., and Graham, W. M.: Estuarine influence on biogeochemical properties of the Alabama shelf during the fall season, Cont. Shelf Res., 140, 96–109, https://doi.org/10.1016/j.csr.2017.05.001, 2017.
Emery, C. M., Paris, A., Biancamaria, S., Boone, A., Calmant, S., Garambois, P.-A., and Santos da Silva, J.: Large-scale hydrological model river storage and discharge correction using a satellite altimetry-based discharge product, Hydrol. Earth Syst. Sci., 22, 2135–2162, https://doi.org/10.5194/hess-22-2135-2018, 2018.
Fang, K., Shen, C., Kifer, D., and Yang, X.: Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network, Geophys. Res. Lett., 44, 11030–11039, https://doi.org/10.1002/2017GL075619, 2017a.
Fang, Y., Chen, X., and Cheng, N.-S.: Estuary salinity prediction using a coupled GA-SVM model: a case study of the Min River Estuary, China, Water Supp., 17, 52–60, https://doi.org/10.2166/ws.2016.097, 2017b.
Feng, D., Fang, K., and Shen, C.: Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales, Water Resour. Res., 56, e2019WR026793, https://doi.org/10.1029/2019WR026793, 2020.
Feng, D., Lawson, K., and Shen, C.: Mitigating Prediction Error of Deep Learning Streamflow Models in Large Data-Sparse Regions With Ensemble Modeling and Soft Data, Geophys. Res. Lett., 48, e2021GL092999, https://doi.org/10.1029/2021GL092999, 2021a.
Feng, Y., Menemenlis, D., Xue, H., Zhang, H., Carroll, D., Du, Y., and Wu, H.: Improved representation of river runoff in Estimating the Circulation and Climate of the Ocean Version 4 (ECCOv4) simulations: implementation, evaluation, and impacts to coastal plume regions, Geosci. Model Dev., 14, 1801–1819, https://doi.org/10.5194/gmd-14-1801-2021, 2021b.
Fortin, V., Innocenti, S., Gaborit, É., Durnford, D., Keita, S., Bruxer, J., Boucher, M.-A., Harrigan, S., Zsoter, E., Dimitrijevic, M., Sévigny, C., O'Brien, N., and Gervasi, N.: Evaluation of continental-scale ensemble hydrological forecasts from Environment and Climate Change Canada: a comparison with forecasts from the Global Flood Awareness System (GloFAS) , EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-2950, https://doi.org/10.5194/egusphere-egu23-2950, 2023.
Frame, J. M., Kratzert, F., Klotz, D., Gauch, M., Shalev, G., Gilon, O., Qualls, L. M., Gupta, H. V., and Nearing, G. S.: Deep learning rainfall–runoff predictions of extreme events, Hydrol. Earth Syst. Sci., 26, 3377–3392, https://doi.org/10.5194/hess-26-3377-2022, 2022.
Garvine, R. W.: The impact of model configuration in studies of buoyant coastal discharge, J. Mar. Res., 59, 193–225, https://elischolar.library.yale.edu/journal_of_marine_research/2389 (last access: 2 May 2025), 2001.
Gauch, M., Mai, J., and Lin, J.: The proper care and feeding of CAMELS: How limited training data affects streamflow prediction, Environ. Model. Softw., 135, 104926, https://doi.org/10.1016/j.envsoft.2020.104926, 2021.
Geiger, E. F., Grossi, M. D., Trembanis, A. C., Kohut, J. T., and Oliver, M. J.: Satellite-derived coastal ocean and estuarine salinity in the Mid-Atlantic, Cont. Shelf Res., 63, S235–S242, https://doi.org/10.1016/j.csr.2011.12.001, 2013.
Giffard, P., Llovel, W., Jouanno, J., Morvan, G., and Decharme, B.: Contribution of the Amazon River Discharge to Regional Sea Level in the Tropical Atlantic Ocean, Water, 11, 2348, https://doi.org/10.3390/w11112348, 2019.
