Articles | Volume 5-opsr
https://doi.org/10.5194/sp-5-opsr-22-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-5-opsr-22-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Crafting the Future: Machine learning for ocean forecasting
Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
Fearghal O'Donncha
IBM Research, Dublin, Ireland
Timothy A. Smith
NOAA Physical Sciences Laboratory, Boulder, CO, United States
Jose Maria Garcia-Valdecasas
Nologin Oceanic Weather Systems, Santiago de Compostela, Spain
Alain Arnaud
Mercator Ocean International, Toulouse, France
Liying Wan
National Marine Environmental Forecasting Center Beijing, Beijing, China
Related authors
Laurent Bertino, Patrick Heimbach, Ed Blockley, and Einar Ólason
State Planet, 5-opsr, 14, https://doi.org/10.5194/sp-5-opsr-14-2025, https://doi.org/10.5194/sp-5-opsr-14-2025, 2025
Short summary
Short summary
Forecasts of sea ice are in high demand in the polar regions, and they are also quickly improving and becoming more easily accessible to non-experts. We provide here a brief status of the short-term forecasting services – typically 10 d ahead – and an outlook of their upcoming developments.
Andrew R. Porter and Patrick Heimbach
State Planet, 5-opsr, 23, https://doi.org/10.5194/sp-5-opsr-23-2025, https://doi.org/10.5194/sp-5-opsr-23-2025, 2025
Short summary
Short summary
Numerical ocean forecasting is a key part of accurate models of the Earth system. However, they require powerful computing resources, and the architectures of the necessary computers are evolving rapidly. Unfortunately, this is a disruptive change – an ocean model must be modified to enable it to make use of this new computing hardware. This paper reviews what has been done in this area and identifies solutions to enable operational ocean forecasts to make use of the new computing hardware.
Abdullah A. Fahad, Andrea Molod, Krzysztof Wargan, Dimitris Menemenlis, Patrick Heimbach, Atanas Trayanov, Ehud Strobach, and Lawrence Coy
EGUsphere, https://doi.org/10.21203/rs.3.rs-1892797/v2, https://doi.org/10.21203/rs.3.rs-1892797/v2, 2025
Short summary
Short summary
This study used a 1-degree GEOS-MITgcm coupled GCM to analyze the Northern Hemisphere (NH) stratospheric temperature response to external forcing. Results show the NH polar stratospheric temperature increased from 1992 to 2000, contrary to the expectation of stratospheric cooling with rising CO2. However, from 2000 to 2020, the temperature decreased. The study concluded that changes in CO2 and Ozone drive the meridional eddy transport of heat, dictating polar stratospheric temperature behavior.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Carl Wunsch, Sarah Williamson, and Patrick Heimbach
Ocean Sci., 19, 1253–1275, https://doi.org/10.5194/os-19-1253-2023, https://doi.org/10.5194/os-19-1253-2023, 2023
Short summary
Short summary
Data assimilation methods that couple observations with dynamical models are essential for understanding climate change. Here,
climateincludes all sub-elements (ocean, atmosphere, ice, etc.). A common form of combination arises from sequential estimation theory, a methodology susceptible to a variety of errors that can accumulate through time for long records. Using two simple analogs, examples of these errors are identified and discussed, along with suggestions for accommodating them.
David S. Trossman, Caitlin B. Whalen, Thomas W. N. Haine, Amy F. Waterhouse, An T. Nguyen, Arash Bigdeli, Matthew Mazloff, and Patrick Heimbach
Ocean Sci., 18, 729–759, https://doi.org/10.5194/os-18-729-2022, https://doi.org/10.5194/os-18-729-2022, 2022
Short summary
Short summary
How the ocean mixes is not yet adequately represented by models. There are many challenges with representing this mixing. A model that minimizes disagreements between observations and the model could be used to fill in the gaps from observations to better represent ocean mixing. But observations of ocean mixing have large uncertainties. Here, we show that ocean oxygen, which has relatively small uncertainties, and observations of ocean mixing provide information similar to the model.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Liz C. Logan, Sri Hari Krishna Narayanan, Ralf Greve, and Patrick Heimbach
Geosci. Model Dev., 13, 1845–1864, https://doi.org/10.5194/gmd-13-1845-2020, https://doi.org/10.5194/gmd-13-1845-2020, 2020
Short summary
Short summary
A new capability has been developed for the ice sheet model SICOPOLIS (SImulation COde for POLythermal Ice Sheets) that enables the generation of derivative code, such as tangent linear or adjoint models, by means of algorithmic differentiation. It relies on the source transformation algorithmic (AD) differentiation tool OpenAD. The reverse mode of AD provides the adjoint model, SICOPOLIS-AD, which may be applied for comprehensive sensitivity analyses as well as gradient-based optimization.
Nat Wilson, Fiammetta Straneo, and Patrick Heimbach
The Cryosphere, 11, 2773–2782, https://doi.org/10.5194/tc-11-2773-2017, https://doi.org/10.5194/tc-11-2773-2017, 2017
Short summary
Short summary
We estimate submarine melt rates from ice tongues in northern Greenland using WorldView satellite imagery. At Ryder Glacier, melt is strongly concentrated around regions where subglacier channels likely enter the fjord. At the 79 North Glacier, we find a large volume imbalance in which melting removes a greater quantity of ice than is replaced by inflow over the grounding line. This leads us to suggest that a reduction in the spatial extent of the ice tongue is possible over the coming decade.
