State Planet, 5-opsr, 19, 2025
https://doi.org/10.5194/sp-5-opsr-19-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

w ¢ STATE OF THE

{e%.7 PLANET

The representation of rivers in operational ocean
forecasting systems: a review

Pascal Matte!, John Wilkin2, and Joanna Staneva’

1Meteorologieal Research Division, Environment and Climate Change Canada, Québec, QC, Canada
2Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey,
New Brunswick, NJ, USA
3Institute of Coastal Systems — Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany

Correspondence: Pascal Matte (pascal.matte @ec.gc.ca)

Received: 17 August 2024 — Discussion started: 24 September 2024
Revised: 27 February 2025 — Accepted: 8 March 2025 — Published: 2 June 2025

Abstract. The connection between the ocean and the land is made possible thanks to rivers, which are a vi-
tal component of the Earth’s system. They govern the hydrological and biogeochemical contributions to the
coastal ocean through surface and subsurface water discharge and influence local circulation and the distribution
of water masses, modulating processes such as upwelling and mixing. This paper provides an overview of re-
cent approaches to representing coastal river discharges and processes in operational ocean forecasting systems
(OOFSs), with a particular focus on estuaries. The methods discussed include those currently adopted in coarse-
resolution ocean forecasting systems, where mixing processes are primarily parameterized, as well as more
advanced modelling and coupling approaches tailored to high-resolution coastal systems. A review of river data
availability is also presented, illustrating various sources of freshwater discharge and salinity, from observational
data to climatological datasets, alongside operational river discharge products that enhance the representation
of water discharges in operational systems. New satellite-derived datasets and emerging river modelling tech-
niques are also introduced. In addition, responses from a survey of existing OOFS providers are synthetized,
with a focus on how river forcing is treated, from global to coastal scales. Challenges such as data accuracy,
standardization, and model coupling are discussed, highlighting the need for improved interfaces between mon-
itoring and modelling systems. Finally, some recommendations and ways forward are formulated in relation to

identified limitations in current OOFSs.

1 Introduction

Rivers form the primary link between land and sea, de-
livering approximately 36000km?> of freshwater and over
20 x 10% tons of solid and dissolved material to the global
ocean each year (Milliman and Farnsworth, 2011). River dis-
charge into the ocean is a major component of the global
hydrological and biogeochemical cycles, which have under-
gone significant changes under the influence of climate and
human activities (Shi et al., 2019; Yan et al., 2022; Qin et
al., 2022; Chandanpurkar et al., 2022). Estuaries act as tran-
sitional zones where freshwater fluxes influence ocean circu-
lation, salinity, and upper-ocean stratification, which in turn
affects the mixed layer depth, ocean currents, and air—sea in-
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teraction (Chandanpurkar et al., 2022; Dzwonkowski et al.,
2017; Sprintall and Tomczak, 1992; Sun et al., 2017; Pein et
al., 2021; Pein and Staneva, 2024). Freshwater inputs to the
ocean also modulate coastal upwelling events. Altogether,
these factors impact the productivity of the coastal marine
environment (Sotillo et al., 2021a).

Despite rivers’ influence on the coastal and basin-wide cir-
culation and dynamics, in global- and regional-scale models,
effectively accounting for riverine freshwater discharge into
the oceans is a challenging problem (Sun et al., 2017; Verri
et al., 2020). Accurately incorporating river flow into numeri-
cal ocean models requires appropriate parameterizations and
boundary conditions. The setup of practical open boundary
conditions (OBCs) is dependent on flow dynamics, model
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resolution, data availability, and other factors (Blayo and De-
breu, 2005). At coarse scales that cannot resolve the estuarine
dynamics, but even at finer scales in some cases, river outlets
are often represented in a simplistic way, with climatologi-
cal runoff and zero or constant salinity values, implicitly ne-
glecting estuarine mixing and exchange as well as seasonal
and non-seasonal variability (Sun et al., 2017; Verri et al.,
2020, 2021; Pein et al., 2021; Pein and Staneva, 2024). As a
result, key natural processes are often omitted, and depend-
ing on how river forcing is defined, ocean model outputs may
vary significantly. These discrepancies are most pronounced
in shelf areas, particularly in regions of freshwater influence
(ROFI), but can also propagate to regional and global scales
(Tseng et al., 2016).

This paper reviews existing methods and datasets used in
operational ocean forecasting systems (OOFSs) to represent
river forcing. As the focus is on freshwater discharges, the
river supply of nutrients and other materials are neglected in
this review but are partly addressed in a separate contribution
by Cossarini et al. (2025, in this report).

The paper is structured as follows: Sect. 2 reviews ap-
proaches for representing river forcing in global, regional,
and coastal ocean models, including estuarine mixing pa-
rameterizations and coupling techniques. Section 3 describes
available data sources from operational centers and data
providers as well as emerging techniques for estimating river
discharge. Section 4 presents examples of river forcing meth-
ods and data sources implemented in existing OOFSs, sum-
marizing findings from a survey conducted within the Ocean-
Predict community. Finally, Sect. 5 provides a summary and
recommendations regarding identified limitations in current
OOFSs.

2 River forcing in ocean models

2.1 Capturing seasonal and non-seasonal river
variability

Accurate representation of river discharges and associated
variables (e.g. salinity, temperature), whether model-derived
or observation-based, is crucial for capturing both seasonal
and non-seasonal effects in the coastal ocean. The Bay of
Bengal is one example where the inclusion of seasonal river
discharges and salinity in regional model simulations signif-
icantly improves the representation of sea surface tempera-
tures, near-surface salinity, stratification, mixed-layer depth,
and barrier-layer thickness, leading to a better simulation of
the formation, progression, and dispersion of the freshwater
plume (Jana et al., 2015).

