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Abstract. The availability of numerical simulations for ocean dynamics past estimates or future forecast world-
wide at multiple scales is opening new challenges in assessing their realism and predictive capacity through
an intercomparison exercise. This requires a huge effort in designing and implementing a proper assessment of
models’ performances, as already demonstrated by the atmospheric community that was pioneering in that sense.
Historically, the ocean community has only recently launched dedicated actions aimed at identifying robust pat-
terns in eddy-permitting simulations: it required definition of modelling configurations, execution of dedicated
experiments that also deal with the storing of the outputs and the implementation of evaluation frameworks.
Starting from this baseline, numerous initiatives like WCRP/Climate Variability and Predictability (CLIVAR) for
climate research and the Global Ocean Data Assimilation Experiment (GODAE) for operational systems have
arisen and are actively promoting best practice through specific intercomparison tasks, aimed at demonstrating
the efficient use of the Global Ocean Observing System and its operational capabilities, sharing expertise, and
increasing the scientific quality of the numerical systems. Examples, like the Ocean Reanalysis Intercompari-
son Project (ORA-IP) or the Class 4 near-real-time GODAE intercomparison, are introduced and commented
on, also discussing ways forward for making this kind of analysis more systematic using artificial intelligence
approaches for addressing monitoring of ocean state in operations or facilitating in-house routine verification in

ocean forecasting centres.

1 Historical development of model
intercomparisons

Historically, in oceanography, model comparisons began
with evaluations of “free” and “forced” numerical simula-
tions of ocean circulation over the same space and time
frames, assessing their differences within comparable situ-
ations. The international Atmospheric Model Intercompar-
ison Project (AMIP), under the World Climate Research
Programme (WCRP), played a pioneering role in guiding
the oceanic modelling community (Gates, 1992). AMIP’s
primary objective was to comprehensively evaluate each
model’s performance and document systematic errors. From
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an academic standpoint, this intercomparison aimed to iden-
tify avenues for enhancing future atmospheric models and
driving further developments. Consequently, this approach
aligns clearly with the validation framework outlined in
Sotillo et al. (2025, in this report). To provide an objec-
tive assessment of each “competing” model’s performance,
a common “‘reference truth” was selected, such as climatol-
ogy or atmospheric reanalysis (deemed more realistic than
the AMIP simulations). This process involved analysing a se-
ries of targeted key variables extracted from the model state
to provide an overview of the model’s skill in representing
various atmospheric aspects.
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In 1996, the same atmospheric community, involved in cli-
mate studies, settled the basis of the Coupled Model Inter-
comparison Project (CMIP) under the auspice of the WCR-
P/Climate Variability and Predictability (CLIVAR) panel to
document systematic errors of global couple climate simula-
tions in support of the Intergovernmental Panel on Climate
Change (IPCC) framework (Meehl et al., 1997). Over the six
phases of the CMIP, intercomparisons have refined the as-
sessments, increasingly including the physical, biochemical
and ecosystem components of the Earth system, by testing
various climate scenarios of past, present and future CO;
emissions. In the current phase, the CMIP6, the variety of
models, simulations and their objectives have led the com-
munity to redefine the federated structure through a common
specific framework, the Diagnostic, Evaluation and Char-
acterization of Klima (DECK) experiments, which set out
the simulations and scientific questions to be addressed. The
DECK is the new acceptance criterion for a climate intercom-
parison project in the CMIP (Eyring et al., 2016). The evolu-
tion of the CMIP has been accompanied by the gradual adop-
tion by the climate community of common standards, coor-
dination, infrastructure and documentation, accessible to all.
This persistent framework aims to ensure continuity in cli-
mate model performance assessment of future CMIP phases
in which re-processed historical simulations defined in the
AMIP would allow changes and benefits of more elaborated
components of the Earth system models (ESMs).

The ocean modelling research community adopted a sim-
ilar approach to the AMIP when the first global- or basin-
scale eddy-permitting ocean simulations were achieved in
the 1990s. The US—-German Community Modelling Effort
(CME), in support of the World Ocean Circulation Exper-
iment (WOCE), started to infer model parametrization and
sensitivity studies in modelling the North Atlantic basin
(Boning and Bryan, 1996). Sources of errors like ocean
boundaries or vertical mixing parametrization were identi-
fied. The DYNAMO project, dedicated to offering intercom-
parison among three classes of ocean models of the North
Atlantic Ocean in a similar numerical experiment framework
(Meincke et al., 2001), allowed patterns of the North Atlantic
Ocean circulation to be identified that were robust and other
patterns that were sensitive to model parametrization. In this
case, the intercomparison approach brought another benefit
than just identifying performances among the simulations:
the common and matching patterns represented by the sim-
ulations were considered updated knowledge of the North
Atlantic circulation. In other terms, the “ensemble pattern”
from the simulations is identified as a robust representation
of the “ocean truth” at the scales simulated by these models.

