Articles | Volume 5-opsr
https://doi.org/10.5194/sp-5-opsr-17-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-5-opsr-17-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A description of model intercomparison processes and techniques for ocean forecasting
Fabrice Hernandez
CORRESPONDING AUTHOR
Laboratoire d'Études en Géophysique et Océanographie Spatiales (LEGOS), Institut de Recherche pour le Développement (IRD) et Université de Toulouse, CNRS, CNES, Toulouse, France
Marcos Garcia Sotillo
NOW Systems (Nologin Oceanic Weather Systems), Santiago de Compostela, Spain
Angélique Melet
Mercator Ocean International, Toulouse, France
Related authors
Marcos Garcia Sotillo, Marie Drevillon, and Fabrice Hernandez
State Planet, 5-opsr, 16, https://doi.org/10.5194/sp-5-opsr-16-2025, https://doi.org/10.5194/sp-5-opsr-16-2025, 2025
Short summary
Short summary
Operational forecasting systems require best practices for assessing the quality of ocean products. The authors discuss the role of the observing network in performing validation of ocean models, identifying current gaps but also emphasizing the need of new metrics. An analysis on the level of maturity of validation processes from global to regional systems is provided. A rich variety of approaches exists. An example is provided of how the Copernicus Marine Service organizes product quality information.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Djoirka Minto Dimoune, Florence Birol, Fabrice Hernandez, Fabien Léger, and Moacyr Araujo
Ocean Sci., 19, 251–268, https://doi.org/10.5194/os-19-251-2023, https://doi.org/10.5194/os-19-251-2023, 2023
Short summary
Short summary
Altimeter-derived currents are used here to revisit the seasonal and interannual variability of all surface currents involved in the western tropical Atlantic circulation. A new approach based on the calculation of the current strengths and core positions is used to investigate the relationship between the currents, the remote wind variability, and the tropical Atlantic modes. The results show relationships at the seasonal and interannual timescale depending on the location of the currents.
Liying Wan, Marcos Garcia Sotillo, Mike Bell, Yann Drillet, Roland Aznar, and Stefania Ciliberti
State Planet, 5-opsr, 15, https://doi.org/10.5194/sp-5-opsr-15-2025, https://doi.org/10.5194/sp-5-opsr-15-2025, 2025
Short summary
Short summary
Operating the ocean value chain requires the implementation of steps that must work systematically and automatically to generate ocean predictions and deliver this information. The paper illustrates the main challenges foreseen by operational chains in integrating complex numerical frameworks from the global to coastal scale and discusses existing tools that facilitate orchestration, including examples of existing systems and their capacity to provide high-quality and timely ocean forecasts.
Angelique Melet, Begoña Pérez Gómez, and Pascal Matte
State Planet, 5-opsr, 11, https://doi.org/10.5194/sp-5-opsr-11-2025, https://doi.org/10.5194/sp-5-opsr-11-2025, 2025
Short summary
Short summary
Forecasting the sea level is crucial for supporting coastal management through early warning systems and for adopting adaptation strategies to mitigate climate change impacts. We provide here an overview on models commonly used for sea level forecasting, which can be based on storm surge models or ocean circulation ones, integrated on structured or unstructured grids, including an outlook on new approaches based on ensemble methods.
Marcos Garcia Sotillo, Marie Drevillon, and Fabrice Hernandez
State Planet, 5-opsr, 16, https://doi.org/10.5194/sp-5-opsr-16-2025, https://doi.org/10.5194/sp-5-opsr-16-2025, 2025
Short summary
Short summary
Operational forecasting systems require best practices for assessing the quality of ocean products. The authors discuss the role of the observing network in performing validation of ocean models, identifying current gaps but also emphasizing the need of new metrics. An analysis on the level of maturity of validation processes from global to regional systems is provided. A rich variety of approaches exists. An example is provided of how the Copernicus Marine Service organizes product quality information.
Joanna Staneva, Angelique Melet, Jennifer Veitch, and Pascal Matte
State Planet, 5-opsr, 4, https://doi.org/10.5194/sp-5-opsr-4-2025, https://doi.org/10.5194/sp-5-opsr-4-2025, 2025
Short summary
Short summary
Coastal services are essential to society, requiring accurate prediction of ocean variables in complex, high-resolution environments. This paper outlines key aspects of coastal modelling and emphasizes the importance of capturing nonlinear interactions and feedbacks. Advances in coastal modelling, observational integration, and predictive skills are highlighted as being vital for supporting sustainability and strengthening climate resilience.