Seasonal variability in river discharge not only impacts
coastal salinity and temperature but also contributes to the
sea level changes both locally and remotely, mostly via a
halosteric sea level contribution. This effect was observed,
for example, between the mouth of the Amazon River and
the continental shelves of the Gulf of Mexico and Caribbean
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Sea (Giffard et al., 2019). Similarly, in the US Atlantic and
Gulf coasts, river discharge and sea level changes were found
to be significantly correlated (Piecuch et al., 2018). Such dy-
namic sea surface height (SSH) signals driven by river dis-
charge can explain 10 %—20 % of the regional-scale seasonal
variance around major rivers, such as the Amazon, Ganges,
Brahmaputra, Irrawaddy, Ob, Lena, and Yenisei (Piecuch and
Wadehra, 2020).

While the seasonal effects of river discharge on ocean
processes have been extensively documented, non-seasonal
influences of river runoff on sea level changes remain
largely unexplored due to the lack of consolidated discharge
databases (Durand et al., 2019). These influences, however,
can be significant when considering river runoff jointly with
wind-driven transport and heat fluxes, which also play a ma-
jor role in modulating regional sea level variability (Verri et
al., 2018).

2.2 Freshwater input in coarse-resolution models:
towards a parameterization of estuarine mixing
processes

Because many ocean models operate at resolutions too coarse
to resolve estuarine processes explicitly, an appropriate pa-
rameterization of estuarine mixing is required to capture their
influence on freshwater transport. In nature, estuaries trans-
port and transform water properties along their length, due
to tidal mixing, deposition, and resuspension, and up- and
down-estuary advection. Saltwater intrusion driven by tides
and other coastal signals (e.g. storm surges) controls the es-
tuarine water exchange and affects the net estuarine outflow
and corresponding salinity values (Sun et al., 2017; Verri et
al., 2020). However, although water properties at the head
differ from those at the mouth, in models too coarse to re-
solve the estuaries, river discharge observed far from the
river outlet is typically inputted at the coast with zero salin-
ity (Verri et al., 2021; Herzfeld, 2015). Alternatively, salinity
values can be prescribed based on constant annual or monthly
values derived from sensitivity tests and/or in situ campaigns,
when available (Verri et al., 2018).

Herzfeld (2015) describes and assesses the performance of
various methods for inputting freshwater into regional ocean
models. A first approach, referred to as a point source in-
put, adds a term of freshwater flux, entering as surface point
sources into one or more layers of the model to the diver-
gence of flow in the vertically integrated continuity equation,
with no associated velocity profile. It affects the vertical ve-
locity surface boundary condition of the free surface equation
and the surface boundary conditions for the diffusive heat
and salt fluxes. A second approach, the flow input, considers
the inertia of the river flow and prescribes a velocity profile
at the boundary whose vertical integral is equal to the in-
flow flux. These two methods must have a predefined depth
at the boundary over which to distribute the volume inflow.
A more accurate approach is to add an artificial channel to
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the coastline to give momentum to the flow and initiate mix-
ing between freshwater and saltwater (Lacroix et al., 2004;
Sobrinho et al., 2021).

The horizontal distribution of the runoff plays an impor-
tant role in the regional salinity distribution and in the verti-
cal stratification and mixing (Tseng et al., 2016). Additional
subtleties arise for large rivers or deltas, where the coastal
source points need to be spread laterally to avoid numerical
instabilities if inflow values are locally too large (Polton et
al., 2023). In global ocean models, however, freshwater in-
flow is frequently added at the ocean surface, either as an
increased precipitation rate over a specified area or by reduc-
ing surface salinity (i.e. a virtual salt flux) rather than being
introduced as a lateral inflow at the coastal boundary. This
freshwater can be distributed vertically over several layers
or diffused horizontally using enhanced mixing (Sun et al.,
2017; Tseng et al., 2016; Yin et al., 2010).

Several plume responses may result from the choice of
the horizontal and vertical distribution of freshwater input.
However, most model applications produce plumes whose
types differ from plumes associated with real river discharges
(Tseng et al., 2016; Garvine, 2001; Schiller and Kourafalou,
2010). Larger-scale offshore stratification is also expected to
be impacted by this choice.

MacCready and Geyer (2010) established the theoretical
foundation for estuarine mixing parameterizations, which
underpins some physics-based methods used to simulate un-
resolved estuarine processes in regional and global ocean
models, such as the estuary box model (EBM); see, for exam-
ple, Fig. 1 (Sun et al., 2017). These models attempt to param-
eterize mixing processes and to account for baroclinic and
barotropic flow, typically using a two-layer formulation (e.g.
Verri et al., 2020, 2021; Herzfeld, 2015; Rice et al., 2008;
Hordoir et al., 2008). From these representations, analytical
solutions can be found for the volume fluxes and outflow
salinity. Applied globally to the Community Earth System
Model (CESM), such an approach revealed substantial lo-
calized, regional, and long-range effects when compared to
cases without parameterization, highlighting once again the
strong sensitivity of ocean models to the treatment of rivers
(Sun et al., 2017).

New hybrid approaches, such as Hybrid-EBM (Maglietta
et al., 2025; Saccotelli et al., 2024), combine physics-based
models with machine learning techniques to predict the salt-
wedge intrusion length and salinity at river mouths. Hybrid-
EBM outperforms the classical EBM and addresses the short-
comings of the dimensional equations in the physics-based
EBM, which rely on several tunable coefficients and require
site-specific calibration, by substituting them with machine
learning algorithms (Maglietta et al., 2025).
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Figure 1. Schematic diagram of the estuary box model (EBM) im-
plemented in the Community Earth System Model (CESM) (Sun et
al., 2017). The EBM is depicted as a two-layer rectangular box with
constant width, uniform local depth (H), and a time-varying length
(L). Each layer has a fixed thickness (% for the lower layer and H —h
for the upper layer), with vertically uniform but horizontally vari-
able salinity and density. Thick solid lines represent closed bound-
aries, dotted lines mark open boundaries, and the dashed line shows
the interface between layers. Volume fluxes (Q) and salinities ()
are indicated by arrows at open boundaries: riverine freshwater dis-
charge (QR) enters at the estuary head, oceanic saltwater flows into
the lower layer at the mouth (Qy M), and Qyg represents the aver-
age tidal volume flux during half a tidal cycle, driving net horizontal
salt flux into the upper layer at the mouth. Shear-induced turbulent
mixing (shown by paired upward and downward open arrows) and
upward advection from exchange flow (solid upward arrows) link
the upper and lower layers. The colour gradient illustrates salin-
ity variation, from fresher (lighter shades) to saltier (darker shades)
waters. Reprinted from Sun et al. (2017, p. 140), © Elsevier Ltd.
(2017), with permission from Elsevier.