Liying Wan, Marcos Garcia Sotillo, Mike Bell, Yann Drillet, Roland Aznar, and Stefania Ciliberti
State Planet, 5-opsr, 15, https://doi.org/10.5194/sp-5-opsr-15-2025, https://doi.org/10.5194/sp-5-opsr-15-2025, 2025
Short summary
Short summary
Operating the ocean value chain requires the implementation of steps that must work systematically and automatically to generate ocean predictions and deliver this information. The paper illustrates the main challenges foreseen by operational chains in integrating complex numerical frameworks from the global to coastal scale and discusses existing tools that facilitate orchestration, including examples of existing systems and their capacity to provide high-quality and timely ocean forecasts.
Laurent Bertino, Patrick Heimbach, Ed Blockley, and Einar Ólason
State Planet, 5-opsr, 14, https://doi.org/10.5194/sp-5-opsr-14-2025, https://doi.org/10.5194/sp-5-opsr-14-2025, 2025
Short summary
Short summary
Forecasts of sea ice are in high demand in the polar regions, and they are also quickly improving and becoming more easily accessible to non-experts. We provide here a brief status of the short-term forecasting services – typically 10 d ahead – and an outlook of their upcoming developments.
Antonio Novellino, Alain Arnaud, Andreas Schiller, and Liying Wan
State Planet, 5-opsr, 25, https://doi.org/10.5194/sp-5-opsr-25-2025, https://doi.org/10.5194/sp-5-opsr-25-2025, 2025
Short summary
Short summary
The paper describes the significant role that ocean forecasting systems play in the blue economy, demonstrating their direct benefits in improving prediction accuracy and downstream applications.
Andrew R. Porter and Patrick Heimbach
State Planet, 5-opsr, 23, https://doi.org/10.5194/sp-5-opsr-23-2025, https://doi.org/10.5194/sp-5-opsr-23-2025, 2025
Short summary
Short summary
Numerical ocean forecasting is a key part of accurate models of the Earth system. However, they require powerful computing resources, and the architectures of the necessary computers are evolving rapidly. Unfortunately, this is a disruptive change – an ocean model must be modified to enable it to make use of this new computing hardware. This paper reviews what has been done in this area and identifies solutions to enable operational ocean forecasts to make use of the new computing hardware.
Abdullah A. Fahad, Andrea Molod, Krzysztof Wargan, Dimitris Menemenlis, Patrick Heimbach, Atanas Trayanov, Ehud Strobach, and Lawrence Coy
EGUsphere, https://doi.org/10.21203/rs.3.rs-1892797/v2, https://doi.org/10.21203/rs.3.rs-1892797/v2, 2025
Short summary
Short summary
This study used a 1-degree GEOS-MITgcm coupled GCM to analyze the Northern Hemisphere (NH) stratospheric temperature response to external forcing. Results show the NH polar stratospheric temperature increased from 1992 to 2000, contrary to the expectation of stratospheric cooling with rising CO2. However, from 2000 to 2020, the temperature decreased. The study concluded that changes in CO2 and Ozone drive the meridional eddy transport of heat, dictating polar stratospheric temperature behavior.
Manuel García-León, José María García-Valdecasas, Lotfi Aouf, Alice Dalphinet, Juan Asensio, Stefania Angela Ciliberti, Breogán Gómez, Víctor Aquino, Roland Aznar, and Marcos Sotillo
EGUsphere, https://doi.org/10.5194/egusphere-2025-657, https://doi.org/10.5194/egusphere-2025-657, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Accurate short-term wave forecasts are key for coastal activities. These forecasts rely on wind and currents as forcing, which in this work were both enhanced using neural networks (NNs) trained with satellite and radar data. Tested at three European sites, the NN-corrected winds were 35 % more accurate, and currents also improved. This led to improved IBI wave model predictions of wave height and period by 10 % and 17 %, respectively; even correcting under extreme events.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Carl Wunsch, Sarah Williamson, and Patrick Heimbach
Ocean Sci., 19, 1253–1275, https://doi.org/10.5194/os-19-1253-2023, https://doi.org/10.5194/os-19-1253-2023, 2023
Short summary
Short summary
Data assimilation methods that couple observations with dynamical models are essential for understanding climate change. Here,
climateincludes all sub-elements (ocean, atmosphere, ice, etc.). A common form of combination arises from sequential estimation theory, a methodology susceptible to a variety of errors that can accumulate through time for long records. Using two simple analogs, examples of these errors are identified and discussed, along with suggestions for accommodating them.
David S. Trossman, Caitlin B. Whalen, Thomas W. N. Haine, Amy F. Waterhouse, An T. Nguyen, Arash Bigdeli, Matthew Mazloff, and Patrick Heimbach
Ocean Sci., 18, 729–759, https://doi.org/10.5194/os-18-729-2022, https://doi.org/10.5194/os-18-729-2022, 2022
Short summary
Short summary
How the ocean mixes is not yet adequately represented by models. There are many challenges with representing this mixing. A model that minimizes disagreements between observations and the model could be used to fill in the gaps from observations to better represent ocean mixing. But observations of ocean mixing have large uncertainties. Here, we show that ocean oxygen, which has relatively small uncertainties, and observations of ocean mixing provide information similar to the model.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Liz C. Logan, Sri Hari Krishna Narayanan, Ralf Greve, and Patrick Heimbach
Geosci. Model Dev., 13, 1845–1864, https://doi.org/10.5194/gmd-13-1845-2020, https://doi.org/10.5194/gmd-13-1845-2020, 2020
Short summary
Short summary
A new capability has been developed for the ice sheet model SICOPOLIS (SImulation COde for POLythermal Ice Sheets) that enables the generation of derivative code, such as tangent linear or adjoint models, by means of algorithmic differentiation. It relies on the source transformation algorithmic (AD) differentiation tool OpenAD. The reverse mode of AD provides the adjoint model, SICOPOLIS-AD, which may be applied for comprehensive sensitivity analyses as well as gradient-based optimization.