This first initiative led to the development of a common
ocean modelling framework from the ocean community also
involved in the CMIP projects, the Coordinated Ocean-ice
Reference Experiments (COREs), aiming to provide com-
mon references for consistent assessment from a multi-model
perspective (Griffies et al., 2009). CORE-I intends to evalu-
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ate model mean biases under a normal year forcing, using a
prescribed series of metrics (e.g. Danabasoglu et al., 2014).
The CORE-II framework extends the ocean model evaluation
under the common interannual forcing — starting in 1948 —
proposed initially by Large and Yeager (2009). It offers more
direct comparison to ocean observations and to the effective
ocean interannual variability. An intercomparison of 18 time-
dependent ocean numerical simulations have been performed
so far, with useful outcomes for global ocean model improve-
ments. The CORE-II approach is the foundation of the Ocean
Model Intercomparison Projects (OMIPs) carried out in sup-
port of the successive CMIPs, with a coordinated evalua-
tion of the ocean, sea ice, tracer and biogeochemistry sim-
ulations forced by common atmospheric datasets (Eyring et
al., 2016). The OMIP version 1 contribution to CMIP6, with
ocean simulations’ intercomparisons over the 1948-2009 pe-
riod, is described by Griffies et al. (2016) and contains a com-
prehensive list of metrics and guidance to evaluate ocean—sea
ice model skills as part of ESMs. A companion article by Orr
et al. (2017) proposes the evaluation framework for the bio-
geochemical coupled model simulations in CMIP6. Under
the CLIVAR Ocean Model Development Panel (OMDP) co-
ordination, OMIP version 2 is ongoing using the more recent
JRA-55 reanalysis forcings (Kobayashi et al., 2015). Met-
rics of the ocean (equivalent here to diagnostics) endorsed
by the OMIP are those recommended for the assessment of
ocean climate behaviour, impacts and scenarios in the CMIP
DECK.

These first ocean intercomparison projects witness the
community effort, trying to commonly define modelling
strategies; conduct the simulations individually; and then in-
tercompare the simulations in order to evaluate the model’s
performance with regard to observed realistic references. The
projects bring better characterization of model errors and
weaknesses considering specific ocean processes, from phys-
ical to biogeochemical aspects, over decadal, interannual and
seasonal timescales. Implicitly, these efforts have involved
strategies for distributing, storing and sharing simulations
and metrics, under constraints of computer server limita-
tions in capacity and communication bandwidth. In practice,
this added to the common technical definition of standards
shared by all participants and a fitness-for-purpose evalua-
tion framework to be applied in similar ways for every sim-
ulation. And finally, a common synthesis effort is carried out
in order to provide valuable conclusions.

The first intercomparison project that involved the op-
erational oceanography has been carried out in the frame
of the CLIVAR Global Synthesis and Observation Panel
(GSOP). In practice, this involved intercomparing different
ocean reanalyses computed over several decades and pro-
viding “ocean synthesis” on ocean state estimation through
a chosen series of essential ocean variables (EOVs) consid-
ered in climate research (Stammer et al., 2009). A step was
taken since it was no longer comparison of model outputs but
of products issued from the more complex system produc-
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ing each reanalysis (observation + model 4 assimilation), in-
creasing the factors of discrepancies among them. The idea
is that multi-system ensemble approaches should be useful
to obtain better estimates of the ocean evolution. The GSOP
objectives were (1) to assess the consistency of the synthe-
sis through intercomparison; (2) to evaluate the accuracy of
the products, possibly by comparison to observations; (3) to
estimate uncertainties; (4) to identify areas where improve-
ments were needed; (5) to evaluate the lack of assimilated
observations that directly impacted the synthesis and pro-
pose future observational requirements; and (6) to work on
new approaches, like coupled data assimilation. One of the
outcomes was to highlight common behaviour among some
products, that is, evidence “clusters” and correlated patterns
that sometimes had just inappropriate biases.

In the atmospheric and weather-forecast side, usually
responsible for marine meteorology predictions, routine
intercomparison for wave forecast has been settled for
many years under the World Meteorological Organization
(WMO) framework. The European Centre for Medium-
Range Weather Forecasts (ECMWF) hosts the ongoing
WMO Lead Centre for Wave Forecast Verification where
18 regional and global wave forecast systems are com-
pared (https://confluence.ecmwf.int/display/WLW, last ac-
cess: 29 January 2025). Beyond wave forecasts’ verification
and quality monitoring, the ECMWF commits to maintaining
an archive of the verification statistics to allow the generation
and display of trends in performance over time.