2.3 Freshwater input in high-resolution models:
unstructured modelling of the river—sea continuum

In contrast, when the model resolution is higher than the es-
tuary width, the latter can be resolved explicitly by extending
the grid for some distance inland using either real bathymetry
or a straight channel approximation. When extending it be-
yond the salinity intrusion limit and/or the head of tides,
a freshwater flux can be directly specified at the upstream
boundary. This is the preferred option in many east coast
US studies (Herzfeld, 2015) (e.g. RISE — Liu et al., 2004;
LATTE - Choi and Wilkin, 2007; MerMADE — Hetland and
MacDonald, 2008).

The use of unstructured grids offers various advantages,
including a more accurate treatment of the freshwater inputs
from rivers, a realistic representation of river—sea interactions
and estuarine processes at spatial and temporal scales usually
not resolved in the ocean, and an improved interface between
estuaries and the open ocean, sometimes with higher-order
spatial discretizations (Staneva et al., 2025, in this report).
In addition, the unstructured grid modelling combined with
an efficient vertical coordinate system can better resolve the
coastal sea dynamics (Verri et al., 2023).

With seamless grid transitions between models or do-
mains, flexibility and cross-scale capabilities are augmented
(Zhang et al., 2016). As examples, a river—coastal-ocean con-
tinuum model has been developed for the Tiber River delta,
reproducing the coastal dynamic processes better than the
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classic coastal ocean representation, including the salt-wedge
intrusion, and revealing new features near the river mouth
induced by river discharge and coastal morphology (Bona-
mano et al., 2024). In the Columbia River estuary, where
both shelf and estuarine circulations are coupled, a multi-
scale model has proved to be able to reproduce key pro-
cesses driving the river plume dynamics in a region char-
acterized by complex bathymetry and marked gradients in
density and velocity (Vallaeys et al., 2018). Likewise, Val-
laeys et al. (2021) used a similar model in a topographically
challenging area of the Congo River estuary, characterized
by high river discharge, strong stratification, and great depth.
Similarly, Maicu et al. (2021) simulated the circulation in the
Goro Lagoon and Po River delta branches using downscal-
ing and a seamless chain of models integrating local forcings
and dynamics into a coarser OOFS based on a cascading ap-
proach.

While these examples were successful in representing dy-
namical processes across temporal and spatial scales, in
some contexts, the large inward tidal extent and/or complex
bathymetries and coastlines, often featuring coastal infras-
tructure, pose significant challenges for explicitly resolving
estuaries, making it impractical in many coastal models. As
a result, this approach has yet to become standard practice in
OOFSs.

2.4 One-way and two-way coupling

Coupling techniques can be used to link two or more models
to allow one-way data exchange, for example, between a hy-
drological model and an ocean model. In this approach, ex-
ternal forcing is reduced to a limited set of variables, simpli-
fying computational requirements but potentially overlook-
ing key processes at the land—sea interface. Additionally, it
requires extending the ocean domain boundaries far inland,
beyond the limit of tide and storm-surge propagation. While
some parameterizations (see Sect. 2.2) or use of unstructured
grids (see Sect. 2.3) can partly alleviate these shortcomings,
in a compound flooding context, two-way coupled models
are preferred because both land and ocean processes can be
represented along with their interactions (Bao et al., 2022;
Cheng et al., 2010). The inclusion of momentum flux ex-
changes between land and ocean improves the simulation of
estuarine water levels by capturing nonlinear feedbacks be-
tween runoff and residual ocean water levels. In a case study
of Hurricane Florence, Bao et al. (2022) achieved significant
improvement in simulated water levels (20 %—40 % at the
head of Cape Fear River estuary) during the post-hurricane
period by using a two-way coupled model compared to a
stand-alone and linked (one-way coupled) approach.
Alternative approaches for assessing the risk of compound
flooding have been proposed, including integrated hydrody-
namic and machine learning methods to predict water level
dynamics (Sampurno et al., 2022). Such approaches are par-
ticularly valuable in data-scarce regions, where developing
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fully calibrated, computationally intensive models can be im-
practical or infeasible.

3 Data sources

3.1 Freshwater discharge

A persistent challenge in OOFSs with respect to river forc-
ing is the lack of a global network for observed river flows to
the oceans. While advances are being made in creating such
a network, several challenges remain pertaining to data qual-
ity, accessibility, and timeliness at the required spatial and
temporal scales.

In situ river discharge observations are necessary to build
climatologies. They represent a key component of the cal-
ibration of hydrological models and thereby of any reanal-
ysis, near-real-time (NRT) analysis, and forecast products.
The various types of discharge products used in OOFSs are
described in the following.

3.1.1  Climatologies

Most ocean models use climatologies to introduce river forc-
ing based on multi-decadal averages of observed and/or
modelled freshwater discharges, along with zero or con-
stant salinity values. Although climatological data are com-
monly used, even in cases where estuarine dynamics are
not explicitly resolved, more realistic volume flux and salin-
ity estimates would improve the modelling of coastal (e.g.
river plumes) to basin-wide circulation and dynamics (e.g.
dense water formation, overturning circulation cells, water
exchange at straits) (Verri et al., 2018), especially during
non-seasonal (e.g. storm-induced) events (Chandanpurkar et
al., 2022). Moreover, given the global decline of the hydro-
metric networks, building climatologies is not always possi-
ble, especially for small or less-studied rivers and even for
large rivers in regions where routine monitoring is absent
(Campuzano et al., 2016; Mishra and Coulibaly, 2009). Fur-
thermore, monthly climatological products are not adequate
for high-resolution coastal models where temporal variabil-
ity at daily or even higher frequency is needed (Sotillo et al.,
2021a).