Gleason, J. C. and Durand, T. M.: Remote Sensing of River Discharge: A Review and a Framing for the Discipline, Remote Sens., 12, 1107, https://doi.org/10.3390/rs12071107, 2020.
Graham, J. A., O'Dea, E., Holt, J., Polton, J., Hewitt, H. T., Furner, R., Guihou, K., Brereton, A., Arnold, A., Wakelin, S., Castillo Sanchez, J. M., and Mayorga Adame, C. G.: AMM15: a new high-resolution NEMO configuration for operational simulation of the European north-west shelf, Geosci. Model Dev., 11, 681–696, https://doi.org/10.5194/gmd-11-681-2018, 2018.
Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., and Schmidhuber, J.: LSTM: A Search Space Odyssey, IEEE T. Neur. Net. Lear., 28, 2222–2232, https://doi.org/10.1109/TNNLS.2016.2582924, 2017.
Grodsky, S. A., Vandemark, D., and Feng, H.: Assessing coastal SMAP surface salinity accuracy and its application to monitoring Gulf of Maine circulation dynamics, Remote Sens., 10, 1232, https://doi.org/10.3390/rs10081232, 2018.
Gudmundsson, L., Do, H. X., Leonard, M., and Westra, S.: The Global Streamflow Indices and Metadata Archive (GSIM) – Part 2: Quality control, time-series indices and homogeneity assessment, Earth Syst. Sci. Data, 10, 787–804, https://doi.org/10.5194/essd-10-787-2018, 2018.
Guillou, N., Chapalain, G., and Petton, S.: Predicting sea surface salinity in a tidal estuary with machine learning, Oceanologia, 65, 318–332, https://doi.org/10.1016/j.oceano.2022.07.007, 2023.
Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H., and Pappenberger, F.: GloFAS-ERA5 operational global river discharge reanalysis 1979–present, Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, 2020.
Harrigan, S., Zsoter, E., Cloke, H., Salamon, P., and Prudhomme, C.: Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System, Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023, 2023.
Herzfeld, M.: Methods for freshwater riverine input into regional ocean models, Ocean Model., 90, 1–15, https://doi.org/10.1016/j.ocemod.2015.04.001, 2015.
Hetland, R. D. and MacDonald, D. G.: Spreading in the near-field Merrimack River plume, Ocean Model., 21, 12–21, https://doi.org/10.1016/j.ocemod.2007.11.001, 2008.
Hirose, N.: Inverse estimation of empirical parameters used in a regional ocean circulation model, J. Oceanogr., 67, 323–336, https://doi.org/10.1007/s10872-011-0041-4, 2011.
Hochreiter, S. and Schmidhuber, J. Long Short-Term Memory, Neural Comput., 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735, 1997.
Hordoir, R., Polcher, J., Brun-Cottan, J.-C., and Madec, G.: Towards a parametrization of river discharges into ocean general circulation models: a closure through energy conservation, Clim. Dynam., 31, 891–908, https://doi.org/10.1007/s00382-008-0416-4, 2008.
Hu, R., Fang, F., Pain, C. C., and Navon, I. M.: Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method, J. Hydrol., 575, 911–920, https://doi.org/10.1016/j.jhydrol.2019.05.087, 2019.
Hunt, K. M. R., Matthews, G. R., Pappenberger, F., and Prudhomme, C.: Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States, Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.org/10.5194/hess-26-5449-2022, 2022.
Jana, S., Gangopadhyay, A., and Chakraborty, A.: Impact of seasonal river input on the Bay of Bengal simulation, Cont. Shelf Res., 104, 45–62, https://doi.org/10.1016/j.csr.2015.05.001, 2015.
Kay, S., McEwan, R., and Ford, D.: North West European Shelf Production Centre NWSHELF_MULTIYEAR_BIO_004_011, Copernicus Marine Environment Monitoring Service, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-NWS-QUID-004-011.pdf (last access: 28 July 2024), 2020.
Konapala, G., Kao, S.-C., Painter, S. L., and Lu, D.: Machine learning assisted hybrid models can improve streamflow simulation in diverse catchments across the conterminous US, Environ. Res. Lett., 15, 104022, https://doi.org/10.1088/1748-9326/aba927, 2020.