Nat Wilson, Fiammetta Straneo, and Patrick Heimbach
The Cryosphere, 11, 2773–2782, https://doi.org/10.5194/tc-11-2773-2017, https://doi.org/10.5194/tc-11-2773-2017, 2017
Short summary
Short summary
We estimate submarine melt rates from ice tongues in northern Greenland using WorldView satellite imagery. At Ryder Glacier, melt is strongly concentrated around regions where subglacier channels likely enter the fjord. At the 79 North Glacier, we find a large volume imbalance in which melting removes a greater quantity of ice than is replaced by inflow over the grounding line. This leads us to suggest that a reduction in the spatial extent of the ice tongue is possible over the coming decade.
Cited articles
Abarbanel, H. D. I., Rozdeba, P. J., and Shirman, S.: Machine Learning: Deepest Learning as Statistical Data Assimilation Problems, Neural Comput., 30, 2025–2055, https://doi.org/10.1162/neco_a_01094, 2018.
Abernathey, R. P., Augspurger, T., Banihirwe, A., Blackmon-Luca, C. C., Crone, T. J., Gentemann, C. L., Hamman, J. J., Henderson, N., Lepore, C., McCaie, T. A., Robinson, N. H., and Signell, R. P.: Cloud-Native Repositories for Big Scientific Data, Comput. Sci. Eng., 23, 26–35, https://doi.org/10.1109/mcse.2021.3059437, 2020.
Accarino, G., Chiarelli, M., Immorlano, F., Aloisi, V., Gatto, A., and Aloisio, G.: MSG-GAN-SD: A Multi-Scale Gradients GAN for Statistical Downscaling of 2-Meter Temperature over the EURO-CORDEX Domain, AI, 2, 600–620, https://doi.org/10.3390/ai2040036, 2021.
Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, S., Jones, D. C., Wilkinson, J., Phillips, T., Byrne, J., Tietsche, S., Sarojini, B. B., Blanchard-Wrigglesworth, E., Aksenov, Y., Downie, R., and Shuckburgh, E.: Seasonal Arctic sea ice forecasting with probabilistic deep learning, Nat. Commun., 12, 5124, https://doi.org/10.1038/s41467-021-25257-4, 2021.
Arcomano, T., Szunyogh, I., Pathak, J., Wikner, A., Hunt, B. R., and Ott, E.: A Machine Learning-Based Global Atmospheric Forecast Model, Geophys. Res. Lett., 47, e2020GL087776, https://doi.org/10.1029/2020GL087776, 2020.
Arcomano, T., Szunyogh, I., Wikner, A., Hunt, B. R., and Ott, E.: A Hybrid Atmospheric Model Incorporating Machine Learning Can Capture Dynamical Processes Not Captured by Its Physics-Based Component, Geophys. Res. Lett., 50, e2022GL102649, https://doi.org/10.1029/2022GL102649, 2023.
Baker, N., Alexander, F., Bremer, T., Hagberg, A., Kevrekidis, Y., Najm, H., Parashar, M., Patra, A., Sethian, J., Wild, S., and Willcox, K.: U.S. Department of Energy Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence, 1–109, https://doi.org/10.2172/1478744, 2019.
Bauer, P., Stevens, B., and Hazeleger, W.: A digital twin of Earth for the green transition, Nat. Clim. Change, 5, 80–83, https://doi.org/10.1038/s41558-021-00986-y, 2021a.
Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., and Wedi, N. P.: The digital revolution of Earth-system science, Nature Computational Science, 1, 104–113, https://doi.org/10.1038/s43588-021-00023-0, 2021b.
Bayat, R.: A Study on Sample Diversity in Generative Models: GANs vs. Diffusion Models, The First Tiny Papers Track at ICLR 2023, Tiny Papers @ ICLR 2023, Kigali, Rwanda, May 5, https://openreview.net/forum?id=BQpCuJoMykZ (last access: 15 February 2025), 2023.
Bertino, L., Heimbach, P., Blockley, E., and Ólason, E.: Numerical Models for Monitoring and Forecasting Sea Ice: a short description of present status, in: Ocean prediction: present status and state of the art (OPSR), edited by: Álvarez Fanjul, E., Ciliberti, S. A., Pearlman, J., Wilmer-Becker, K., and Behera, S., Copernicus Publications, State Planet, 5-opsr, 14, https://doi.org/10.5194/sp-5-opsr-14-2025, 2025.
Beucler, T., Gentine, P., Yuval, J., Gupta, A., Peng, L., Lin, J., Yu, S., Rasp, S., Ahmed, F., O'Gorman, P. A., Neelin, J. D., Lutsko, N. J., and Pritchard, M.: Climate-invariant machine learning, Science Advances, 10, eadj7250, https://doi.org/10.1126/sciadv.adj7250, 2024.