3.1.2 River discharge databases

In contrast, river databases and services are progressively
becoming available and provide better estimates of coastal
runoff and river discharges at the global scale (Sotillo et
al., 2021a). These databases typically assemble information
from multiple data providers into coherent, gap-free, and
quality-controlled datasets. Examples below are categorized
by data source.
In situ databases.

— The Global Runoff Data Center (https://grdc.bafg.de/,
last access: 2 May 2025) (GRDC), under the WMO,
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archives quality-controlled historical mean daily and
monthly discharge data from over 10 000 stations across
159 countries. The Freshwater Fluxes into the World’s
Oceans (https:/fwf.bafg.de/, last access: 2 May 2025)
dataset, based on the water balance model WaterGAP,
provides annual runoff estimates from 1901-2016.

— The Global Streamflow Indices and Metadata Archive
(GSIM) is a collection of metadata and indices derived
from more than 35000 daily streamflow time series
worldwide gathered from 12 open databases (7 national
and 5 international collections) (Do et al., 2018; Gud-
mundsson et al., 2018).

— A global dataset of monthly streamflow for 925 of
the world’s largest rivers connecting to the ocean was
built by Dai et al. (2009), updated from Dai and Tren-
berth (2002).

— A global database of monthly mean runoff for 986 rivers
was incorporated in the NCOM, now HYCOM, US
model (Barron and Smedstad, 2002). It expands on the
work of Perry et al. (1996) with corrections and addi-
tions derived from monthly mean streamflow from the
U.S. Geological Survey (USGS) (Wahl et al., 1995) and
extends the basic RivDIS database (Vorosmarty et al.,
1998) to adjust for missing discharge attributed to small
(ungauged) rivers.

Model-derived databases.

— A 35-year daily and monthly global reconstruction of
river flows (GRADES) at 2.94 million river reaches,
with bias correction from machine-learning-derived
global runoff characteristics maps, was developed in
support of the Surface Water and Ocean Topography
(SWOT) satellite mission (Lin et al., 2019).

— A dataset of historical river discharge from 1958 to 2016
was created using the CaMa-Flood global river routing
model and adjusted runoff from the land component of
JRA-55 (Suzuki et al., 2018; Tsujino et al., 2018).

— A global freshwater budget is included in the CORE.v2
datasets that have an accompanying database for con-
tinental runoff from rivers, groundwater, and icebergs.
These are estimated from continental imbalances be-
tween precipitation, evaporation, and storage and then
distributed between bordering ocean basins based on
river routing schemes and flow estimates (Large and
Yeager, 2009).

Hybrid database.

— EMODnet Physics  (https://emodnet.ec.europa.eu/
geoviewer/, last access: 2 May 2025) provides ocean
physics data and data products built with common
standards, consisting of collections of in situ data,
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reanalysis, and aggregated in situ data and model
outputs. As part of the available parameters, the op-
erational river runoff data include near-real-time data
from European river stations and a subset of the GRDC
focusing on coastal areas and stations located near river
mouths, which extend beyond European borders. About
1200 rivers worldwide are connected and operationally
available.

Satellite-derived database.

— The largest known dataset compiles publicly available
river gauge data, with satellite-based rating curves used
to fill in the temporal gaps (Riggs et al., 2023).

Regional databases also exist, such as

— long-term (1993-2011) satellite-derived estimates of
continental freshwater discharge into the Bay of Bengal
(Papa et al., 2012)

— a database of pan-Arctic river discharge (R-Arcticnet,
https://www.r-arcticnet.sr.unh.edu/v4.0/index.html, last
access: 2 May 2025)

— a database for Greenland liquid water discharge from
1958 through 2019 (Mankoff et al., 2020)

— ariver discharge climatology and corresponding histor-
ical time series for all rivers flowing into the Adriatic
Sea with an average climatological daily discharge ex-
ceeding 1 m3 s™! (Aragio et al., 2024).

Of particular importance is the fact that some of these
databases use model-simulated runoff ratios (e.g. from Com-
munity Land Model (CLM) or river routing model) over
gauged and ungauged drainage areas to estimate the contri-
bution from the areas not monitored by the hydrometric net-
work and adjust the station flow to represent river mouth out-
flow (e.g. Dai et al., 2009). This allows more precise deriva-
tion of the total discharge into the global oceans through the
sum of both gauged and ungauged discharges.

Unless explicitly stated (e.g. for EMODnet Physics), most
of these databases lack clearly stated update schedules; some
remain static, while others update at irregular intervals. Such
databases are useful in the context of a reanalysis but less so
in an operational context where near-real-time data feeds are
required. Furthermore, a detailed comparative assessment of
these various data sources is still lacking.

Alternatively, indirect approaches using tidal statistics at
the estuarine entrance from tidal stations rather than direct
flow measurements have been developed to estimate the net
freshwater discharge at the mouth of an estuary, with the ad-
vantage of integrating processes at the basin scale, down-
stream of the last hydrometric station (Moftakhari et al.,
2013, 2016). Because tide gauge records at the coasts were
often installed well before the onset of systematic river gaug-
ing (Talke and Jay, 2013), such inverse techniques make it
possible to extend flow records back in time.
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Figure 2. Annual mean surface water discharge @3s™!) in
0.1° x 0.1° cells of the GloFAS analysis from Harrigan et al. (2020)
for the year 2023. Filled circles show the locations of 93 point
sources in the prototype East Coast Community Ocean Forecast
System (ECCOFS) ROMS model (domain denoted by the gray
perimeter box) associated with GloFAS points near the coast that
have long-term mean (2009-2019) discharge exceeding 50 m3s~1
River networks come from GloFAS.