Manuel García-León, José María García-Valdecasas, Lotfi Aouf, Alice Dalphinet, Juan Asensio, Stefania Angela Ciliberti, Breogán Gómez, Víctor Aquino, Roland Aznar, and Marcos Sotillo
EGUsphere, https://doi.org/10.5194/egusphere-2025-657, https://doi.org/10.5194/egusphere-2025-657, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Accurate short-term wave forecasts are key for coastal activities. These forecasts rely on wind and currents as forcing, which in this work were both enhanced using neural networks (NNs) trained with satellite and radar data. Tested at three European sites, the NN-corrected winds were 35 % more accurate, and currents also improved. This led to improved IBI wave model predictions of wave height and period by 10 % and 17 %, respectively; even correcting under extreme events.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024, https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary
Short summary
Climate-change-induced sea level rise increases the frequency of extreme sea levels. We analyze projected changes in extreme sea levels for western European coasts produced with high-resolution models (∼ 6 km). Unlike commonly used coarse-scale global climate models, this approach allows us to simulate key processes driving coastal sea level variations, such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Bart van den Hurk, Nadia Pinardi, Alexander Bisaro, Giulia Galluccio, José A. Jiménez, Kate Larkin, Angélique Melet, Lavinia Giulia Pomarico, Kristin Richter, Kanika Singh, Roderik van de Wal, and Gundula Winter
State Planet, 3-slre1, 1, https://doi.org/10.5194/sp-3-slre1-1-2024, https://doi.org/10.5194/sp-3-slre1-1-2024, 2024
Short summary
Short summary
The Summary for Policymakers compiles findings from “Sea Level Rise in Europe: 1st Assessment Report of the Knowledge Hub on Sea Level Rise”. It covers knowledge gaps, observations, projections, impacts, adaptation measures, decision-making principles, and governance challenges. It provides information for each European basin (Mediterranean, Black Sea, North Sea, Baltic Sea, Atlantic, and Arctic) and aims to assist policymakers in enhancing the preparedness of European coasts for sea level rise.
Álvaro de Pascual Collar, Roland Aznar, Bruno Levier, and Marcos García Sotillo
State Planet, 4-osr8, 5, https://doi.org/10.5194/sp-4-osr8-5-2024, https://doi.org/10.5194/sp-4-osr8-5-2024, 2024
Short summary
Short summary
The Iberia–Biscay–Ireland region in the North Atlantic has diverse ocean currents impacting upper and deeper layers. These currents are vital for heat transport, species dispersion, and sediment and pollutant movement. Monitoring them is crucial for informed decision-making in ocean-related activities, including the blue economy sector. This study introduces an indicator to track these currents, covering main ones like the Azores, Canary, Portugal, and poleward slope currents.
Álvaro de Pascual-Collar, Roland Aznar, Bruno Levier, and Marcos García-Sotillo
State Planet, 1-osr7, 9, https://doi.org/10.5194/sp-1-osr7-9-2023, https://doi.org/10.5194/sp-1-osr7-9-2023, 2023
Short summary
Short summary
The article comprises the analysis of the ocean heat content in the northeastern Atlantic Iberian–Biscay–Ireland (IBI) region. The variability of ocean heat content is studied, and results are linked with the variability of the main water masses found in the region. Results show how the coupled interannual variability of water masses accounts for an important part of the total ocean heat content variability in the region.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Alisée A. Chaigneau, Stéphane Law-Chune, Angélique Melet, Aurore Voldoire, Guillaume Reffray, and Lotfi Aouf
Ocean Sci., 19, 1123–1143, https://doi.org/10.5194/os-19-1123-2023, https://doi.org/10.5194/os-19-1123-2023, 2023
Short summary
Short summary
Wind waves and swells are major drivers of coastal environment changes and can drive coastal marine hazards such as coastal flooding. In this paper, by using numerical modeling along the European Atlantic coastline, we assess how present and future wave characteristics are impacted by sea level changes. For example, at the end of the century under the SSP5-8.5 climate change scenario, extreme significant wave heights are higher by up to +40 % due to the effect of tides and mean sea level rise.
Djoirka Minto Dimoune, Florence Birol, Fabrice Hernandez, Fabien Léger, and Moacyr Araujo
Ocean Sci., 19, 251–268, https://doi.org/10.5194/os-19-251-2023, https://doi.org/10.5194/os-19-251-2023, 2023
Short summary
Short summary
Altimeter-derived currents are used here to revisit the seasonal and interannual variability of all surface currents involved in the western tropical Atlantic circulation. A new approach based on the calculation of the current strengths and core positions is used to investigate the relationship between the currents, the remote wind variability, and the tropical Atlantic modes. The results show relationships at the seasonal and interannual timescale depending on the location of the currents.
Alisée A. Chaigneau, Guillaume Reffray, Aurore Voldoire, and Angélique Melet
Geosci. Model Dev., 15, 2035–2062, https://doi.org/10.5194/gmd-15-2035-2022, https://doi.org/10.5194/gmd-15-2035-2022, 2022
Short summary
Short summary
Climate-change-induced sea level rise is a major threat for coastal and low-lying regions. Projections of coastal sea level changes are thus of great interest for coastal risk assessment and have significantly developed in recent years. In this paper, the objective is to provide high-resolution (6 km) projections of sea level changes in the northeastern Atlantic region bordering western Europe. For that purpose, a regional model is used to refine existing coarse global projections.
Cited articles
Ahmad, H.: Machine learning applications in oceanography, Aquatic Research, 2, 161–169, https://doi.org/10.3153/AR19014, 2019.
Aijaz, S., Brassington, G. B., Divakaran, P., Régnier, C., Drévillon, M., Maksymczuk, J., and Peterson, K. A.: Verification and intercomparison of global ocean Eulerian near-surface currents, Ocean Model., 186, 102241, https://doi.org/10.1016/j.ocemod.2023.102241, 2023.
Alvarez Fanjul, E., Ciliberti, S., and Bahurel, P.: Implementing Operational Ocean Monitoring and Forecasting Systems, IOC-UNESCO, GOOS-275, https://doi.org/10.48670/ETOOFS, 2022.