Bire, S., Lütjens, B., Azizzadenesheli, K., Anandkumar, A., and Hill, C. N.: Ocean Emulation with Fourier Neural Operators: Double Gyre, ESS Open Archive [preprint], https://doi.org/10.22541/essoar.170110658.85641696/v1, 2023.
Bocquet, M., Brajard, J., Carrassi, A., and Bertino, L.: Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization. Foundations of Data Science, 2, 55–80, https://doi.org/10.3934/fods.2020004, 2020.
Bolton, T. and Zanna, L.: Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization, J. Adv. Model. Earth Sy., 11, 376–399, https://doi.org/10.1029/2018ms001472, 2019.
Bonavita, M.: On some limitations of data-driven weather forecasting models, arXiv [preprint], https://doi.org/10.48550/arxiv.2309.08473, 2023.
Bonev, B., Kurth, T., Hundt, C., Pathak, J., Baust, M., Kashinath, K., and Anandkumar, A.: Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere, in: Proceedings of the 40th International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023, https://proceedings.mlr.press/v202/bonev23a.html (last access: 15 February 2025), 2023.
Bouallègue, Z. B., Weyn, J. A., Clare, M. C. A., Dramsch, J., Dueben, P., and Chantry, M.: Improving Medium-Range Ensemble Weather Forecasts with Hierarchical Ensemble Transformers, Artificial Intelligence for the Earth Systems, 3, e230027, https://doi.org/10.1175/aies-d-23-0027.1, 2024.
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to infer unresolved scale parametrization, Philos. T. R. Soc. A, 379, 20200086, https://doi.org/10.1098/rsta.2020.0086, 2021.
Cachay, S. R., Zhao, B., James, H., and Yu, R.: DYkusion: A Dynamicsinformed Dikusion Model for Spatiotemporal Forecasting, in: Advances in Neural Information Processing Systems 36 (NeurIPS 2023), Long Beach, California, USA, 4–9 December 2017. https://proceedings.neurips.cc/paper_files/paper/2023/hash/8df90a1440ce782d1f5607b7a38f2531-Abstract-Conference.html (last access: 15 February 2025), 2023.
Cachay, S. R., Henn, B., Watt-Meyer, O., Bretherton, C. S., and Yu, R.: Probabilistic Emulation of a Global Climate Model with Spherical DYffusion, arXiv [preprint], https://doi.org/10.48550/arxiv.2406.14798, 2024.
Camps-Valls, G., Tuia, D., Zhu, X. X., and Reichstein, M. (Eds.): Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science, and Geosciences, John Wiley & Sons Ltd, https://doi.org/10.1002/9781119646181, 2021.
Chantry, M., Christensen, H., Dueben, P., and Palmer, T.: Opportunities and challenges for machine learning in weather and climate modelling: hard, medium and soft AI, Philos. T. R. Soc. A, 379, 20200083, https://doi.org/10.1098/rsta.2020.0083, 2021.
Charlton-Perez, A. J., Dacre, H. F., Driscoll, S., Gray, S. L., Harvey, B., Harvey, N. J., Hunt, K. M. R., Lee, R. W., Swaminathan, R., Vandaele, R., and Volonté, A.: Do AI models produce better weather forecasts than physics-based models? A quantitative evaluation case study of Storm Ciarán, Npj Climate and Atmospheric Science, 7, 93, https://doi.org/10.1038/s41612-024-00638-w, 2024.
Chattopadhyay, A., Gray, M., Wu, T., Lowe, A. B., and He, R.: OceanNet: a principled neural operator-based digital twin for regional oceans, Scientific Reports, 14, 21181, https://doi.org/10.1038/s41598-024-72145-0, 2024.
Chen, K., Han, T., Gong, J., Bai, L., Ling, F., Luo, J.-J., Chen, X., Ma, L., Zhang, T., Su, R., Ci, Y., Li, B., Yang, X., and Ouyang, W.: FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond 10 Days Lead, arXiv [preprint], https://doi.org/10.48550/arxiv.2304.02948, 2023.
Chen, L., Zhong, X., Zhang, F., Cheng, Y., Xu, Y., Qi, Y., & Li, H.: FuXi: a cascade machine learning forecasting system for 15-day global weather forecast, Npj Climate and Atmospheric Science, 6, 190, https://doi.org/10.1038/s41612-023-00512-1, 2023.
Chen, S., Hu, C., Barnes, B. B., Xie, Y., Lin, G., and Qiu, Z.: Improving ocean color data coverage through machine learning, Remote Sens. Environ., 222, 286–302, https://doi.org/10.1016/j.rse.2018.12.023, 2019.
Cresswell-Clay, N., Liu, B., Durran, D., Liu, A., Espinosa, Z. I., Moreno, R., abd Karlbauer, M.: A Deep Learning Earth System Model for Stable and Efficient Simulation of the Current Climate, arXiv [preprint], https://doi.org/10.48550/arXiv.2409.16247, 2024.
Daw, A., Maruf, M., and Karpatne, A.: PID-GAN: A GAN Framework based on a Physics-informed Discriminator for Uncertainty Quantification with Physics, in: KDD '21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 14–18 August 2021, 237–247, https://doi.org/10.1145/3447548.3467449, 2021.
Dhariwal, P. and Nichol, A.: Diffusion Models Beat GANs on Image Synthesis, Adv. Neur. In., 34, 8780–8794, https://proceedings.nips.cc/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html (last access: 15 February 2025), 2021.