3.1.3 Operational river discharge products

While most river discharge databases are static, operational
products have been developed for near-real-time applica-
tions. For example, the Global Flood Awareness System,
GloFAS-ERAS, is an operational global river discharge re-
analysis produced consistently with the ECMWF ERAS5
atmospheric reanalysis and providing global gridded data
products from 1979 to near-real time (within a 7d delay)
(Harrigan et al., 2020). Figure 2 illustrates the resolution of
the river network that emerges in the GIoFAS gridded data
and the association of discharge at the coast to point sources
in a regional model of the northwest Atlantic Ocean that is in
development for future operations.

Several centers are also producing continental- and global-
scale hydrological (ensemble) forecasts operationally: the
European Flood Awareness System (EFAS) (Thielen et al.,
2009), the European Hydrological Predictions for the En-
vironment (E-HYPE) (Donnelly et al., 2015), the Hydro-
logic Ensemble Forecast System (HEPS) in the US (De-
margne et al., 2014), the Flood Forecasting and Warning
Service (FWWS) in Australia, the National Surface and
River Prediction System (NSRPS) in Canada (Fortin et al.,
2023), and globally World-Wide HYPE (WWH) (Arheimer
et al., 2020) and GloFAS (Harrigan et al., 2023). Notably, as
part of the GIoFAS service evolution, global daily ensemble
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river discharge reforecasts (20-year) and real-time forecast
(2020—present) datasets are made freely and openly available
through the Copernicus Climate Change Service (C3S) Cli-
mate Data Store (CDS) (Harrigan et al., 2023).

Other projects have been supported by the Copernicus
Marine Environment Monitoring Service (CMEMS): for ex-
ample, the LAMBDA project regionally focused on the
European Atlantic facade and the North Sea. The result-
ing freshwater model estimates and in situ observations are
operationally updated and made available via the project
viewer web interface (http://www.cmems-lambda.eu/home.
html, last access: 2 May 2025; Sotillo et al., 2021a).

The FOCCUS project (Forecasting and Observing the
Open-to-Coastal Ocean for Copernicus Users; https:/
foccus-project.eu/, last access: 2 May 2025) further enhances
operational hydrological models by addressing the land-
ocean continuum through improved river runoff estimations
and the development of advanced coupling between hydro-
logical and coastal ocean models. FOCCUS builds on ex-
isting pan-European hydrological frameworks, such as E-
HYPE and LISFLOOD, to provide dynamic freshwater in-
puts, including nutrient and inorganic matter transport. Ad-
ditionally, the project integrates novel Al techniques to opti-
mize estuarine modelling and freshwater forcing for coastal
systems. These innovations directly contribute to refining
CMEMS and supporting all European coastal services with
more accurate and seamless coastal monitoring and forecast-
ing capabilities.

In some instances, the regional products may appear to be
the preferred option for some regional or local studies, as
they were designed to specifically represent the hydrologi-
cal characteristics of a given region, sometimes with higher
resolution and accuracy. However, a global solution is attrac-
tive in data-scarce areas and where consistency between dis-
charge products and across all forcing variables is required
over large domains (Polton et al., 2023).

3.1.4 Remotely sensed discharges

Remote sensing of river discharge is a rapidly advancing re-
search field (see Gleason and Durand, 2020, and references
therein). With the SWOT satellite launched in December
2022, global discharge products will soon be available at
a nominal resolution of 10km for river reaches wider than
100 m, thus vastly expanding measurements of global rivers
in both gauged and ungauged basins (Durand et al., 2023).
Significant improvements in global uncalibrated models are
expected (Emery et al., 2018). SWOT-derived discharge data
are expected to improve global hydrological cycle represen-
tation and enhance ocean model solutions near the coast.

3.1.5 Machine-learning-derived discharge estimates

Machine learning is increasingly used in hydrology for rain-
fall runoff modelling, with long short-term memory (LSTM)
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networks (Greff et al., 2017; Hochreiter and Schmidhuber,
1997) proving particularly effective in capturing both peri-
odic and chaotic patterns in time-series data while accurately
learning long-term dependencies (Fang et al., 2017a; Hu et
al., 2019; Mouatadid et al., 2019). In numerous hydrological
studies, LSTM has demonstrated superior performance over
traditional process-based models in simulating runoff, pri-
marily in data-rich regions (Feng et al., 2020, 2021a; Frame
et al., 2022; Gauch et al., 2021; Hunt et al., 2022; Konapala
et al., 2020; Kratzert et al., 2019; Lees et al., 2021; Li et al.,
2023; Luppichini et al., 2024; Nearing et al., 2021; Reich-
stein et al., 2019). However, limited efforts have explored the
transferability of LSTM models to data-scarce regions (e.g.
Akpoti et al., 2024), with Ma et al. (2021) and Muhebwa et
al. (2024) (and references therein) being examples of such
exceptions. Recently, researchers have explored the poten-
tial of LSTM models for global river discharge estimations
(Rasiya Koya and Roy, 2024; Tang et al., 2023; Yang et al.,
2023; Zhao et al., 2021). However, extensive validation be-
yond the training basins is required to fully evaluate their
suitability for global-scale implementations.