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, 2019.
Lacroix, G., Ruddick, K., Ozer, J., and Lancelot, C.: Modelling the impact of the Scheldt and Rhine/Meuse plumes on the salinity distribution in Belgian waters (southern North Sea), J. Sea Res., 52, 149–163, https://doi.org/10.1016/j.seares.2004.01.003, 2004.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually varying air–sea flux data set, Clim. Dynam., 33, 341–364, https://doi.org/10.1007/s00382-008-0441-3, 2009.
Lees, T., Buechel, M., Anderson, B., Slater, L., Reece, S., Coxon, G., and Dadson, S. J.: Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models, Hydrol. Earth Syst. Sci., 25, 5517–5534, https://doi.org/10.5194/hess-25-5517-2021, 2021.
Lenhart, H.-J., Mills, D. K., Baretta-Bekker, H., van Leeuwen, S. M., van der Molen, J., Baretta, J. W., Blaas, M., Desmit, X., Kühn, W., Lacroix, G., Los, H. J., Ménesguen, A., Neves, R., Proctor, R., Ruardij, P., Skogen, M. D., Vanhoutte-Brunier, A., Villars, M. T., and Wakelin, S. L.: Predicting the consequences of nutrient reduction on the eutrophication status of the North Sea, J. Marine Syst., 81, 148–170, https://doi.org/10.1016/j.jmarsys.2009.12.014, 2010.
Li, J., Yuan, X., and Ji, P.: Long-lead daily streamflow forecasting using Long Short-Term Memory model with different predictors, Journal of Hydrology: Regional Studies, 48, 101471, https://doi.org/10.1016/j.ejrh.2023.101471, 2023.
Lin, P., Ming, P., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., David, C. H., Durand, M., Pevelsky, T. M., Allen, G. H., Gleason, C. J., and Wood, E. F.: Global Reconstruction of Naturalized River Flows at 2.94 Million Reaches, Water Resour. Res., 55, 6499–6516, https://doi.org/10.1029/2019WR025287, 2019.
Liu, Y., MacCready, P., Hickey, B. M., Dever, E. P., Kosro, P. M., and Banas, N. S.: Evaluation of a coastal ocean circulation model for the Columbia River plume in summer 2004, J. Geophys. Res.-Oceans, 114, C00B04, https://doi.org/10.1029/2008JC004929, 2004.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1: Temperature, edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS 73, 40 pp., https://doi.org/10.7289/V55X26VD, 2013.
López, A. G., Wilkin, J. L., and Levin, J. C.: Doppio – a ROMS (v3.6)-based circulation model for the Mid-Atlantic Bight and Gulf of Maine: configuration and comparison to integrated coastal observing network observations, Geosci. Model Dev., 13, 3709–3729, https://doi.org/10.5194/gmd-13-3709-2020, 2020.
López Pérez, T., Balsells Fernández-Pedrera, M., Fernández Tejedor, M., García-Valdecasas, J. M., Grifoll, M., Ballesteros, Ó., Bielsa, E., Mestres, M., García-León, M., Espino, M., and G Sotillo, M.: The e3HOPE service: a high-resolution forecasting system for the hydrodynamics in Fangar Bay (Ebro Delta, NW Mediterranean Sea), EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024, EGU24-11220, https://doi.org/10.5194/egusphere-egu24-11220, 2024.
Luppichini, M., Vailati, G., Fontana, L., and Bini, M.: Machine learning models for river flow forecasting in small catchments, Sci. Rep., 14, 26740, https://doi.org/10.1038/s41598-024-78012-2, 2024.
Ma, K., Feng, D., Lawson, K., Tsai, W.-P., Liang, C., Huang, X., Sharma, A., and Shen, C.: Transferring Hydrologic Data Across Continents – Leveraging Data-Rich Regions to Improve Hydrologic Prediction in Data-Sparse Regions, Water Resour. Res., 57, e2020WR028600, https://doi.org/10.1029/2020WR028600, 2021.
