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Abstract. Artificial intelligence and machine learning are accelerating research in Earth system science, with
huge potential for impact and challenges in ocean prediction. Such algorithms are being deployed on differ-
ent aspects of the forecasting workflow with the aim of improving its speed and skill. They include pattern
classification and anomaly detection; regression and diagnostics; and state prediction from nowcasting to syn-
optic, sub-seasonal, and seasonal forecasting. This brief review emphasizes scientific machine learning methods
that have the capacity to embed domain knowledge; to ensure interpretability through causal explanation, to
be robust and reliable; to involve effectively high-dimensional statistical methods, supporting multi-scale and
multi-physics simulations aimed at improving parameterization; and to drive intelligent automation, as well as
decision support. An overview of recent numerical developments is discussed, highlighting the importance of
fully data-driven ocean models for future expansion of ocean forecasting capabilities.

1 Introduction

Research into applications of artificial intelligence (AI) and
machine learning (ML) in ocean, atmospheric, and climate
sciences has accelerated at a breathtaking pace over the last
5 years or so (e.g., Schneider et al., 2023; Eyring et al.,
2024). With essentially all of these applications concerned
with ML, we will drop the more broadly defined “AI” term
in most of the following, except when used by references
cited. We will also take the perspective of scientific machine
learning (SciML), defined in a 2019 U.S. Department of En-
ergy report on “Basic Research Needs for Scientific Machine
Learning” (Baker et al., 2019), which emphasizes six key el-
ements of SciML algorithms: (i) ML approaches that incor-
porate domain knowledge, such as physical principles, sym-

metries, constraints, expert feedback, computational simu-
lations, and formal uncertainties; (ii) ML approaches that
are interpretable, such that a user’s confidence in ML-based
model predictions may be bolstered by causal explanations
based on a user’s domain knowledge; (iii) ML approaches
that are robust and reliable as a prerequisite for making high-
stakes and high-regret decisions; (iv) ML approaches that
are data-intensive, i.e., that ingest high-dimensional, noisy,
and uncertain input data which contain complex structures
and which require statistical and probabilistic methods to
deal with ill-conditioning, non-uniqueness, and over-fitting;
(v) ML approaches that enhance modeling and simulation
to support, e.g., multi-scale and multi-physics simulations in
terms of improved model parameterization or model acceler-
ation; and (vi) ML approaches to support intelligent automa-
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tion and decision support, which can range from quality con-
trol to application-oriented post-processing workflows. Ar-
guably, all of these criteria are fundamental to the uses of
ML in ocean prediction.

Next, following the review by Reichstein et al. (2019), it is
useful to distinguish different categories of ML applications,
namely (A) classification and anomaly detection, which is
concerned with, e.g., finding extreme event patterns or the
classification of important structures or regimes; (B) regres-
sion, which is concerned with state reconstruction of impor-
tant state variables, parameters, or diagnostics (metrics) from
available data; and (C) state prediction, ranging from now-
casting to operational forecasting and sub-seasonal to sea-
sonal prediction. A comprehensive collection of review ar-
ticles on deep learning in Earth sciences is Camps-Valls et
al. (2021), covering algorithmic foundations and examples
of all three categories.

Because the subject of this document is ocean prediction,
we will focus the following on the third category, namely
state prediction or forecasting. To keep this review manage-
able, we will not review the interesting subjects of ML ap-
plications for state reconstruction, downscaling, or classifi-
cation.