3.2 Salinity and temperature

Estuarine mixing influences salinity distribution and its sea-
sonal variability near river mouths (Sun et al., 2019). Mod-
els are particularly sensitive to salinity in shelf areas and
ROFI zones, most often due to the diverse treatment of
OOFSs given to coastal and river freshwater forcing (Sotillo
et al., 2021a). Therefore, to assess the impact of a cho-
sen formulation and evaluate model performances, sea sur-
face salinity (SSS) and temperature (SST) are typically used.
The World Ocean Atlas climatology (Locarnini et al., 2013;
Zweng et al., 2013) often overestimates nearshore salinity,
making it unsuitable for model evaluation in coastal regions.
As an alternative, Sun et al. (2019) built on the original
World Ocean Database and developed an improved salin-
ity and temperature climatology with an enhanced repre-
sentation of the coastal ocean. In situ data and satellite ob-
servations from SMOS, Aquarius, and SMAP (Bao et al.,,
2019) can also be used to assess the impact of river forc-
ing on sea surface salinity (Feng et al., 2021b). However,
seasonal variability in the skill of SSS retrievals can be as-
sociated with SST-dependent bias and strong land—sea dif-
ferences in microwave emissivity, making satellite obser-
vations unreliable within some 70km of the coast (Grod-
sky et al., 2018; Menezes, 2020; Vazquez-Cuervo et al.,
2018). Higher-resolution coastal satellite products have been
developed based on empirical relationships between lo-
cal salinity and ocean colour observations (Geiger et al.,
2013; Chen and Hu, 2017), using deep neural networks
trained on Sentinel-2 Level-1C top-of-atmosphere (TOA)
reflectance data (Medina-Lopez and Urefia-Fuentes, 2019;
Medina-Lopez, 2020) or by relating the reflectance of the
visible bands from Sentinel-2 imagery with electrical con-
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ductivity, influenced by the concentration and composition
of dissolved salts (Sakai et al., 2021), although these are not
applied globally.

A recent study in the German Bight (Thao et al., 2024)
demonstrated the critical role of high-resolution salinity in-
puts at estuarine mouths in improving the predictive ca-
pabilities of coupled wave—ocean models. Using GCOAST
(Geesthacht Coupled cOAstal model SysTem), which seam-
lessly integrates estuarine and coastal dynamics with regional
ocean models, researchers validated salinity and temperature
fields against in situ observations. The results highlighted
that estuarine inflows significantly enhance the accuracy of
coastal ocean models.

Alternatively, salinity predictions in estuaries and at river
mouths have been successfully estimated using machine
learning approaches. A few examples can be found in the
recent literature: Qiu and Wan (2013) developed an autore-
gressive model relating salinity at a given time to past ob-
servations of salinity and physical drivers (freshwater inflow,
rainfall, tidal elevation) in the Caloosahatchee River estuary;
Fang et al. (2017b) used a genetic algorithm coupled with a
support vector machine to predict salinity in the Min River
estuary; Qi et al. (2022) applied four neural network mod-
els to emulate salinity simulations in the Sacramento—San
Joaquin Delta from a process-based river, estuary, and land
modelling system; Guillou et al. (2023) were able to repro-
duce the seasonal and semi-diurnal variations in sea surface
salinity at the mouth of the Elorn estuary (Bay of Brest), with
support vector regression performing best among all tested
algorithms.

Despite these advancements, sustained high-resolution
salinity monitoring is needed to build confidence in numeri-
cal solutions near the coast. Integrating salinity, temperature,
and additional parameters such as nutrients and sediments
directly into river outflows could further improve model ac-
curacy (Verri et al., 2018; Thao et al., 2024). While these
factors play a secondary role in influencing oceanographic
processes, their inclusion could advance research on coastal
hypoxia, carbon cycling, and regional weather and climate,
ultimately supporting seamless predictions of land—ocean—
atmosphere feedbacks in next-generation Earth system mod-
els (Feng et al., 2021b).

4 Examples of current OOFSs

This section describes how river forcing is implemented in
current OOFSs. The objective is to get a picture of the cur-
rent landscape of approaches and data sources. While Cirano
et al. (2025, in this report) provide a comprehensive overview
of existing OOFSs worldwide, the representation of rivers in
these systems remains poorly documented and often buried
in model configuration files. The list of systems presented in
Appendix A is therefore not exhaustive and is limited to a
compilation of comments received as part of a survey con-
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Figure 3. Graphical summary from a survey on river forcing methods (a) and data sources (b) used in global, regional, coastal, and inland
OOFSs listed in Appendix A. Coloured bars indicate the primary data sources or methods, whereas dashed bars represent secondary data

sources used as a fallback when primary sources are unavailable.

ducted among members of the OceanPredict community in
May 2023. It is meant to illustrate the diversity of methods
employed for treating freshwater fluxes in OOFSs and asso-
ciated input data sources in 4 global, 12 regional, 4 coastal,
and 1 inland systems. Although the survey covers a limited
number of systems, the literature review in previous sections
offers additional examples to complete the picture.

Figure 3 provides a graphical summary of the six river
forcing methods and four data sources used in the OOFSs
listed in Appendix A. In terms of river forcing methods, most
systems specify vertical or lateral freshwater fluxes to ac-
count for riverine inputs. Only a few of them rely on more
sophisticated approaches that use channel extensions within
the ocean model or routing schemes from hydrological mod-
els to transport the water from the watershed to the coast.
Furthermore, none of the global systems surveyed use lateral
boundary conditions, likely due to insufficient spatial resolu-
tion near river mouths.

In terms of the data sources used in OOFSs, what stands
out from the survey is the use of in situ data as a primary
source in most systems and climatology as either a primary
or a fallback source of freshwater discharge. Global systems
tend to opt for climatologies in comparison with regional or
coastal systems that favour observed data when available,
which allows both seasonal and non-seasonal events and their
potential local or regional impacts to be captured. Only a few
regional and inland systems use hydrological models or re-
analyses as primary data sources.

Additional considerations were also highlighted by the re-
spondents, essential for appropriately representing river in-
flow in ocean models and addressing challenges such as nu-
merical instabilities and data limitations. For example, spa-
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tial smoothing around the river source or, equivalently, op-
timizing the integration distance for equivalent coastal pre-
cipitation may be required to prevent numerical instabilities.
Similarly, an increased diffusivity within the surface mixing
layer can be implemented to simulate the effects of river in-
flow. Salinity and temperature of the input freshwater can be
set either to zero and to the local SST, respectively, or derived
from a combination of real-time gauge data and monthly av-
erages when available. For ungauged areas, river gauge data
can be scaled, or additional coastal runoff can be incorpo-
rated. In contrast, some systems directly convert precipita-
tion data into river discharges, disregarding hydrological pro-
cesses and assuming an instantaneous response.