MacCready, P. and Geyer, W. R.: Advances in Estuarine Physics, Annu. Rev. Mar. Sci., 2, 35–58, https://doi.org/10.1146/annurev-marine-120308-081015, 2010.
Maglietta, R., Verri, G., Saccotelli, L., de Lorenzis, A., Cherubini, C., Caccioppoli, R., Dimauro, G., and Coppini, G.: Advancing estuarine box modeling: A novel hybrid machine learning and physics-based approach, Environ. Model. Softw., 183, 106223, https://doi.org/10.1016/j.envsoft.2024.106223, 2025.
Maicu, F., Alessandri, J., Pinardi, N., Verri, G., Umgiesser, G., Lovo, S., Turolla, S., Paccagnella, T., and Valentini, A.: Downscaling With an Unstructured Coastal-Ocean Model to the Goro Lagoon and the Po River Delta Branches, Front. Mar. Sci., 8, 647781, https://doi.org/10.3389/fmars.2021.647781, 2021.
Mankoff, K. D., Noël, B., Fettweis, X., Ahlstrøm, A. P., Colgan, W., Kondo, K., Langley, K., Sugiyama, S., van As, D., and Fausto, R. S.: Greenland liquid water discharge from 1958 through 2019, Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, 2020.
Medina-Lopez, E.: Machine learning and the end of atmospheric corrections: A comparison between high-resolution sea surface salinity in coastal areas from top and bottom of atmosphere Sentinel-2 imagery, Remote Sens., 12, 2924, https://doi.org/10.3390/RS12182924, 2020.
Medina-Lopez, E. and Ureña-Fuentes, L.: High-resolution sea surface temperature and salinity in coastal areas worldwide from raw satellite data, Remote Sens., 11, 2191, https://doi.org/10.3390/rs11192191, 2019.
Menezes, V. V.: Statistical assessment of sea-surface salinity from SMAP: Arabian sea, bay of Bengal and a promising red sea application, Remote Sens., 12, 447, https://doi.org/10.3390/rs12030447, 2020.
Milliman J. D. and Farnsworth, K. L.: River Discharge to the Coastal Ocean: A Global Synthesis, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511781247, 2011.
Mishra, A. K. and Coulibaly, P.: Developments in hydrometric network design: A review, Rev. Geophys., 47, RG2001, https://doi.org/10.1029/2007RG000243, 2009.
Moftakhari, H. R., Jay, D. A., Talke, S. A., Kukulka, T., and Bromirski, P. D.: A novel approach to flow estimation in tidal rivers, Water Resour. Res., 49, 4817–4832, https://doi.org/10.1002/wrcr.20363, 2013.
Moftakhari, H. R., Jay, D. A., and Talke, S. A.: Estimating river discharge using multiple-tide gauges distributed along a channel, J. Geophys. Res.-Oceans, 121, 2078–2097, https://doi.org/10.1002/2015JC010983, 2016.
Mouatadid, S., Adamowski, J. F., Tiwari, M. K., and Quilty, J. M.: Coupling the maximum overlap discrete wavelet transform and long short-term memory networks for irrigation flow forecasting, Agr. Water Manage., 219, 72–85, https://doi.org/10.1016/j.agwat.2019.03.045, 2019.
Muhebwa, A., Gleason, C. J., Feng, D., and Taneja, J.: Improving Discharge Predictions in Ungauged Basins: Harnessing the Power of Disaggregated Data Modeling and Machine Learning, Water Resour. Res., 60, e2024WR037122, https://doi.org/10.1029/2024WR037122, 2024.
Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.: What Role Does Hydrological Science Play in the Age of Machine Learning?, Water Resour. Res., 57, e2020WR028091, https://doi.org/10.1029/2020WR028091, 2021.
Papa, F., Bala, S. K., Pandey, R. K., Durand, F., Gopalakrishna, V. v, Rahman, A., and Rossow, W. B.: Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal, J. Geophys. Res.-Oceans, 117, C11021, https://doi.org/10.1029/2012JC008158, 2012.