2 State prediction

The workflow of operational ocean prediction largely fol-
lows that of numerical weather prediction (NWP). Its core
engine is a data assimilation (DA) framework, consisting of
a physical model (i.e., a complex algorithm for solving a
set of partial differential equations, PDEs), a workflow for
quality-controlling and ingesting diverse observational data
streams into the DA system (ideally in near-real time), and
an optimal estimation algorithm that combines models and
data in a formal manner that produces statistically optimal
forecasts (e.g., Park and Zupanski, 2022). As pointed out by
Stephen Penny in a 2022 U.S. National Academy of Sciences
workshop on Machine Learning and Artificial Intelligence
to Advance Earth System Science (NASEM, 2022), machine
learning (ML) approaches hold the prospect for accelerating
various elements of the DA workflow. We briefly summa-
rize ML approaches targeting the physical model and the DA
algorithm. Opportunities in the application of ML for par-
tial differential equation (PDE)-based models fall into two
main categories, where one is concerned with targeted inser-
tion of ML within a physical model, and the other is con-
cerned with the complete replacement of the physical model
by a surrogate model. In the former, certain elements or sub-
components of a physical model are replaced by a surrogate
model (e.g., a neural network), whereas in the latter, the en-
tire model is emulated. Chantry et al. (2021) have used the
terms “soft AI” versus “hard AI”. We avoid the somewhat
non-descriptive or ambiguous terminology to avoid giving a

false sense of which of these approaches is “harder” to real-
ize.

2.1 Hybrid physics–ML models: enhancing forecast
models and data assimilation with ML algorithms

A major source of model uncertainty is the parameterization
of subgrid-scale (SGS) processes in terms of structural errors
(formulation of functional representations of parameteriza-
tions) and parametric uncertainties (calibrating empirical pa-
rameters in the functional representations). Exciting efforts
are underway to apply machine learning to replace conven-
tional functional representation subgrid-scale (SGS) turbu-
lent oceanic processes with surrogate models that are based
on machine learning and that have been trained either offline
or online (Bolton and Zanna, 2019; Frezat et al., 2021, 2022;
Zhang et al., 2023; Sane et al., 2023; Perezhogin et al., 2023).
This follows on early ideas in the context of climate model
parameterization (e.g., Schneider et al., 2017; Rasp et al.,
2018). Similarly, equation discovery has proven successful
to infer the functional form of such SGS ocean parameteri-
zation schemes (Zanna and Bolton, 2020, 2021; Perezhogin
et al., 2024). A longer list of related efforts exists for numer-
ical weather prediction and has been reviewed by Dueben
et al. (2021) and Bouallègue et al. (2024). These surrogates,
mostly some form of neural networks, have been trained on
(i.e., fit to) what are considered simulations of much higher
fidelity and where these processes are resolved (e.g., large-
eddy simulations). Related efforts aim at learning improved
parameterizations from online bias correction or analysis in-
crements incurred in sequential data assimilation (e.g., Gre-
gory et al., 2023, 2024; Storto et al., 2024). Rapid progress
is expected on this front in the coming years.

A second important application of hybrid approaches is the
desire to replace specific numerical algorithms within PDE-
based models with surrogate models to accelerate the simu-
lation’s time to solution. Studies exist within the generic field
of computational fluid dynamics (Kochkov et al., 2021) and
atmospheric modeling (Arcomano et al., 2023; Kochkov et
al., 2024), and there are ocean-specific applications currently
underway. Most of these take advantage of the concept of
differentiable programming (Gelbrecht et al., 2023; Shen et
al., 2023; Zhang et al., 2023; Sapienza et al., 2024). The un-
derlying idea is to eventually be able to generate code for
the derivative of the physical model, in particular the adjoint
model that enables efficient “online” (or “full model”) learn-
ing of the model parameters (or neural network weights).

There is a strong conceptual correspondence between ma-
chine learning and data assimilation (e.g., Abarbanel et al.,
2018). This provides various opportunities for embedding
ML approaches within operational data assimilation work-
flows deployed in ocean prediction. Examples in ocean mod-
eling so far are largely restricted to “toy problems” (such
as the “Lorenz 96 model”) or reduced-order versions of
Earth system models that target eventual applications for
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ocean prediction (Bocquet et al., 2020; Brajard et al., 2021;
Penny et al., 2022; Irrgang et al., 2021). The use of hybrid
DA/ML approaches, whether in the context of ensemble DA
or adjoint-based methods (e.g., 4DVar), presents substantial
algorithmic hurdles (e.g., availability of a differentiable dy-
namical core in the context of adjoint-based DA), which ex-
plains the relative paucity of such studies to date compared
to purely data-driven methods.