Balmaseda, M. A., Hernandez, F., Storto, A., Palmer, M. D., Alves, O., Shi, L., G. C. Smith, Toyoda, T., Valdivieso da Costa, M., Barnier, B., Behringer, D. W., Boyer, T. P., Y.-S. Chang, Chepurin, G. A., Ferry, N., Forget, G., Fujii, Y., Good, S., Guinehut, S., Haines, K., Ishikawa, Y., Keeley, S., Köhl, A., Lee, T., Martin, M., Masina, S., Masuda, S., Meyssignac, B., Mogensen, K., Parent, L., Peterson, A. K., Tang, Y. M., Yin, Y., Vernieres, G., Wang, X., Waters, J., Wedd, R., Wang, O., Xue, Y., Chevallier, M., Lemieux, J.-F., Dupont, F., Kuragano, T., Kamachi, M., Awaji, T., Caltabiano, A. C., Wilmer-Becker, K., and Gaillard, F.: The Ocean Reanalyses Intercomparison Project (ORA-IP), J. Oper. Oceanogr., 8, s80–s97, https://doi.org/10.1080/1755876X.2015.1022329, 2015.
Balmaseda, M. A., Balan Sarojini, B., Mayer, M., Tietsche, S., Zuo, H., Vitart, F., and Stockdale, T. N.: Impact of the ocean in situ observations on the ECMWF seasonal forecasting system, Front. Mar. Sci., 11, https://doi.org/10.3389/fmars.2024.1456013, 2024a.
Balmaseda, M. A., McAdam, R., Masina, S., Mayer, M., Senan, R., de Bosisséson, E., and Gualdi, S.: Skill assessment of seasonal forecasts of ocean variables, Front. Mar. Sci., 11, https://doi.org/10.3389/fmars.2024.1380545, 2024b.
Bell, M. J., Lefebvre, M., Le Traon, P.-Y., Smith, N., and Wilmer-Becker, K.: GODAE, The Global Ocean Data Experiment, Oceanography, 22, 14–21, https://doi.org/10.5670/oceanog.2009.62, 2009.
Böning, C. W. and Bryan, F. O.: Large-Scale Transport Processes in High-Resolution Circulation Models, in: The Warmwatersphere of the North Atlantic Ocean, edited by: Krauss, W., Gebrüder Borntraeger: Berlin – Stuttgart, 91–128, ISBN 3-443-01033-4, 1996.
Cailleau, S., Bessières, L., Chiendje, L., Dubost, F., Reffray, G., Lellouche, J.-M., van Gennip, S., Régnier, C., Drevillon, M., Tressol, M., Clavier, M., Temple-Boyer, J., and Berline, L.: CAR36, a regional high-resolution ocean forecasting system for improving drift and beaching of Sargassum in the Caribbean archipelago, Geosci. Model Dev., 17, 3157–3173, https://doi.org/10.5194/gmd-17-3157-2024, 2024.
Campos, R. M., Alves, J.-H. G. M., Penny, S. G., and Krasnopolsky, V.: Assessments of Surface Winds and Waves from the NCEP Ensemble Forecast System, Weather Forecast.., 33, 1533–1546, https://doi.org/10.1175/waf-d-18-0086.1, 2018.
Capet, A., Fernández, V., She, J., Dabrowski, T., Umgiesser, G., Staneva, J., Mészáros, L., Campuzano, F., Ursella, L., Nolan, G., and El Serafy, G.: Operational Modeling Capacity in European Seas—An EuroGOOS Perspective and Recommendations for Improvement, Front. Mar. Sci., 7, https://doi.org/10.3389/fmars.2020.00129, 2020.
Casati, B., Wilson, L. J., Stephenson, D. B., Nurmi, P., Ghelli, A., Pocernich, M., Damrath, U., Ebert, E. E., Brown, B. G., and Mason, S.: Forecast verification: current status and future directions, Meteorol. Appl., 15, 3–18, https://doi.org/10.1002/met.52, 2008.
Chevallier, M., Smith, G. C., Dupont, F., Lemieux, J.-F., Forget, G., Fujii, Y., Hernandez, F., Msadek, R., Peterson, K. A., Storto, A., Toyoda, T., Valdivieso, M., Vernieres, G., Zuo, H., Balmaseda, M., Chang, Y.-S., Ferry, N., Garric, G., Haines, K., Keeley, S., Kovach, R. M., Kuragano, T., Masina, S., Tang, Y., Tsujino, H., and Wang, X.: Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project, Clim. Dynam., 49, 1107–1136, https://doi.org/10.1007/s00382-016-2985-y, 2016.
Ciliberti, S. A., Alvarez Fanjul, E., Pearlman, J., Wilmer-Becker, K., Bahurel, P., Ardhuin, F., Arnaud, A., Bell, M., Berthou, S., Bertino, L., Capet, A., Chassignet, E., Ciavatta, S., Cirano, M., Clementi, E., Cossarini, G., Coro, G., Corney, S., Davidson, F., Drevillon, M., Drillet, Y., Dussurget, R., El Serafy, G., Fennel, K., Garcia Sotillo, M., Heimbach, P., Hernandez, F., Hogan, P., Hoteit, I., Joseph, S., Josey, S., Le Traon, P.-Y., Libralato, S., Mancini, M., Matte, P., Melet, A., Miyazawa, Y., Moore, A. M., Novellino, A., Porter, A., Regan, H., Romero, L., Schiller, A., Siddorn, J., Staneva, J., Thomas-Courcoux, C., Tonani, M., Garcia-Valdecasas, J. M., Veitch, J., von Schuckmann, K., Wan, L., Wilkin, J., and Zufic, R.: Evaluation of operational ocean forecasting systems from the perspective of the users and the experts, in: 7th edition of the Copernicus Ocean State Report (OSR7), edited by: von Schuckmann, K., Moreira, L., Le Traon, P.-Y., Grégoire, M., Marcos, M., Staneva, J., Brasseur, P., Garric, G., Lionello, P., Karstensen, J., and Neukermans, G., Copernicus Publications, State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023.