Pein, J. and Staneva, J.: Eutrophication hotspots, nitrogen fluxes and climate impacts in estuarine ecosystems: A model study of the Odra estuary system, Ocean Dynam., 74, 335–354, https://doi.org/10.1007/s10236-024-01607-w, 2024.
Pein, J., Eisele, A., Sanders, T., Daewel, U., Stanev, E. V., van Beusekom, J. E. E., Staneva, J., and Schrum, C.: Seasonal Stratification and Biogeochemical Turnover in the Freshwater Reach of a Partially Mixed Dredged Estuary, Front. Mar. Sci., 8,623714, https://doi.org/10.3389/fmars.2021.623714, 2021.
Perry, G. D., Duffy, P. B., and Miller, N. L.: An extended data set of river discharges for validation of general circulation models, J. Geophys. Res.-Atmos., 10, 21339–21349, https://doi.org/10.1029/96JD00932, 1996.
Piecuch, C. G. and Wadehra, R.: Dynamic Sea Level Variability Due to Seasonal River Discharge: A Preliminary Global Ocean Model Study, Geophys. Res. Lett., 47, e2020GL086984, https://doi.org/10.1029/2020GL086984, 2020.
Piecuch, C. G., Bittermann, K., Kemp, A. C., Ponte, R. M., Little, C. M., Engelhart, S. E., and Lentz, S. J.: River-discharge effects on United States Atlantic and Gulf coast sea-level changes, P. Natl. Acad. Sci. USA, 115, 7729–7734, https://doi.org/10.1073/pnas.1805428115, 2018.
Polton, J., Harle, J., Holt, J., Katavouta, A., Partridge, D., Jardine, J., Wakelin, S., Rulent, J., Wise, A., Hutchinson, K., Byrne, D., Bruciaferri, D., O'Dea, E., De Dominicis, M., Mathiot, P., Coward, A., Yool, A., Palmiéri, J., Lessin, G., Mayorga-Adame, C. G., Le Guennec, V., Arnold, A., and Rousset, C.: Reproducible and relocatable regional ocean modelling: fundamentals and practices, Geosci. Model Dev., 16, 1481–1510, https://doi.org/10.5194/gmd-16-1481-2023, 2023.
Ponsoni, L., Ribergaard, M. H., Nielsen-Englyst, P., Wulf, T., Buus-Hinkler, J., Kreiner, M. B., and Rasmussen, T. A. S.: Greenlandic sea ice products with a focus on an updated operational forecast system, Front. Mar. Sci., 10, 979782, https://doi.org/10.3389/fmars.2023.979782, 2023.
Qi, S., He, M., Bai, Z., Ding, Z., Sandhu, P., Zhou, Y., Namadi, P., Tom, B., Hoang, R., and Anderson, J.: Multi-Location Emulation of a Process-Based Salinity Model Using Machine Learning, Water, 14, 2030, https://doi.org/10.3390/w14132030, 2022.
Qin, T., Fan, J., Zhang, X., Feng, J., Li, C., Dong, B., Wang, K., Zhang, C., Wang, H., Zhang, J., and Yan, D.: Global Freshwater Discharge into the World's Oceans Reached a Record Low Over Past Nearly 70 Years, Research Square, https://doi.org/10.21203/rs.3.rs-1402652/v1, 2022.
Qiu, C. and Wan, Y.: Time series modeling and prediction of salinity in the Caloosahatchee River Estuary, Water Resour. Res., 49, 5804–5816, https://doi.org/10.1002/wrcr.20415, 2013.
Rasiya Koya, S. and Roy, T.: Temporal Fusion Transformers for streamflow Prediction: Value of combining attention with recurrence, J. Hydrol., 637, 131301, https://doi.org/10.1016/j.jhydrol.2024.131301, 2024.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.