Du, Y., Wang, M., and Zaki, T. A.: State estimation in minimal turbulent channel flow: A comparative study of 4DVar and PINN. International Journal of Heat and Fluid Flow, 99, 109073, https://doi.org/10.1016/j.ijheatfluidflow.2022.109073, 2023.
Dueben, P. D., Bauer, P., and Adams, S.: Deep Learning to Improve Weather Predictions, in: In: Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science, and Geosciences, edited by: Camps-Valls, G., Tuia, D., Zhu X. X., and Reichstein, M., Wiley & Sons, 204–217, https://doi.org/10.1002/9781119646181.ch14, 2021.
Dueben, P. D., Schultz, M. G., Chantry, M., Gagne, D. J., Hall, D. M., and McGovern, A.: Challenges and benchmark datasets for machine learning in the atmospheric sciences: Definition, status and outlook, Artif. Intell. Earth Syst., 1, e210002, https://doi.org/10.1175/aies-d-21-0002.1, 2022.
Eyring, V., Collins, W. D., Gentine, P., Barnes, E. A., Barreiro, M., Beucler, T., Bocquet, M., Bretherton, C. S., Christensen, H. M., Dagon, K., Gagne, D. J., Hall, D., Hammerling, D., Hoyer, S., Iglesias-Suarez, F., Lopez-Gomez, I., McGraw, M. C., Meehl, G. A., Molina, M. J., Monteleoni, C., Mueller, J., Pritchard, M. S., Rolnick, D., Runge, J., Stier, P., Watt-Meyer, O., Weigel, K., Yu, R., and Zanna, L.: Pushing the frontiers in climate modelling and analysis with machine learning, Nat. Clim. Change, 14, 916–928, https://doi.org/10.1038/s41558-024-02095-y, 2024.
Frezat, H., Balarac, G., Sommer, J. L., Fablet, R., and Lguensat, R.: Physical invariance in neural networks for subgrid-scale scalar flux modeling, Physical Review Fluids, 6, 024607, https://doi.org/10.1103/physrevfluids.6.024607, 2021.
Frezat, H., Sommer, J. L., Fablet, R., Balarac, G., and Lguensat, R.: A Posteriori Learning for Quasi-Geostrophic Turbulence Parametrization, J. Adv. Model. Earth Sy., 14, e2022MS003124, https://doi.org/10.1029/2022ms003124, 2022.
Gelbrecht, M., White, A., Bathiany, S., and Boers, N.: Differentiable programming for Earth system modeling, Geosci. Model Dev., 16, 3123–3135, https://doi.org/10.5194/gmd-16-3123-2023, 2023.
Gentine, P., Eyring, V., and Beucler, T.: Deep Learning for the Parametrization of Subgrid Processes in Climate Models, in: In: Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science, and Geosciences, edited by: Camps-Valls, G., Tuia, D., Zhu, X. X., and Reichstein, M., Wiley & Sons, 307–314, https://doi.org/10.1002/9781119646181.ch21, 2021.
Gracia, S., Olivito, J., Resano, J., Martin-del-Brio, B., de Alfonso, M., and Álvarez, E.: Improving accuracy on wave height estimation through machine learning techniques, Ocean Eng., 236, 108699, https://doi.org/10.1016/j.oceaneng.2021.108699, 2021.
Gregory, W., Bushuk, M., Adcroft, A., Zhang, Y., and Zanna, L.: Deep Learning of Systematic Sea Ice Model Errors From Data Assimilation Increments, J. Adv. Model. Earth Sy., 15, e2023MS003757, https://doi.org/10.1029/2023ms003757, 2023.
Gregory, W., Bushuk, M., Zhang, Y., Adcroft, A., and Zanna, L.: Machine Learning for Online Sea Ice Bias Correction Within Global Ice-Ocean Simulations, Geophys. Res. Lett., 51, e2023GL106776, https://doi.org/10.1029/2023gl106776, 2024.
Irrgang, C., Boers, N., Sonnewald, M., Barnes, E. A., Kadow, C., Staneva, J., and Saynisch-Wagner, J.: Towards neural Earth system modelling by integrating artificial intelligence in Earth system science, Nature Machine Intelligence, 3, 667–674, https://doi.org/10.1038/s42256-021-00374-3, 2021.
James, S. C., Zhang, Y., and O'Donncha, F.: A machine learning framework to forecast wave conditions, Coast. Eng., 137, 1–10, https://doi.org/10.1016/j.coastaleng.2018.03.004, 2018.
Karlbauer, M., Cresswell-Clay, N., Durran, D. R., Moreno, R. A., Kurth, T., Bonev, B., Brenowitz, N., and Butz, M. V.: Advancing Parsimonious Deep Learning Weather Prediction Using the HEALPix Mesh, J. Adv. Model. Earth Sy., 16, e2023MS004021, https://doi.org/10.1029/2023ms004021, 2024.
Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., and Hoyer, S.: Machine learning–accelerated computational fluid dynamics, P. Natl. Acad. Sci. USA, 118, e2101784118, https://doi.org/10.1073/pnas.2101784118, 2021.
Kochkov, D., Yuval, J., Langmore, I., Norgaard, P., Smith, J., Mooers, G., Klöwer, M., Lottes, J., Rasp, S., Düben, P., Hatfield, S., Battaglia, P., Sanchez-Gonzalez, A., Willson, M., Brenner, M. P., and Hoyer, S.: Neural general circulation models for weather and climate, Nature, 632, 1060–1066, https://doi.org/10.1038/s41586-024-07744-y, 2024.