2.2 Purely data-driven models: replacing numerical
simulations with surrogate models

Over the last decade, with the acceleration in AI-based so-
lutions in other fields, a number of approaches to model the
atmosphere and ocean using different purely data-driven ML
techniques have been developed. The overwhelming majority
of these cases have so far been realized in weather prediction
or computational fluid dynamics.

2.2.1 Deterministic applications in weather prediction

Arguably, the field of data-driven weather forecasting has
seen the strongest advances over the last 5 years or so
(Schneider et al., 2022). This is a strong incentive for pro-
viding a very brief review that is organized in terms of ap-
proaches as a function of underlying “blocks” of the ML ar-
chitectures employed. In a number of cases, these architec-
tural blocks are being combined. For example, the European
Centre for Medium-Range Weather Forecast’s AIFS system
(Lang et al., 2024) uses an overall “encode–process–decode”
architecture, with a graph-based encoder and decoder but a
sliding window transformer as the processor.

– Convolutional neural networks (CNNs). Perhaps among
the first serious endeavors using ML for emulating
weather forecast models have been the CNNs used
by Weyn et al. (2019, 2020, 2021) and Karlbauer et
al. (2024). CNNs use a mathematical operation called
convolution to compress information, learning features,
or patterns in the input. Most recently, CNNs have been
used by Cresswell-Clay et al. (2024) to create a cou-
pled atmosphere–ocean emulator which produces a sta-
ble climate for 1000-year periods and appears to be
competitive with many CMIP6 models.

– Graph neural networks. Among the leading emulators
for medium-range weather forecasts is the work by
Lam et al. (2023). Based on graph neural networks, the
GraphCast model was trained on atmospheric reanalysis
data to produce autoregressive forecasts for up to 10 d.

– Transformers. These have been revolutionary in other
ML/AI fields, such as natural language processing and
image recognition/generation. They serve as the back-
bone of some of the leading atmospheric emulators, in-
cluding Pangu-Weather (Bi et al., 2023), FuXi (L. Chen
et al., 2023), and FengWu (K. Chen et al., 2023).

– Fourier neural operators (FNOs). FNOs have been de-
signed to move toward mesh-independent operators us-
ing Fourier bases (Li et al., 2020). FourCastNet (Pathak
et al., 2022; Kurth et al., 2023) is based on a variant
called the Adaptive FNO (AFNO). Another variant, the
Spherical FNO (SFNO; Bonev et al., 2023; Watt-Meyer
et al., 2023) seeks to take advantage of the spherical
geometry (and underlying symmetries) in representing
operator kernels for global-scale applications. Very re-
cently, the use of SFNOs has been extended to coupled
atmosphere–ocean modeling targeting seasonal predic-
tion (C. Wang et al., 2024).

– Recurrent neural networks (including long short-term
memory, LSTM, and reservoir computing). Recurrent
neural networks (RNNs) are well suited for sequen-
tial data processing, such as time series. Among spe-
cial cases of RNNs, LSTM networks use a special type
of neuron that keeps track of previous inputs (short-
term memory) and are especially useful for predicting
time series with memory, such as the case for the at-
mosphere and ocean. Reservoir computing (RC), an-
other method based on RNNs with a pool of intercon-
nected neurons forming the “reservoir”, is particularly
well adapted to the emulation of time series (e.g., Arco-
mano et al., 2020; Penny et al., 2022; Platt et al., 2023;
Smith et al., 2023).

2.2.2 Probabilistic approaches – generative models

Most examples sketched in Sect. 2.2.1 describe emulators
that are trained to be deterministic forecast models. Re-
cent developments in ML have considered generative frame-
works, i.e., models that are designed to be probabilistic. Such
frameworks would include variational autoencoders, gener-
ative adversarial networks (GANs), and diffusion models.
However, we note that GANs can suffer from a lack of sam-
ple diversity (Bayat, 2023), and they are notoriously chal-
lenging to train, requiring a careful setup to avoid training
instabilities (e.g., Miyato et al., 2018). Moreover, in recent
years, diffusion models have started to outperform GANs in
image classification (Dhariwal and Nichol, 2021). For these
reasons, diffusion models have become popular in generative
modeling, despite their relatively high computational cost.
Recent examples of diffusion models include GenCast (Price
et al., 2024). Finally, we note a very recently developed tech-
nique, DYffusion (Cachay et al., 2023, 2024), which is a gen-
erative framework that aims to reduce the computational cost
of diffusion modeling by encoding the temporal evolution ex-
pected in physical systems into the generative process.