Coelho, C. A. S., Brown, B., Wilson, L., Mittermaier, M., and Casati, B.: Chapter 16 – Forecast Verification for S2S Timescales, in: Sub-Seasonal to Seasonal Prediction, edited by: Robertson, A. W. and Vitart, F., Elsevier, 337–361, ISBN 978-0-12-811714-9, 2019.
Crocker, R., Maksymczuk, J., Mittermaier, M., Tonani, M., and Pequignet, C.: An approach to the verification of high-resolution ocean models using spatial methods, Ocean Sci., 16, 831–845, https://doi.org/10.5194/os-16-831-2020, 2020.
Danabasoglu, G., Yeager, S. G., Bailey, D., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Boning, C., Bozec, A., Canuto, V. M., Cassou, C., Chassignet, E., Coward, A. C., Danilov, S., Diansky, N., Drange, H., Farneti, R., Fernandez, E., Fogli, P. G., Forget, G., Fujii, Y., Griffies, S. M., Gusev, A., Heimbach, P., Howard, A., Jung, T., Kelley, M., Large, W. G., Leboissetier, A., Lu, J., Madec, G., Marsland, S. J., Masina, S., Navarra, A., George Nurser, A. J., Pirani, A., Salas y Melia, D., Samuels, B. L., Scheinert, M., Sidorenko, D., Treguier, A.-M., Tsujino, H., Uotila, P., Valcke, S., Voldoire, A., and Wang, Q.: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states, Ocean Model., 73, 76–107, https://doi.org/10.1016/j.ocemod.2013.10.005, 2014.
De Mey, P., Craig, P., Davidson, F., Edwards, C. A., Ishikawa, Y., Kindle, J. C., Proctor, R., Thompson, K. R., Zhu, J., and GODAE Coastal and Shelf Seas Working Group: Application in Coastal Modelling and Forecasting, Oceanography Magazine, 22, 198–205, https://doi.org/10.5670/oceanog.2009.79, 2009.
Divakaran, P., Brassington, G. B., Ryan, A. G., Regnier, C., Spindler, T., Mehra, A., Hernandez, F., Smith, G. C., Liu, Y. Y., and Davidson, F.: GODAE OceanView Class 4 inter-comparison for the Australian Region, J. Oper. Oceanogr., 8, s112–s126, https://doi.org/10.1080/1755876X.2015.1022333, 2015.
Drévillon, M., Greiner, E., Paradis, D., Payan, C., Lellouche, J.-M., Reffray, G., Durand, E., Law-Chune, S., and Cailleau, S.: A strategy for producing refined currents in the Equatorial Atlantic in the context of the search of the AF447 wreckage, Ocean Dynam., 63, 63–82, https://doi.org/10.1007/s10236-012-0580-2, 2013.
Dupont, F., Higginson, S., Bourdallé-Badie, R., Lu, Y., Roy, F., Smith, G. C., Lemieux, J.-F., Garric, G., and Davidson, F.: A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans, Geosci. Model Dev., 8, 1577–1594, https://doi.org/10.5194/gmd-8-1577-2015, 2015.
Durgadoo, J. V., Biastoch, A., New, A. L., Rühs, S., Nurser, A. J. G., Drillet, Y., and Bidlot, J.-R.: Strategies for simulating the drift of marine debris, J. Oper. Oceanogr., 14, 1–12, https://doi.org/10.1080/1755876X.2019.1602102, 2021.
E.U. Copernicus Marine Service Information (CMEMS): Global Ocean OSTIA Sea Surface Temperature and Sea Ice Analysis, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00165, 2023a.
E.U. Copernicus Marine Service Information (CMEMS): Global Ocean Physics Reanalysis, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00021, 2023b.
E.U. Copernicus Marine Service Information (CMEMS): Multi Observation Global Ocean 3D Temperature Salinity Height Geostrophic Current and MLD, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00052, 2024a.
E.U. Copernicus Marine Service Information (CMEMS): Global Ocean Physics Analysis and Forecast, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00016, 2024b.
E.U. Copernicus Marine Service Information (CMEMS): Global Ocean Ensemble Physics Reanalysis, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00024, 2024c.
Evensen, G.: The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, https://doi.org/10.1007/s10236-003-0036-9, 2003.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fujii, Y., Rémy, E., Zuo, H., Oke, P., Halliwell, G., Gasparin, F., Benkiran, M., Loose, N., Cummings, J., Xie, J., Xue, Y., Masuda, S., Smith, G. C., Balmaseda, M., Germineaud, C., Lea, D. J., Larnicol, G., Bertino, L., Bonaduce, A., Brasseur, P., Donlon, C., Heimbach, P., Kim, Y., Kourafalou, V., Le Traon, P.-Y., Martin, M., Paturi, S., Tranchant, B., and Usui, N.: Observing System Evaluation Based on Ocean Data Assimilation and Prediction Systems: On-Going Challenges and a Future Vision for Designing and Supporting Ocean Observational Networks, Front. Mar. Sci., 6, https://doi.org/10.3389/fmars.2019.00417, 2019.