Rice, A., Whitney, M. M., Garvine, R. W., and Huq, P.: Energetics in Delaware Bay: Comparison of two box models with observations, J. Mar. Res., 66, 873–898, https://elischolar.library.yale.edu/journal_of_marine_research/218 (last access: 5 May 2025), 2008.
Riggs, R. M., Allen, G. H., Wang, J., Pavelsky, T. M., Gleason, C. J., David, C. H., and Durand, M.: Extending global river gauge records using satellite observations, Environ. Res. Lett., 18, 64027, https://doi.org/10.1088/1748-9326/acd407, 2023.
Saccotelli, L., Verri, G., de Lorenzis, A., Cherubini, C., Caccioppoli, R., Coppini, G., and Maglietta, R.: Enhancing estuary salinity prediction: A Machine Learning and Deep Learning based approach, Applied Computing and Geosciences, 23, 100173, https://doi.org/10.1016/j.acags.2024.100173, 2024.
Sakai, T., Omori, K., Oo, A. N., and Zaw, Y. N.: Monitoring saline intrusion in the Ayeyarwady Delta, Myanmar, using data from the Sentinel-2 satellite mission, Paddy Water Environ., 19, 283–294, https://doi.org/10.1007/s10333-020-00837-0, 2021.
Sampurno, J., Vallaeys, V., Ardianto, R., and Hanert, E.: Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta, Nonlin. Processes Geophys., 29, 301–315, https://doi.org/10.5194/npg-29-301-2022, 2022.
Schiller, R. V. and Kourafalou, V. H.: Modeling river plume dynamics with the HYbrid Coordinate Ocean Model, Ocean Model., 33, 101117, https://doi.org/10.1016/j.ocemod.2009.12.005, 2010.
Shi, X., Qin, T., Nie, H., Weng, B., and He, S.: Changes in Major Global River Discharges Directed into the Ocean, Int. J. Env. Res. Pub. He., 16, 1469, https://doi.org/10.3390/ijerph16081469, 2019.
Sobrinho, J., de Pablo, H., Campuzano, F., and Neves, R.: Coupling Rivers and Estuaries with an Ocean Model: An Improved Methodology, Water, 13, 2284, https://doi.org/10.3390/w13162284, 2021.
Sotillo, M. G., Campuzano, F., Guihou, K., Lorente, P., Olmedo, E., Matulka, A., Santos, F., Amo-Baladron, M. A., and Novellino, A.: River Freshwater Contribution in Operational Ocean Models along the European Atlantic Façade: Impact of a New River Discharge Forcing Data on the CMEMS IBI Regional Model Solution, Journal of Marine Science and Engineering, 9, 401, https://doi.org/10.3390/jmse9040401, 2021a.
Sotillo, M. G., Mourre, B., Mestres, M., Lorente, P., Aznar, R., García-León, M., Liste, M., Santana, A., Espino, M., and Álvarez, E.: Evaluation of the Operational CMEMS and Coastal Downstream Ocean Forecasting Services During the Storm Gloria (January 2020), Front. Mar. Sci., 8, 644525, https://doi.org/10.3389/fmars.2021.644525, 2021b.
Sprintall, J. and Tomczak, M.: Evidence of the barrier layer in the surface layer of the tropics, J. Geophys. Res.-Oceans, 97, 7305–7316, https://doi.org/10.1029/92JC00407, 1992.
Staneva, J., Melet, A., Veitch, J., and Matte, P.: Solving Coastal Dynamics: Introduction to High Resolution Ocean Forecasting Services, in: Ocean prediction: present status and state of the art (OPSR), edited by: Álvarez Fanjul, E., Ciliberti, S. A., Pearlman, J., Wilmer-Becker, K., and Behera, S., Copernicus Publications, State Planet, 5-opsr, 4, https://doi.org/10.5194/sp-5-opsr-4-2025, 2025.
Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y., Blockley, E. W., Calvert, D., Graham, T., Hewitt, H. T., Hyder, P., Kuhlbrodt, T., Rae, J. G. L., and Sinha, B.: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions, Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, 2018.