Kurth, T., Subramanian, S., Harrington, P., Pathak, J., Mardani, M., Hall, D., Miele, A., Kashinath, K., and Anandkumar, A.: FourCastNet: Accelerating Global High-Resolution Weather Forecasting Using Adaptive Fourier Neural Operators, in: PASC '23: Proceedings of the Platform for Advanced Scientific Computing Conference, Davos, Switzerland, 26–28 June 2023, https://doi.org/10.1145/3592979.3593412, 2023.
Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., and Battaglia, P.: GraphCast: Learning skillful medium-range global weather forecasting, Science, 382, 1416–1421, https://doi.org/10.1126/science.adi2336, 2023.
Lang, S., Alexe, M., Chantry, M., Dramsch, J., Pinault, F., Raoult, B., Clare, M. C. A., Lessig, C., Maier-Gerber, M., Magnusson, L., Bouallègue, Z. B., Nemesio, A. P., Dueben, P. D., Brown, A., Pappenberger, F., and Rabier, F.: AIFS – ECMWF's data-driven forecasting system, arXiv [preprint], https://doi.org/10.48550/arXiv.2406.01465, 2024.
Lawal, Z. K., Yassin, H., Teck Ching Lai, D., and Che Idris, A.: Understanding the Dynamics of Ocean Wave-Current Interactions Through Multivariate Multi-Step Time Series Forecasting, Appl. Artif. Intell., 38, https://doi.org/10.1080/08839514.2024.2393978, 2024.
Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A.: Fourier Neural Operator for Parametric Partial Differential Equations, arXiv [preprint], https://doi.org/10.48550/arXiv.2010.08895, 2020.
Ma, H., Zhang, Y., Thuerey, N., X. H., and Haidn, O. J.: Physics-Driven Learning of the Steady Navier-Stokes Equations using Deep Convolutional Neural Networks, Commun. Comput. Phys., 32, 715–736, https://doi.org/10.4208/cicp.OA-2021-0146, 2022.
Minuzzi, F. C. and Farina, L.: A deep learning approach to predict significant wave height using long short-term memory, Ocean Model., 181, 102151, https://doi.org/10.1016/j.ocemod.2022.102151, 2023.
Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y.: Spectral Normalization for Generative Adversarial Networks, arXiv [preprint], https://doi.org/10.48550/arXiv.1802.05957, 2018.
National Academies of Sciences, Engineering, and Medicine (NASEM): Machine Learning and Artificial Intelligence to Advance Earth System Science, in: Opportunities and Challenges: Proceedings of a Workshop, The National Academies Press, Washington, DC, https://doi.org/10.17226/26566, 2022.
National Academies of Sciences, Engineering, and Medicine (NASEM): Foundational Research Gaps and Future Directions for Digital Twins, The National Academies Press, https://doi.org/10.17226/26894, 2023.
Niederer, S. A., Sacks, M. S., Girolami, M., and Willcox, K.: Scaling digital twins from the artisanal to the industrial, Nature Computational Science, 1, 313–320, https://doi.org/10.1038/s43588-021-00072-5, 2021.
Nieves, V., Radin, C., and Camps-Valls, G.: Predicting regional coastal sea level changes with machine learning, Sci. Rep., 11, 7650, https://doi.org/10.1038/s41598-021-87460-z, 2021.
O'Donncha, F., Hu, Y., Palmes, P., Burke, M., Filgueira, R., and Grant, J.: A spatio-temporal LSTM model to forecast across multiple temporal and spatial scales, Ecol. Inform., 69, 101687, https://doi.org/10.1016/j.ecoinf.2022.101687, 2022.
Park, S. K. and Zupanski, M.: Principles of Data Assimilation, Cambridge University Press, ISBN 978-1-108-83176-5, https://doi.org/10.1017/9781108924238, 2022.
Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., and Anandkumar, A.: FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators, arXiv [preprint], https://doi.org/10.48550/arxiv.2202.11214, 2022.
Penny, S. G., Smith, T. A., Chen, T.-C., Platt, J. A., Lin, H.-Y., Goodliff, M., and Abarbanel, H. D. I.: Integrating Recurrent Neural Networks With Data Assimilation for Scalable Data-Driven State Estimation, J. Adv. Model. Earth Sy., 14, e2021MS002843, https://doi.org/10.1029/2021ms002843, 2022.
Perezhogin, P., Zanna, L., and Fernandez-Granda, C.: Generative Data-Driven Approaches for Stochastic Subgrid Parameterizations in an Idealized Ocean Model, J. Adv. Model. Earth Sy., 15, e2023MS003681, https://doi.org/10.1029/2023MS003681, 2023.
Perezhogin, P., Zhang, C., Adcroft, A., Fernandez-Granda, C., and Zanna, L.: A Stable Implementation of a Data-Driven Scale-Aware Mesoscale Parameterization, J. Adv. Model. Earth Sy., 16, e2023MS004104, https://doi.org/10.1029/2023ms004104, 2024.
Platt, J. A., Penny, S. G., Smith, T. A., Chen, T.-C., and Abarbanel, H. D. I.: Constraining chaos: Enforcing dynamical invariants in the training of reservoir computers, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33, 103107, https://doi.org/10.1063/5.0156999, 2023.