2.2.3 Physics-informed machine learning

The results of purely data-driven solutions may potentially
produce meaningless output as the training strategy of a neu-
ral network is to minimize a mathematical loss function, e.g.,
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the mean squared error (i.e., L2 norm) between the predic-
tion and the original target. Similar issues, e.g., producing
overly blurred output, may arise with other choices of the loss
function, such as an L1 norm. An evolution of this approach
is to include some physical constraints in the loss function
in order to force the ML algorithm to produce more con-
sistent outputs, such as the Navier–Stokes equation (Ma et
al., 2022; Daw et al., 2021). This class of methods is known
as physics-informed neural networks (PINNs). However, the
performance of PINNs for extrapolation remains subject to
debate (e.g., Du et al., 2023, for a cautionary example). Re-
cently, another approach, which tries to solve differential
equations using neural networks, is under development. Al-
though this method is mostly developed for other physics
fields, the methodology and knowledge can be applied to
ocean modeling (Zubov et al., 2021; Smets et al., 2023).

2.2.4 Applications in ocean surface state forecasting

With previous examples mostly limited to weather predic-
tion and computational fluid dynamics (in a few cases), we
turn our attention to applications in the context of predict-
ing ocean surface properties. They include the use of multi-
layer perceptrons (James et al., 2018; Gracia et al., 2021)
and LSTMs (Minuzzi and Farina, 2023; Lawal et al., 2024)
for surface wave prediction, surface wave–current interaction
forecasting, storm surge forecasting (Xie et al., 2023), and
sea surface temperature prediction via deep learning (Wolff
et al., 2020; Xu et al., 2023) and the use of neural networks
for accelerating resonant nonlinear wave–wave interaction
in an ocean surface wave model (Puscasu, 2014), regional
to coastal sea level prediction (Nieves et al., 2021), ocean
color mapping (Chen et al., 2019), and statistical downscal-
ing (Accarino et al., 2021). Other applications include es-
timating ocean surface circulation (Sinha and Abernathey,
2021; Subel and Zanna, 2024) and predicting dissolved oxy-
gen across scales (O’Donncha et al., 2022).

2.3 ML-based ocean circulation prediction

Among the challenges of fully realizing the opportunities of
ML approaches in ocean circulation prediction is the fact
that, in the absence of adequate and densely sampled ob-
servational data, most ML applications rely on the use of
data obtained from high-fidelity model simulations as train-
ing data sets. These data sets are very expensive to gen-
erate, limited in the temporal ranges that they can repre-
sent, remain subject to unquantified structural and paramet-
ric model uncertainty, require vast amounts of storage (on
the order of petabytes), and are thus challenging to query.
Cloud-based solutions are the most promising approach for
ubiquitous data access and analysis capabilities “close to the
data” (Abernathey et al., 2020).

Within the realm of machine learning (ML) applications
for ocean forecasting, progress has been somewhat limited.

Recent developments have marked a shift in this landscape,
particularly with the introduction of Fourier neural opera-
tors for modeling oceanic processes, as suggested by Bire et
al. (2023), Chattopadhyay et al. (2024), and Sun et al. (2024).
These studies present fully data-driven ocean models that
match the capabilities of traditional numerical ocean mod-
els in predicting high-resolution sea surface height (SSH)
fields. FNOs are attractive for their performance in learn-
ing complex and high-dimensional mappings and their abil-
ity to incorporate physical laws and constraints, which are
prominently observable in the spectral domain. A drawback
of FNOs applied to ocean (unlike atmospheric) modeling is
the existence of land-covered portions of the domain, which
renders the use of periodic basis functions challenging and
may create artifacts near land–ocean boundaries.