Fujii, Y., Remy, E., Balmaseda, M. A., Kido, S., Waters, J., Peterson, K. A., Smith, G. C., Ishikawa, I., and Chikhar, K.: The international multi-system OSEs/OSSEs by the UN Ocean Decade Project SynObs and its early results, Front. Mar. Sci., 11, https://doi.org/10.3389/fmars.2024.1476131, 2024.
Gates, W. L.: An AMS Continuing Series: Global Change–AMIP: The Atmospheric Model Intercomparison Project, B. Am. Meteorol. Soc., 73, 1962–1970, https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2, 1992.
Good, S., Fiedler, E., Mao, C., Martin, M. J., Maycock, A., Reid, R., Roberts-Jones, J., Searle, T., Waters, J., While, J., and Worsfold, M.: The Current Configuration of the OSTIA System for Operational Production of Foundation Sea Surface Temperature and Ice Concentration Analyses, Remote Sens., 12, 720, https://doi.org/10.3390/rs12040720, 2020.
Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu, G., Chassignet, E. P., England, M. H., Gerdes, R., Haak, H., Hallberg, R. W., Hazeleger, W., Jungclaus, J., Large, W. G., Madec, G., Pirani, A., Samuels, B. L., Scheinert, M., Gupta, A. S., Severijns, C. A., Simmons, H. L., Treguier, A. M., Winton, M., Yeager, S., and Yin, J.: Coordinated Ocean-ice Reference Experiments (COREs), Ocean Model., 26, 1–46, https://doi.org/10.1016/j.ocemod.2008.08.007, 2009.
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016.
Griffin, D. A. and Oke, P. R.: The search for MH370 and ocean surface drift – Part III, CSIRO Oceans and Atmosphere, Australia, https://www.atsb.gov.au/sites/default/files/media/5773371/mh370_csiro-ocean-drift-iiil.pdf (last access: 24 April 2025), 2017.
Guinehut, S., Dhomps, A.-L., Larnicol, G., and Le Traon, P.-Y.: High resolution 3-D temperature and salinity fields derived from in situ and satellite observations, Ocean Sci., 8, 845–857, https://doi.org/10.5194/os-8-845-2012, 2012.
Hakobyan, M.: Ocean data mining with application to climate indices of the North Atlantic, Master, Department of Computational Science Memorial University of Newfoundland, St John's, 154 pp., https://research.library.mun.ca/10594/1/Hakobyan_Madlena.pdf (last access: 24 April 2025), 2010.
Hartigan, J. A. and Wong, M. A.: Algorithm AS 136: A K-Means Clustering Algorithm, J. R. Stat. Soc. C-Appl., 28, 100–108, https://doi.org/10.2307/2346830, 1979.
Hernandez, F.: Performance of Ocean Forecasting Systems - Intercomparison Projects, in: Operational Oceanography in the 21st Century, edited by: Schiller, A. and Brassington, G., Springer, Dordrecht, https://doi.org/10.1007/978-94-007-0332-2_23, 2011.
Hernandez, F., Blockley, E., Brassington, G. B., Davidson, F., Divakaran, P., Drévillon, M., Ishizaki, S., Sotillo, M. G., Hogan, P. J., Lagemaa, P., Levier, B., Martin, M., Mehra, A., Mooers, C., Ferry, N., Ryan, A., Regnier, C., Sellar, A., Smith, G. C., Sofianos, S., Spindler, T., Volpe, G., Wilkin, J., Zaron, E. D., and Zhang, A.: Recent progress in performance evaluations and near real-time assessment of operational ocean products, J. Oper. Oceanogr., 8, s221–s238, https://doi.org/10.1080/1755876X.2015.1050282, 2015a.
Hernandez, F., Bertino, L., Brassington, G., Chassignet, E., Cummings, J., Davidson, F., Drévillon, M., Garric, G., Kamachi, M., Lellouche, J.-M., Mahdon, R., Martin, M. J., Ratsimandresy, A., and Regnier, C.: Validation and Intercomparison Studies Within GODAE, Oceanography, 22, 128–143, https://doi.org/10.5670/oceanog.2009.71, 2015b.
Hernandez, F., Smith, G. C., Baetens, K., Cossarini, G., Garcia Hermosa, I., Drévillon, M., Maksymczuk, J., Melet, A., Régnier, C., and von Schuckmann, K.: Measuring performances, skill and accuracy in operational oceanography: New challenges and approaches, in: New Frontiers in Operational Oceanography, edited by: Chassignet, E., Pascual, A., Tintoré, J., and J. Verron, GODAE OceanView, 759–796, https://doi.org/10.17125/gov2018.ch29, 2018.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2023.
Juza, M., Mourre, B., Lellouche, J.-M., Tonani, M., and Tintoré, J.: From basin to sub-basin scale assessment and intercomparison of numerical simulations in the Western Mediterranean Sea, J. Marine Syst., 149, 36–49, https://doi.org/10.1016/j.jmarsys.2015.04.010, 2015.
Juza, M., Mourre, B., Renault, L., Gómara, S., Sebastián, K., Lora, S., Beltran, J. P., Frontera, B., Garau, B., Troupin, C., Torner, M., Heslop, E., Casas, B., Escudier, R., Vizoso, G., and Tintoré, J.: SOCIB operational ocean forecasting system and multi-platform validation in the Western Mediterranean Sea, J. Oper. Oceanogr., 9, s155–s166, https://doi.org/10.1080/1755876X.2015.1117764, 2016.