Price, I., Sanchez-Gonzalez, A., Alet, F., Andersson, T. R., El-Kadi, A., Masters, D., Ewalds, T., Stott, J., Mohamed, S., Battaglia, P., Lam, R., and Willson, M.: Probabilistic weather forecasting with machine learning, Nature, 637, 84–90, https://doi.org/10.1038/s41586-024-08252-9, 2024.
Puscasu, R. M.: Integration of artificial neural networks into operational ocean wave prediction models for fast and accurate emulation of exact nonlinear interactions, Procedia Comput. Sci., 29, 1156–1170, https://doi.org/10.1016/j.procs.2014.05.104, 2014.
Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent subgrid processes in climate models, P. Natl. Acad. Sci. USA, 115, 9684–9689, https://doi.org/10.1073/pnas.1810286115, 2018.
Rasp, S., Dueben, P. D., Scher, S., Weyn, J. A., Mouatadid, S., and Thuerey, N.: WeatherBench: A Benchmark Data Set for Data-Driven Weather Forecasting, J. Adv. Model. Earth Sy., 12, e2020MS002203, https://doi.org/10.1029/2020ms002203, 2020.
Rasp, S., Hoyer, S., Merose, A., Langmore, I., Battaglia, P., Russell, T., Sanchez-Gonzalez, A., Yang, V., Carver, R., Agrawal, S., Chantry, M., Bouallegue, Z. B., Dueben, P., Bromberg, C., Sisk, J., Barrington, L., Bell, A., and Sha, F.: WeatherBench 2: A Benchmark for the Next Generation of Data-Driven Global Weather Models, J. Adv. Model. Earth Sy., 16, e2023MS004019, https://doi.org/10.1029/2023ms004019, 2024.
Reichstein, M., Camps-Valls, M, Stevens, G., Jung, B., Denzler, M., Carvalhais, J., and Prabhat, N.: Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.
Sane, A., Reichl, B. G., Adcroft, A., and Zanna, L.: Parameterizing Vertical Mixing Coefficients in the Ocean Surface Boundary Layer Using Neural Networks, J. Adv. Model. Earth Sy., 15, e2023MS003890, https://doi.org/10.1029/2023ms003890, 2023.
Sapienza, F., Bolibar, J., Schäfer, F., Groenke, B., Pal, A., Boussange, V., Heimbach, P., Hooker, G., Pérez, F., Persson, P.-O., and Rackauckas, C.: Differentiable Programming for Differential Equations: A Review, arXiv [preprint], https://doi.org/10.48550/arxiv.2406.09699, 2024.
Schneider, R., Bonavita, M., Geer, A., Arcucci, R., Dueben, P., Vitolo, C., Saux, B. L., Demir, B., and Mathieu, P.-P.: ESA-ECMWF Report on recent progress and research directions in machine learning for Earth System observation and prediction, Npj Climate and Atmospheric Science, 5, 51, https://doi.org/10.1038/s41612-022-00269-z, 2022.
Schneider, T., Lan, S., Stuart, A., and Teixeira, J.: Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations, Geophys. Res. Lett., 44, 12396–12417, https://doi.org/10.1002/2017gl076101, 2017.
Schneider, T., Behera, S., Boccaletti, G., Deser, C., Emanuel, K., Ferrari, R., Leung, L. R., Lin, N., Müller, T., Navarra, A., Ndiaye, O., Stuart, A., Tribbia, J. and Yamagata, T.: Harnessing AI and computing to advance climate modelling and prediction, Nat. Clim. Change, 13, 887–889, https://doi.org/10.1038/s41558-023-01769-3, 2023.
Shen, C., Appling, A. P., Gentine, P., Bandai, T., Gupta, H., Tartakovsky, A., Baity-Jesi, M., Fenicia, F., Kifer, D., Li, L., Liu, X., Ren, W., Zheng, Y., Harman, C. J., Clark, M., Farthing, M., Feng, D., Kumar, P., Aboelyazeed, D., Rahmani, F., Song, Y., Beck, H. E., Bindas, T., Dwivedi, D., Fang, K., Höge, M., Rackauckas, C., Mohanty, B., Roy, T., Xu, C., and Lawson, K.: Dikerentiable modelling to unify machine learning and physical models for geosciences, Nature Reviews Earth & Environment, 4, 552–567, https://doi.org/10.1038/s43017-023-00450-9, 2023.
Sinha, A. and Abernathey, R.: Estimating ocean surface currents with machine learning, Frontiers in Marine Science, 8, 672477, https://doi.org/10.3389/fmars.2021.672477, 2021.
Smets, B. M., Portegies, J., Bekkers, E. J., and Duits, R.: PDE-based group equivariant convolutional neural networks, J. Math. Imaging Vis., 65, 209–239, 2023.
Smith, T. A., Penny, S. G., Platt, J. A., and Chen, T.-C.: Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural Network Emulators of Geophysical Turbulence, J. Adv. Model. Earth Sy., 15, e2023MS003792, https://doi.org/10.1029/2023MS003792, 2023.
Storto, A., Frolov, S., Slivinski, L., and Yang, C.: Correction of Air-Sea Heat Fluxes in the NEMO Ocean General Circulation Model Using Neural Networks, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2024-185, in review, 2024.
Subel, A. and Zanna, L.: Building Ocean Climate Emulators, arXiv [preprint], https://doi.org/10.48550/arxiv.2402.04342, 2024.
Sun, Y., Sowunmi, O., Egele, R., Narayanan, S. H. K., Roekel, L. V., and Balaprakash, P.: Streamlining Ocean Dynamics Modeling with Fourier Neural Operators: A Multiobjective Hyperparameter and Architecture Optimization Approach, Mathematics, 12, 1483, https://doi.org/10.3390/math12101483, 2024.