In sum, the representation of rivers in OOFSs requires
careful consideration of various numerical methods, data
sources, and modelling approaches. However, some simpli-
fications may limit accuracy in applications requiring high
regional precision.

5 Summary and recommendations

The assessment of river forcing implementation in OOFSs
highlights the complexity and challenges of accurately in-
tegrating riverine freshwater discharges into ocean models.
Despite the growing demand for operational oceanographic
products, especially in coastal areas (Ciliberti et al., 2023),
OOFS river forcing still faces shortcomings related to the
representation of physical processes, data availability, and
data quality. The parameterization of river inputs and the
interaction between model components, often nonlinear, re-
main unresolved issues, underscoring the absence of stan-
dardized practices for river forcing. Addressing these gaps
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requires advancements in model physics; improved spatial
and temporal resolution; and enhanced coupling between
land, ocean, and atmosphere. Furthermore, the incorpora-
tion of river flow varies regionally, largely due to differences
in the availability and quality of river discharge, salinity,
and bathymetric datasets, and is further influenced by model
scale and resolution. As the demand for reliable coastal
forecasts grows, real-time, high-quality river discharge data
become increasingly pressing. Standardized methodologies
and improved integration of riverine parameters — including
salinity, temperature, and biogeochemical components — will
facilitate seamless watershed—ocean coupling and improve
predictions of coastal dynamics, particularly under extreme
conditions.

Service evolution roadmaps, such as those outlined by
CMEMS, emphasize the need for a better characterization
of coastal freshwater exchanges to improve forecasts, espe-
cially during severe weather events (Sotillo et al., 2021b).
A key step forward involves the progressive replacement
of static climatologies with real-time, updated time series
(past, present, and forecasts) of river inputs, covering both
major and minor or ephemeral streams. Recommendations
have been made towards standardized freshwater inputs (and
associated river inputs of nutrients and sediment loading),
harmonized river forcing approaches, and a more integrated
watershed—ocean strategy (Campuzano et al., 2016; Capet et
al., 2020; Sobrinho et al., 2021). Additionally, ensuring vali-
dated observational error estimates for estuary-mouth forc-
ing, including river discharge and auxiliary variables such
as coastal salinity, is crucial for model accuracy (De Mey-
Frémaux et al.,, 2019; Polton et al., 2023). Improved in-
terfaces between coastal monitoring and modelling systems
are therefore essential. The FOCCUS project exemplifies
progress in addressing these challenges through advance-
ments in hydrological and estuarine modelling, dynamic
freshwater inputs, and the integration of Al-driven tools to
refine river discharge estimations and coastal system fore-
casts.

Future efforts must focus on refining model physics,
resolution, and coupling strategies to better integrate the
land—ocean continuum. Standardized methodologies and in-
tegrated high-quality data sources, together with continued
interdisciplinary collaboration and technological advance-
ments, will be key to overcoming existing limitations and
ensuring more accurate and reliable ocean predictions. Such
efforts are critical for improving predictions of coastal dy-
namics and for fostering a deeper understanding of their im-
plications on global climate and ecosystem functioning.

https://doi.org/10.5194/sp-5-opsr-19-2025

Appendix A: Survey on river forcing methods and
data sources in current OOFSs

This appendix presents results of a survey conducted among
members of the OceanPredict community in May 2023. The
responses are reported in the following tables as given by
the participants; nearly no changes were made to each con-
tributed entry, except for a few added references and acronym
definitions.
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Global systems

A1l

Table A1. Examples of river forcing methods and data sources in global OOFSs.

System Institution Domain(s)  Resolution  Circulation Method for river forcing Data sources
model
MOVE/MRI.COM-G32 Japan Meteorological ~ Global 1/4° MRI.COM River discharge is expressed as a part of ~ Climatology of JRAS5-do river
(Multivariate Ocean Variational Agency’s (JMA) Ver. 4 the surface freshwater. runoff data.
Estimation/Meteorological Meteorological
Research Institute Community Research Institute
Ocean Model — Global version 3)
GEOSP (NASA Goddard Earth NASA’s Global Global 4-25km MOM6 GEOS-land component runoff, routed to In situ data, land/catchment model.
Observing System) Modeling and catchments.
Assimilation Office
RTOFSv2€ (Real-Time Ocean NOAA’s National Global 0.08° HYCOMv2.2 Rivers are implemented as virtual salt RTOFS uses the global climatology
Forecast System) Centers for flux at the ocean surface. River runoff is ~ of monthly mean river discharge
Environmental distributed over several ocean grid points  created at the Naval Research
Prediction around the river source by applying Laboratory (NRL) (Barron and
spatial smoothing to spread out the effect ~ Smedstad, 2002). It provides
of the river and prevent negative monthly runoff for 986 rivers. The
salinities due to numerical overshooting.  dataset is based on the Perry et
To mimic the river inflow, river al. (1996) data with corrections and
freshwater is mixed from the surface additions derived from (1) monthly
down to a depth specified by the user mean streamflow over all years,
(set to 6 m in RTOFS). In the grid cells accessible from the USGS (Wahl et
with not-zero river runoff and in the al., 1995); (2) the Global River
upper layers, river freshwater is mixed Discharge (RivDIS) database
within increased vertical diffusivity. (Vorosmarty et al., 1998); and
Alternatively, rivers can be added (3) the Regional,
directly to the input precipitation fields, Hydrometeorological Data Network
which is a better option for (R-Arcticnetd) database providing
higher-frequency (than monthly) river most of the information ultimately
flow data. It is possible to treat rivers (as  used on rivers flowing into the
well as evaporation minus precipitation, Arctic, primarily rivers in Russia and
E — P) as a mass exchange (not Canada.
activated in RTOFS).
FOAM-CPL-NWP€ (Forecast UK Met Office Global 1/4° NEMO v3.6  Freshwater runoff from land is input in Climatological river runoff fields

Ocean Assimilation Model,
Coupled Numerical Weather
Prediction

the surface layer of the ocean with the
assumption that the runoff is fresh and at
the same temperature as the local sea
surface temperature. An enhanced
vertical mixing of 2 x 1073 m?s~Lis
added over the top 10 m of the water
column at runoff points to mix the runoff
vertically and avoid instabilities
associated with very shallow fresh layers
at the surface (Storkey et al., 2018).