Keppenne, C. L., Rienecker, M. M., Jacob, J. P., and Kovach, R.: Error Covariance Modeling in the GMAO Ocean Ensemble Kalman Filter, Mon. Weather Rev., 136, 2964–2982, https://doi.org/10.1175/2007MWR2243.1, 2008.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteorol. Soc. Jpn. Ser. II, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Kourafalou, V. H., De Mey, P., Le Hénaff, M., Charria, G., Edwards, C. A., He, R., Herzfeld, M., Pascual, A., Stanev, E. V., Tintoré, J., Usui, N., van der Westhuysen, A. J., Wilkin, J. L., and Zhu, X.: Coastal Ocean Forecasting: system integration and evaluation, J. Oper. Oceanogr., 8, s127–s146, https://doi.org/10.1080/1755876X.2015.1022336, 2015.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually varying air–sea flux data set, Clim. Dynam., 33, 341–364, https://doi.org/10.1007/s00382-008-0441-3, 2009.
Lellouche, J.-M., Eric, G., Romain, B. B., Gilles, G., Angelique, M., Marie, D., et al.: The copernicus global ° oceanic and sea ice GLORYS12 reanalysis, Frontiers of Earth Science, 9, 698876, https://doi.org/10.3389/feart.2021.698876, 2021.
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time ° high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018.
Lisæter, K. A., Rosanova, J., and Evensen, G.: Assimilation of ice concentration in a coupled ice–ocean model, using the Ensemble Kalman filter, Ocean Dynam., 53, 368–388, https://doi.org/10.1007/s10236-003-0049-4, 2003.
Lorente, P., Piedracoba, S., Sotillo, M. G., Aznar, R., Amo-Baladrón, A., Pascual, Á., Soto-Navarro, J., and Álvarez-Fanjul, E.: Ocean model skill assessment in the NW Mediterranean using multi-sensor data, J. Oper. Oceanogr., 9, 75–92, https://doi.org/10.1080/1755876X.2016.1215224, 2016.
Lorente, P., García-Sotillo, M., Amo-Baladrón, A., Aznar, R., Levier, B., Sánchez-Garrido, J. C., Sammartino, S., de Pascual-Collar, Á., Reffray, G., Toledano, C., and Álvarez-Fanjul, E.: Skill assessment of global, regional, and coastal circulation forecast models: evaluating the benefits of dynamical downscaling in IBI (Iberia–Biscay–Ireland) surface waters, Ocean Sci., 15, 967–996, https://doi.org/10.5194/os-15-967-2019, 2019.
Masina, S., Storto, A., Ferry, N., Valdivieso, M., Haines, K., Balmaseda, M., Zuo, H., Drevillon, M., and Parent, L.: An ensemble of eddy-permitting global ocean reanalyses from the MyOcean project, Clim. Dynam., 49, 813–841, https://doi.org/10.1007/s00382-015-2728-5, 2015.
Meehl, G. A., Boer, G. J., Covey, C., Latif, M., and Stouffer, R. J.: Intercomparison makes for a better climate model, Eos T. Am. Geophys. Un., 78, 445–451, https://doi.org/10.1029/97EO00276, 1997.
Meincke, J., Le Provost, C., and Willebrand, J.: Dynamics of the North Atlantic Circulation: Simulation and Assimilation with High-Resolution Models (DYNAMO), Prog. Oceanogr., 48, 121–122, https://doi.org/10.1016/S0079-6611(01)00002-7, 2001.
Murphy, A. H.: What Is a Good Forecast? An Essay on the Nature of Goodness in Weather Forecast.ing, Weather Forecast., 8, 281–293, https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2, 1993.
Orr, J. C., Najjar, R. G., Aumont, O., Bopp, L., Bullister, J. L., Danabasoglu, G., Doney, S. C., Dunne, J. P., Dutay, J.-C., Graven, H., Griffies, S. M., John, J. G., Joos, F., Levin, I., Lindsay, K., Matear, R. J., McKinley, G. A., Mouchet, A., Oschlies, A., Romanou, A., Schlitzer, R., Tagliabue, A., Tanhua, T., and Yool, A.: Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP), Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, 2017.
Palmer, M. D., Roberts, C. D., Balmaseda, M., Chang, Y. S., Chepurin, G. A., Ferry, N., Fujii, Y., Good, S. A., Guinehut, S., Haines, K., Hernandez, F., Köhl, A., Lee, T., Martin, M. J., Masina, S., Masuda, S., Peterson, K. A., Storto, A., Toyoda, T., Valdivieso, M., Vernieres, G., Wang, O., and Xue, Y.: Ocean heat content variability and change in an ensemble of ocean reanalyses, Clim. Dynam., 49, 909–930, https://doi.org/10.1007/s00382-015-2801-0, 2015.
Pinardi, N., Bonazzi, A., Dobricic, S., Milliff, R. F., Wikle, C. K., and Berliner, L. M.: Ocean ensemble forecasting. Part II: Mediterranean Forecast System response, Q. J. Roy. Meteor. Soc., 137, 879–893, https://doi.org/10.1002/qj.816, 2011.
Ryan, A. G., Regnier, C., Divakaran, P., Spindler, T., Mehra, A., Hernandez, F., Smith, G. C., Liu, Y. Y., and Davidson, F.: GODAE OceanView Class 4 forecast verification framework: global ocean inter-comparison, J. Oper. Oceanogr., 8, s98–s111, https://doi.org/10.1080/1755876X.2015.1022330, 2015.