Wang, C., Pritchard, M. S., Brenowitz, N., Cohen, Y., Bonev, B., Kurth, T., Durran, D., and Pathak, J.: Coupled Ocean-Atmosphere Dynamics in a Machine Learning Earth System Model, arXiv [preprint], https://doi.org/10.48550/arXiv.2406.08632, 2024.
Wang, X., Wang, R., Hu, N., Wang, P., Huo, P., Wang, G., Wang, H., Wang, S., Zhu, J., Xu, J., Yin, J., Bao, S., Luo, C., Zu, Z., Han, Y., Zhang, W., Ren, K., Deng, K., and Song, J.: XiHe: A Data-Driven Model for Global Ocean Eddy-Resolving Forecasting, arXiv [preprint], https://doi.org/10.48550/arxiv.2402.02995, 2024.
Watt-Meyer, O., Dresdner, G., McGibbon, J., Clark, S. K., Henn, B., Duncan, J., Brenowitz, N. D., Kashinath, K., Pritchard, M. S., Bonev, B., Peters, M. E., and Bretherton, C. S.: ACE: A fast, skillful learned global atmospheric model for climate prediction, arXiv [preprint], https://doi.org/10.48550/arxiv.2310.02074, 2023.
Willcox, K. E., Ghattas, O., and Heimbach, P.: The imperative of physics-based modeling and inverse theory in computational science, Nature Computational Science, 1, 166–168, https://doi.org/10.1038/s43588-021-00040-z, 2021.
Weyn, J. A., Durran, D. R., and Caruana, R.: Can Machines Learn to Predict Weather? Using Deep Learning to Predict Gridded 500-hPa Geopotential Height From Historical Weather Data, J. Adv. Model. Earth Sy., 11, 2680–2693, https://doi.org/10.1029/2019MS001705, 2019.
Weyn, J. A., Durran, D. R., and Caruana, R.: Improving Data-Driven Global Weather Prediction Using Deep Convolutional Neural Networks on a Cubed Sphere, J. Adv. Model. Earth Sy., 12, e2020MS002109, https://doi.org/10.1029/2020MS002109, 2020.
Weyn, J. A., Durran, D. R., Caruana, R., and Cresswell-Clay, N.: Sub-Seasonal Forecasting With a Large Ensemble of Deep-Learning Weather Prediction Models, J. Adv. Model. Earth Sy., 13, e2021MS002502, https://doi.org/10.1029/2021MS002502, 2021.
Wolff, S., O'Donncha, F., and Chen, B.: Statistical and machine learning ensemble modelling to forecast sea surface temperature, J. Marine Syst., 208, 103347, https://doi.org/10.1016/j.jmarsys.2020.103347, 2020.
Xie, W., Xu, G., Zhang, H., and Dong, C.: Developing a deep learning-based storm surge forecasting model, Ocean Model., 182, 102179, https://doi.org/10.1016/j.ocemod.2023.102179, 2023.
Xu, S., Dai, D., Cui, X., Yin, X., Jiang, S., Pan, H., and Wang, G.: A deep learning approach to predict sea surface temperature based on multiple modes, Ocean Model., 181, 102158, https://doi.org/10.1016/j.ocemod.2022.102158, 2023.
Yu, S., Hannah, W., Peng, L., et al.: ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation, arXiv [preprint], https://doi.org/10.48550/arxiv.2306.08754, 2023.
Zanna, L. and Bolton, T.: Data-Driven Equation Discovery of Ocean Mesoscale Closures, Geophys. Res. Lett., 47, e2020GL088376-33, https://doi.org/10.1029/2020gl088376, 2020.
Zanna, L. and Bolton, T.: Deep Learning of Unresolved Turbulent Ocean Processes in Climate Models, in: Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science, and Geosciences, edited by: Camps-Valls, G., Tuia, D., Zhu, X. X., and Reichstein, M., Wiley & Sons, 298–306, https://doi.org/10.1002/9781119646181.ch20, 2021.
Zhang, C., Perezhogin, P., Gultekin, C., Adcroft, A., Fernandez-Granda, C., and Zanna, L.: Implementation and Evaluation of a Machine Learned Mesoscale Eddy Parameterization Into a Numerical Ocean Circulation Model, J. Adv. Model. Earth Sy., 15, e2023MS003697, https://doi.org/10.1029/2023ms003697, 2023.
Zubov, K., McCarthy, Z., Ma, Y., Calisto, F., Pagliarino, V., Azeglio, S., Bottero, L., Luján, E., Sulzer, V., Bharambe, A., Vinchhi, N., Balakrishnan, K., Upadhyay, D., and Rackauckas, C.: Neuralpde: Automating physics-informed neural networks (PINNs) with error approximations, arXiv [preprint], https://doi.org/10.48550/arXiv.2107.09443, 2021.
Short summary
Operational ocean prediction relies on computationally expensive numerical models and complex workflows, known as data assimilation, in which models are fit to observations to produce optimal initial conditions for prediction. Machine learning has the potential to vastly accelerate ocean prediction, improve uncertainty quantification through massive surrogate model-based ensembles, and render simulations more accurate through better model calibration. We review the developments and challenges.
Operational ocean prediction relies on computationally expensive numerical models and complex...
Altmetrics
Final-revised paper
Preprint