Sun, Q., Whitney, M. M., Bryan, F. O., and Tseng, Y.: A box model for representing estuarine physical processes in Earth system models, Ocean Model., 112, 139–153, https://doi.org/10.1016/j.ocemod.2017.03.004, 2017.
Sun, Q., Whitney, M. M., Bryan, F. O., and Tseng, Y.: Assessing the Skill of the Improved Treatment of Riverine Freshwater in the Community Earth System Model (CESM) Relative to a New Salinity Climatology, J. Adv. Model. Earth Sy., 11, 1189–1206, https://doi.org/10.1029/2018MS001349, 2019.
Suzuki, T., Yamazaki, D., Tsujino, H., Komuro, Y., Nakano, H., and Urakawa, S.: A dataset of continental river discharge based on JRA-55 for use in a global ocean circulation model, J. Oceanogr., 74, 421–429, https://doi.org/10.1007/s10872-017-0458-5, 2018.
Talke, S. A. and Jay, D. A.: Nineteenth Century North American and Pacific Tidal Data: Lost or Just Forgotten?, J. Coast. Res., 29, 118–127, https://doi.org/10.2112/JCOASTRES-D-12-00181.1, 2013.
Tang, S., Sun, F., Liu, W., Wang, H., Feng, Y., and Li, Z.: Optimal Postprocessing Strategies With LSTM for Global Streamflow Prediction in Ungauged Basins, Water Resour. Res., 59, e2022WR034352, https://doi.org/10.1029/2022WR034352, 2023.
Thao, N. T., Staneva, J., Grayek, S., Bonaduce, A., Hagemann, S., Nam, T. P., Kumar, R., and Rakovec, O.: Impacts of extreme river discharge on coastal dynamics and environment: Insights from high-resolution modeling in the German Bight, Regional Studies in Marine Science, 73, 103476, https://doi.org/10.1016/j.rsma.2024.103476, 2024.
Thielen, J., Bartholmes, J., Ramos, M.-H., and de Roo, A.: The European Flood Alert System – Part 1: Concept and development, Hydrol. Earth Syst. Sci., 13, 125–140, https://doi.org/10.5194/hess-13-125-2009, 2009.
Tonani, M., Sykes, P., King, R. R., McConnell, N., Péquignet, A.-C., O'Dea, E., Graham, J. A., Polton, J., and Siddorn, J.: The impact of a new high-resolution ocean model on the Met Office North-West European Shelf forecasting system, Ocean Sci., 15, 1133–1158, https://doi.org/10.5194/os-15-1133-2019, 2019.
Tseng, Y., Bryan, F. O., and Whitney, M. M.: Impacts of the representation of riverine freshwater input in the community earth system model, Ocean Model., 105, 71–86, https://doi.org/10.1029/2020MS002276, 2016.
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W., Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack, P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C., Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. J., Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do), Ocean Model., 130, 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002, 2018.
Vallaeys, V., Kärnä, T., Delandmeter, P., Lambrechts, J., Baptista, A. M., Deleersnijder, E., and Hanert, E.: Discontinuous Galerkin modeling of the Columbia River's coupled estuary-plume dynamics, Ocean Model., 124, 111–124, https://doi.org/10.1016/j.ocemod.2018.02.004, 2018.
Vallaeys, V., Lambrechts, J., Delandmeter, P., Pätsch, J., Spitzy, A., Hanert, E., and Deleersnijder, E.: Understanding the circulation in the deep, micro-tidal and strongly stratified Congo River estuary, Ocean Model., 167, 101890, https://doi.org/10.1016/j.ocemod.2021.101890, 2021.
Vazquez-Cuervo, J., Fournier, S., Dzwonkowski, B., and Reager, J.: Intercomparison of In-Situ and Remote Sensing Salinity Products in the Gulf of Mexico, a River-Influenced System, Remote Sens., 10, 1590, https://doi.org/10.3390/rs10101590, 2018.
Verri, G., Pinardi, N., Oddo, P., Ciliberti, S. A., and Coppini, G.: River runoff influences on the Central Mediterranean overturning circulation, Clim. Dynam., 50, 1675–1703, https://doi.org/10.1007/s00382-017-3715-9, 2018.