Salman, A.: Editorial: Application of machine learning in oceanography and marine sciences, Front. Mar. Sci., 10, https://doi.org/10.3389/fmars.2023.1207337, 2023.
Schiller, A., Brassington, G. B., Oke, P., Cahill, M., Divakaran, P., Entel, M., Freeman, J., Griffin, D., Herzfeld, M., Hoeke, R., Huang, X., Jones, E., King, E., Parker, B., Pitman, T., Rosebrock, U., Sweeney, J., Taylor, A., Thatcher, M., Woodham, R., and Zhong, A.: Bluelink ocean forecasting Australia: 15 years of operational ocean service delivery with societal, economic and environmental benefits, J. Oper. Oceanogr., 13, 1–18, https://doi.org/10.1080/1755876X.2019.1685834, 2020.
Seo, G.-H., Kim, S., Choi, B.-J., Cho, Y.-K., and Kim, Y.-H.: Implementation of the Ensemble Kalman Filter into a Northwest Pacific Ocean Circulation Model, in: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, edited by: Park, S. K. and Xu, L., Springer Berlin Heidelberg, Berlin, Heidelberg, 341–351, ISBN 978-3-540-71056-1, 2009.
Shi, L., Alves, O. J., Wedd, R., Balmaseda, M. A., Chang, Y.-S., Chepurin, G. A., Ferry, N., Fujii, Y., Gaillard, F., Good, S. A., Guinehut, S., Haines, K., Hernandez, F., Lee, T., Palmer, M. D., Peterson, K. A., Masuda, S., Storto, A., Toyoda, T., Valdivieso, M., Vernieres, G., Wang, X., and Yin, Y.: An assessment of upper ocean salinity content from the Ocean Reanalyses Inter-comparison Project (ORA-IP), Clim. Dynam., 49, 1009–1029, https://doi.org/10.1007/s00382-015-2868-7, 2015.
Sonnewald, M., Lguensat, R., Jones, D. C., Dueben, P. D., Brajard, J., and Balaji, V.: Bridging observations, theory and numerical simulation of the ocean using machine learning, Environ. Res. Lett., 16, 073008, https://doi.org/10.1088/1748-9326/ac0eb0, 2021.
Sotillo, M. G., Drevillon, M., and Hernandez, F.: A description of Validation Processes and Techniques for Ocean Forecasting, in: Ocean prediction: present status and state of the art (OPSR), edited by: Álvarez Fanjul, E., Ciliberti, S. A., Pearlman, J., Wilmer-Becker, K., and Behera, S., Copernicus Publications, State Planet, 5-opsr, 16, https://doi.org/10.5194/sp-5-opsr-16-2025, 2025.
Stammer, D., Köhl, A., Awaji, T., Balmaseda, M., Behringer, D., Carton, J., Ferry, N., Fischer, A., Fukumori, I., Giese, B., Haines, K., Harrison, E., Heimbach, P., Kamachi, M., Keppenne, C., Lee, T., Masina, S., Menemenlis, D., Ponte, R., Remy, E., Rienecker, M., Rosati, A., Schröter, Jens , Smith, D., Weaver, A., Wunsch, C., and Xue, Y.: Ocean Information Provided Through Ensemble Ocean Syntheses, in: Proceedings of OceanObs09: Sustained Ocean Observations and Information for Society (Vol. 2), Venice, Italy, 21–25 September 2009, edited by: Hall, J., Harrison D. E., and Stammer, D., ESA Publication WPP-306, https://pure.mpg.de/rest/items/item_2144438/component/file_2144439/content (last access: 24 April 2025), 2009.
Storto, A., Masina, S., Balmaseda, M., Guinehut, S., Xue, Y., Szekely, T., Fukumori, I., Forget, G., Chang, Y.-S., Good, S. A., Köhl, A., Vernieres, G., Ferry, N., Peterson, K. A., Behringer, D., Ishii, M., Masuda, S., Fujii, Y., Toyoda, T., Yin, Y., Valdivieso, M., Barnier, B., Boyer, T., Lee, T., Gourrion, J., Wang, O., Heimback, P., Rosati, A., Kovach, R., Hernandez, F., Martin, M. J., Kamachi, M., Kuragano, T., Mogensen, K., Alves, O., Haines, K., and Wang, X.: Steric sea level variability (1993–2010) in an ensemble of ocean reanalyses and objective analyses, Clim. Dynam., 49, 709–729, https://doi.org/10.1007/s00382-015-2554-9, 2015.
Storto, A., Alvera-Azcarate, A., Balmaseda, M. A., Barth, A., Chevallier, M., Counillon, F., Domingues, C. M., Drévillon, M., Drillet, Y., Forget, G., Garric, G., Haines, K., Hernandez, F., Iovino, D., Jackson, L. C., Lellouche, J.-M., Masina, S., Mayer, M., Oke, P. R., Penny, S. G., Peterson, A. K., Yang, C., and Zuo, H.: Ocean reanalyses: Recent advances and unsolved challenges, Front. Mar. Sci., 6, 418, https://doi.org/10.3389/fmars.2019.00418, 2019.