1

were derived by Bourdallé-Badie
and Treguier (2006) based on
estimates given in Dai and
Trenbert (2002; Blockley et al.,
2014).

4 https://ds.data.jma.go.jp/wmc/products/elnino/move_mricom-g3_doc.html (last access: 2 May 2025). b https://gmao.gsfc.nasa.gov/GEOS_systems/ (last access: 2 May 2025).
¢ https://polar.ncep.noaa.gov/global/about/ (last access: 2 May 2025). d http://www.r-arcticnet.sr.unh.edu/ (last access: 2 May 2025). © https://www.metoffice.gov.uk/services/data/met-office- data-for-reuse/model (last

access: 2 May 2025).
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Table A2. Continued
System Institution Domain(s) Resolution Circulation Model Method for river forcing Data sources
IBI Multi- Year™ Iberia Biscay Irish European Atlantic 1/12°, surface ~ NEMO v3.6 Same as IBI-NRT, but with an additional river Data come from different sources,
(IBI) Sea — fagade (the Iberia— and 3D fields (LAGAN) depending on their availability, in the
Monitoring Biscay-Ireland (50 vertical following order: (1) in situ data — daily
Forecasting Center zone). Lat: from 26  levels) measurements from Copernicus Marine
to 56° N; long: Service, EMODnet, or national web sites;
from 19°W to 5°E (2) model data — SMHI hydrologic model.
CBEFS! (Chesapeake Virginia Institute of Chesapeake Bay 600m x 600m ROMS Freshwater: real-time USGS river gauge data In situ gauge data. Hindcast watershed
Bay Environmental Marine Science are scaled to better represent total freshwater model information. Artificial neural
Forecast System) inflows over a larger area based on a watershed ~ networks.
model. The scaled discharge is then
disaggregated into the main river inflow and
smaller streams based on proportions
developed from the watershed model. The
forecast is a simple autoregressive model based
on the past few days.
Riverine biogeochemistry: inputs are specified
using artificial neural network AI models based
on the discharge and date, which recreate what
the watershed model would have predicted had
the current and forecast conditions been
simulated by the watershed model.
Temperature: water temperature is specified
using a combination of real time gauge data
and monthly averages depending on what is
available.
DREAMS/ (RIAM Kyushu University’s East Asian 0.3-22km RIAM Ocean Coastal precipitation is directly converted into Grid point value (GPV) precipitation data
Real-Time Ocean Research Institute for ~ marginal seas Model the amount of river discharges. The integration  of Japan Meteorological Agency (JMA)

Forecasting)

Applied Mechanics
(RIAM)

distance was optimized by using model
Green’s functions (Hirose, 2011).
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A3 Coastal systems

Table A3. Examples of river forcing methods and data sources in coastal OOFSs.

System Institution Domain(s) Resolution  Circulation Method for river forcing Data sources
model
DFO’s Port Ocean Government of Kitimat Fjord, 20-200 m NEMO 3.6 NEMO'’s runoff feature for some Gauge data (from
Prediction Systems? Canada’s Department ~ Vancouver rivers, and a SSH open boundary Environment and
of Fisheries and Harbour, lower condition for others Climate Change
Oceans (DFO) Fraser River, St. Canada, ECCC) where
Lawrence Estuary, available, climatology
Port of Canso, elsewhere
Saint John Harbour
CIOPSP (Coastal Environment and Canadian East and 1/36° + NEMO 3.6 Same as DFO port models Gauge data for Fraser
Ice-Ocean Prediction Climate Change West coasts 500 m for River, climatology
System) Canada (ECCC) (CIOPS-E, Salish- elsewhere
CIOPS-W), Salish Sea500
Sea (SalishSea500)
FANGAR BAY® Universitat Ebro Delta 350m/70m  COAWST Climatological freshwater from Ebro  In situ data
Politecnica de (ROMS/SWAN)  River
Catalunya
NARFY (Northern Istituto Nazionale di Northern Adriatic 1/128° MITgecm-BFM The downstream end of the rivers In situ NRT discharge
Adriatic Reanalysis Oceanografia e di Sea (Mediterranean ~ (~ 750 m) (coupled flowing into the basin is simulated as  data for the Po River
and Forecasting Geofisica Sea) hydrodynamic—  a narrow channel: one or two cells in  (main contributor) and
system) Sperimentale biogeochemical) the horizontal direction and a few climatologies for the

vertical levels. Freshwater discharge
rates from NRT data or climatologies
are converted into horizontal
velocities (the section of the riverbed
is known) and applied as lateral open
boundary conditions. Salinity is
constant (5 PSU), temperature has a
yearly sinusoidal cycle (maxima and
minima in summer and winter,
respectively), and biogeochemical
concentrations are derived from the
literature/climatologies.

others (with sinusoidal
modulation: maxima in
spring and fall, minima
in summer and winter).
Daily frequency.

2 https://publications.gc.ca/site/eng/9.905464/publication.html (last access: 2 May 2025). b https://eccc-msc.github.io/open-data/msc-data/nwp_ciops/readme_ciops_en/ (last access: 2 May 2025).
¢ Lopez et al. (2024). d https://medeaf.ogs.it/got (last access: 2 May 2025).
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A4 Inland systems
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