Verri, G., Pinardi, N., Bryan, F., Tseng, Y., Coppini, G., and Clementi, E.: A box model to represent estuarine dynamics in mesoscale resolution ocean models, Ocean Model., 148, 101587, https://doi.org/10.1016/j.ocemod.2020.101587, 2020.
Verri, G., Mahmoudi Kurdistani, S., Coppini, G., and Valentini, A.: Recent Advances of a Box Model to Represent the Estuarine Dynamics: Time-Variable Estuary Length and Eddy Diffusivity, J. Adv. Model. Earth Sy., 13, e2020MS002276, https://doi.org/10.1029/2020MS002276, 2021.
Vörösmarty, C. J., Fekete, B. M., and Tucker, B. A.: Discharge compilation from The Global River Discharge (RivDIS) Project. Distributed Active Archive Center, Oak Ridge National Laboratory, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.859439, 1998.
Vörösmarty, C. J., Green, P, Salisbury, J., and Lammers, R. B.: Global Water Resources: Vulnerability from Climate Change and Population Growth, Science, 289, 284–288, https://doi.org/10.1126/science.289.5477.284, 2020.
Wahl, K. L., Thomas, W. O., and Hirsch, R. M.: The stream-gaging program of the U.S. Geological Survey, Circular, 1123, 22 pp. https://doi.org/10.3133/cir1123, 1995.
Yan, D., Li, C., Zhang, X., Wang, J., Feng, J., Dong, B., Fan, J., Wang, K., Zhang, C., Wang, H., Zhang, J., and Qin, T.: A data set of global river networks and corresponding water resources zones divisions, Sci. Data, 9, 770, https://doi.org/10.1038/s41597-022-01888-0, 2022.
Yang, Y., Feng, D., Beck, H. E., Hu, W., Sengupta, A., Monache, L. D., Hartman, R., Lin, P., Shen, C., and Pan, M.: Global Daily Discharge Estimation Based on Grid-Scale Long Short-Term Memory (LSTM) Model and River Routing, ESS Open Archive, https://doi.org/10.22541/essoar.169724927.73813721/v1, 2023.
Yin, J., Stouffer, R. J., Spelman, M. J., and Griffies, S. M.: Evaluating the Uncertainty Induced by the Virtual Salt Flux Assumption in Climate Simulations and Future Projections, J. Climate, 23, 80–96, https://doi.org/10.1175/2009JCLI3084.1, 2010.
Young, E. F. and Holt, J. T.: Prediction and analysis of long-term variability of temperature and salinity in the Irish Sea, J. Geophys. Res.-Oceans, 112, C01008, https://doi.org/10.1029/2005JC003386, 2007.
Zhang, Y. J., Ye, F., Stanev, E. V., and Grashorn, S.: Seamless cross-scale modeling with SCHISM, Ocean Model., 102, 64–81, https://doi.org/10.1016/j.ocemod.2016.05.002, 2016.
Zhao, G., Bates, P., Neal, J., and Pang, B.: Design flood estimation for global river networks based on machine learning models, Hydrol. Earth Syst. Sci., 25, 5981–5999, https://doi.org/10.5194/hess-25-5981-2021, 2021.
Zweng, M. M, Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D., and Biddle, M. M.: World Ocean Atlas 2013, Volume 2: Salinity, edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS 74, 39 pp., https://doi.org/10.7289/V5251G4D, 2013.
Short summary
Rivers, vital to the Earth's system, connect the ocean with the land, governing hydrological and biogeochemical contributions and influencing processes like upwelling and mixing. This paper reviews methods to represent river runoff in operational ocean forecasting systems, from coarse-resolution models to coastal coupling approaches. It discusses river data sources and examines how river forcing is treated in global to coastal operational systems, highlighting challenges and future directions.
Rivers, vital to the Earth's system, connect the ocean with the land, governing hydrological and...
Altmetrics
Final-revised paper
Preprint