Tanhua, T., McCurdy, A., Fischer, A., Appeltans, W., Bax, N., Currie, K., DeYoung, B., Dunn, D., Heslop, E., Glover, L. K., Gunn, J., Hill, K., Ishii, M., Legler, D., Lindstrom, E., Miloslavich, P., Moltmann, T., Nolan, G., Palacz, A., Simmons, S., Sloyan, B., Smith, L. M., Smith, N., Telszewski, M., Visbeck, M., and Wilkin, J.: What We Have Learned From the Framework for Ocean Observing: Evolution of the Global Ocean Observing System, Front. Mar. Sci., 6, https://doi.org/10.3389/fmars.2019.00471, 2019.
Toyoda, T., Fujii, Y., Kuragano, T., Kamachi, M., Ishikawa, Y., Masuda, S., Sato, K., Awaji, T., Hernandez, F., Ferry, N., Guinehut, S., Martin, M. J., Peterson, K. A., Good, S. A., Valdivieso, M., Haines, K., Storto, A., Masina, S., Köhl, A., Zuo, H., Balmaseda, M., Yin, Y., Shi, L., Alves, O., Smith, G., Chang, Y.-S., Vernieres, G., Wang, X., Forget, G., Heimbach, P., Wang, O., Fukumori, I., and Lee, T.: Intercomparison and validation of the mixed layer depth fields of global ocean syntheses, Clim. Dynam., 49, 753–773, https://doi.org/10.1007/s00382-015-2637-7, 2015a.
Toyoda, T., Fujii, Y., Kuragano, T., Kosugi, N., Sasano, D., Kamachi, M., Ishikawa, Y., Masuda, S., Sato, K., Awaji, T., Hernandez, F., Ferry, N., Guinehut, S., Martin, M., Andrew Peterson, K., Good, S., Valdivieso, M., Haines, K., Storto, A., Masina, S., Köhl, A., Yin, Y., Shi, L., Alves, O., Smith, G., Chang, Y.-S., Vernieres, G., Wang, X., Forget, G., Heimbach, P., Wang, O., Fukumori, I., Lee, T., Zuo, H., and Balmaseda, M.: Interannual-decadal variability of wintertime mixed layer depths in the North Pacific detected by an ensemble of ocean syntheses, Clim. Dynam., 49, 891–907, https://doi.org/10.1007/s00382-015-2762-3, 2015b.
Uotila, P., Goosse, H., Haines, K., Chevallier, M., Barthélemy, A., Bricaud, C., Carton, J., Fučkar, N., Garric, G., Iovino, D., Kauker, F., Korhonen, M., Lien, V. S., Marnela, M., Massonnet, F., Mignac, D., Peterson, K. A., Sadikni, R., Shi, L., Tietsche, S., Toyoda, T., Xie, J., and Zhang, Z.: An assessment of ten ocean reanalyses in the polar regions, Clim. Dynam., 52, 1613–1650, https://doi.org/10.1007/s00382-018-4242-z, 2018.
Valdivieso, M., Haines, K., Balmaseda, M., Chang, Y.-S., Drevillon, M., Ferry, N., Fujii, Y., Köhl, A., Storto, A., Toyoda, T., Wang, X., Waters, J., Xue, Y., Yin, Y., Barnier, B., Hernandez, F., Kumar, A., Lee, T., Masina, S., and Andrew Peterson, K.: An assessment of air–sea heat fluxes from ocean and coupled reanalyses, Clim. Dynam., 49, 983–1008, https://doi.org/10.1007/s00382-015-2843-3, 2015.
Vallès-Casanova, I., Lee, S.-K., Foltz, G. R., and Pelegrí, J. L.: On the Spatiotemporal Diversity of Atlantic Niño and Associated Rainfall Variability Over West Africa and South America, Geophys. Res. Lett., 47, e2020GL087108, https://doi.org/10.1029/2020GL087108, 2020.
von Schuckmann, K., Le Traon, P. Y., Smith, N., et al.: Copernicus Marine Service Ocean State Report, J. Oper. Oceanogr., 11, S1–S142, https://doi.org/10.1080/1755876X.2018.1489208, 2018.
Wilkin, J., Levin, J., Moore, A., Arango, H., López, A., and Hunter, E.: A data-assimilative model reanalysis of the U.S. Mid Atlantic Bight and Gulf of Maine: Configuration and comparison to observations and global ocean models, Progr. in Oceanogr., 209, 102919, https://doi.org/10.1016/j.pocean.2022.102919, 2022.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Xue, Y., Wen, C., Kumar, A., Balmaseda, M., Fujii, Y., Alves, O., Martin, M. J., Yang, X., Vernieres, G., Desportes, C., Lee, T., Ascione, I., Gudgel, R., and Ishikawa, I.: A real-time ocean reanalyses intercomparison project in the context of tropical pacific observing system and ENSO monitoring, Clim. Dynam., 49, 3647–3672, https://doi.org/10.1007/s00382-017-3535-y, 2017.
Zhu, X., Wang, H., Liu, G., Régnier, C., Kuang, X., Wang, D., Ren, S., Jing, Z., and Drévillon, M.: Comparison and validation of global and regional ocean forecasting systems for the South China Sea, Nat. Hazards Earth Syst. Sci., 16, 1639–1655, https://doi.org/10.5194/nhess-16-1639-2016, 2016.
Short summary
An historical review over the last 3 decades on intercomparison projects of ocean numerical reanalysis or forecast is first proposed. From this, main issues and lessons learned are discussed in order to propose an overview of best practices and key considerations to facilitate intercomparison activities in operational oceanography.
An historical review over the last 3 decades on intercomparison projects of ocean numerical...
Altmetrics
Final-revised paper
Preprint