Concurrently, X. Wang et al. (2024) introduced a
transformer-based model tailored for oceanic applications,
demonstrating performance that rivals that of leading oper-
ational global ocean forecasting systems. Similar advances
are being made in the data-driven prediction of sea ice cover
in the polar oceans (Andersson et al., 2021; see also Bertino
et al., 2025, in this report). This body of work signifies the
emergence of a promising research avenue in fully data-
driven ocean modeling, despite it still lagging considerably
behind the advancements seen in weather forecasting. We
posit that the drive of fully data-driven solutions in NWP by
private sector companies is related to the prospect of high-
stakes and high-reward applications. Such applications for
ocean predictions should be better articulated to attract sim-
ilar research efforts. Careful evaluation of skill, such as that
now being discussed more comprehensively in NWP (e.g.,
Bonavita, 2023; Charlton-Perez et al., 2024), will also be re-
quired for operational ocean prediction.

Another challenge presents the extension of ML applica-
tions to seasonal, inter-annual, and multi-decadal – i.e., cli-
mate – timescales (see, e.g., the discussion in Gentine et
al., 2021; Beucler et al., 2024; Subel and Zanna, 2024).
Here, the increased need for models or invariant operators
(physics-based or surrogates) to conserve fundamental prop-
erties (mass, energy, momentum, and active tracers) puts se-
vere demands on ML approaches. Arguably, as these ap-
proaches increasingly incorporate physical knowledge, they
will converge to the realm of classical inverse methods (Will-
cox et al., 2021).

2.4 Benchmarking forecast models

Data-driven forecasting in meteorology – and to some ex-
tent in oceanography – is proceeding at a breathtaking pace.
The use of different approaches, different training data, and
different performance metrics complicates objective assess-
ment of the different works at the present time. Recognizing
the need for standardized evaluation has led to the proposi-
tion of common evaluation benchmarks that encompass both
data-driven and “traditional” forecasting in weather predic-

State Planet, 5-opsr, 22, 2025 https://doi.org/10.5194/sp-5-opsr-22-2025



P. Heimbach et al.: Crafting the Future: Machine learning for ocean forecasting 5

tion (Dueben et al., 2022; Rasp et al., 2020, 2024), as well
as climate model emulation (Yu et al., 2023). These bench-
marks comprise common data sets, open-source evaluation
workflows, and common evaluation metrics. Similar bench-
marking efforts in ML-driven ocean circulation and surface
wave forecasting will be equally important to advance the
field and establish standardized evaluation metrics.

3 The role of surrogate models in digital twins

The concept of digital twins (DTs) is rapidly gaining trac-
tion within the ocean science community and Earth system
science more broadly (e.g., Bauer et al., 2021a, b). Because
of the differing view of what constitutes a DT in the recent
literature, we here adopt and emphasize the definition from
NASEM (2022) (see also Niederer et al., 2021; NASEM,
2023), which states that a DT is

a set of virtual information constructs that mim-
ics the structure, context and behavior of an indi-
vidual/unique physical asset, or a group of physi-
cal assets, is dynamically updated with data from
its physical twin throughout its life cycle and in-
forms decisions that realize value. A digital twin
is highly dynamical, mimicking the time evolution
of its physical asset (PA) via advanced simulation
and emulation capabilities; it is updated by ingest-
ing vast amounts of observational data of diverse
types; and it enables WHAT-IF queries and multi-
ple realizations to support prediction of responses
of the PA to hypothetical perturbations with quan-
tified uncertainties.

Virtually all aspects of ocean forecasting – and ML oppor-
tunities therein – may be viewed through the DT lens from
the need to generate high-fidelity simulations or digital rep-
resentations, ingesting, i.e., assimilating, large and heteroge-
neous data streams, and the development of fast surrogates or
emulators to either accelerate simulations or provide compre-
hensive uncertainty estimates, to the generation of diagnostic
data that create value for (possibly rapid) decision support.
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