A first dedicated intercomparison of ocean operational
systems, operated on routine, was achieved by the Global
Ocean Data Assimilation Experiment (GODAE) community
(Bell et al., 2009), through an intercomparison of hindcasts
over 2008. The main objectives were to (a) demonstrate GO-
DAE operational systems in operations, (b) share expertise
and design validation tools and metrics endorsed by all GO-
DAE operational centres, and (c) evaluate the overall sci-
entific quality of the different GODAE operational systems.
The preliminary task was to define the validation concepts
and methodologies (Hernandez et al., 2015a), with the so-
called “Class 1 to 4 metrics” described in this report (Sotillo
et al., 2025), and those directly inherited from the weather
forecast verification methods (Murphy, 1993). A demanding
task was to provide similar “Class 17, “Class 2” and “Class
3” files from each Operational Ocean Forecasting System
(OOFS) and then to carry out the evaluation through inter-
comparison and validation against “truth references” (Her-
nandez, 2011).
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2 Key findings for state-of-the-art model
intercomparison

2.1 From academia to operation: adoption of best
practice

The legacy of the first 10 years of GODAE was the imple-
mentation of an expert community for OOFS intercompari-
son: the Intercomparison and Validation Task Team (IVTT).
This group was created during GODAE, continuing its ac-
tivity in GODAE OceanView and, up to present day, in
Ocean Predict (https://oceanpredict.org/, last access: 29 Jan-
uary 2025). A second benefit was the development of an ad
hoc validation and intercomparison methodology, improved
and tested regularly since, until it was adopted as best prac-
tice and recommended by the Expert Team on Operational
Ocean Forecasting Systems (ETOOFS; Alvarez-Fanjul et al.,
2022).

As aresult of these activities, it was found that performing
intercomparison of OOFSs and models brought the following
aspects to address:

— Characterize the performance of individual OOFSs of
the same kind relatively to a given “truth”, identify out-
liers and give clues for further OOFS improvements.

— Allow “ensemble estimation” that provides qualitatively
more robust and reliable estimates, i.e. the “ensemble
mean” approach. In some cases, if the “ocean truth” is
missing, the ensemble mean can be considered a refer-
ence and be used to validate individually the systems.

— Provide an ad hoc methodology for operational qualifi-
cation; see Sotillo et al. (2025) for detailed explanation
on OOFS qualification or “calibration”. In other words,
when the OOFS is upgraded, inter-comparing the old
and new systems informs on the benefits of the upgrade
and justifies “go/no-go” decisions.

— Adopt or refine technologies supporting large ex-
changes of information among the community: in this
sense, the NetCDF file format and climate forecast
standardization has greatly facilitated the “shareability”
(Hernandez et al., 2015a, b) and prefigured the FAIR
best practice (Findability, Accessibility, Interoperabil-
ity and Reuse of digital assets), proposed more recently
(Wilkinson et al., 2016).

An exceptionally illustrative intercomparison example
emerged from the tragic crash of the Rio de Janeiro—Paris
Air France plane in 2009 and the subsequent intensive search
for the wreckage in the tropical Atlantic. Evaluation of the
accuracy of current fields from OOFSs and observed prod-
ucts, a user-centric approach based on dispersion and La-
grangian metrics, was employed within an intercomparison
framework. It was demonstrated that the ensemble mean
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yielded more reliable results compared to individual es-
timates (Drévillon et al., 2013). A similar approach was
also adopted to identify the crash area for the March 2014
Malaysia Airlines flight MH370 in the Indian Ocean (Griffin
and Oke, 2017; Durgadoo et al., 2021).

2.2 Intercomparison: key aspects to be addressed

Intercomparing routinely or during specific phases OOFSs
and their products is now common practice in operational
centres. However, various aspects need to be reiterated and
addressed:

— Common validation/verification methodology needs to
be adopted by all participants, preferably adopting rec-
ommendations, as reiterated in this report (Sotillo et al.,
2025).

— Interoperability, shareability of products and common
standards are key: the large number of products offered
by the different centres cannot be spread in every single
centre. The FAIR principles of best practice are essen-
tial.

— Representativity is a central aspect of intercomparison:
scales and ocean processes represented in each prod-
uct (observations and models) need to be correctly doc-
umented to reduce mis-interpretation when intercom-
pared. In particular, the following points should be
noted.

— Re-gridding by downscaling or upscaling ocean
products toward a common grid might generate er-
rors and not conservative effects of ocean dynam-
ics.

— Comparing ocean re-gridded products with re-
gridded observations containing different ocean
scales might create double penalty scores.

— Due to operational oceanography growing activity,
it is worth remembering that an increasing number
of products are available for each EOV, for each
area. The Copernicus Marine Environment Moni-
toring Service (CMEMS) Data Store is a good il-
lustration of this, with a large number of products
derived from models or from space or in situ obser-
vations for a given EOV. This reinforces the impor-
tance of an a priori assessment of the representativ-
ity of each product before any intercomparison.

— Intercomparison is a first path toward ocean state esti-
mation from various sources and products: it is promis-
ing to use novel approaches based on data mining, con-
sensus clustering, machine learning, and other tools de-
veloped in the frame of ensemble estimation and fore-
cast (e.g. Sonnewald et al., 2021).
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— User-oriented metrics and process-oriented metrics are
increasingly being implemented in operational centres.
They are also new insight for establishing the perfor-
mance of intercompared OOFSs into the user-oriented
framework.

3 Ongoing ocean models and forecasting systems
intercomparison activities

3.1 Class 4 metrics: model intercomparison in the
observation space for verification forecast

Ocean observations provide an accurate estimation of the
“ocean truth”. However, the Global Ocean Observing System
(GOOS) provides a sparse representation over time of three-
dimensional ocean dynamics. Their quantity and quality have
increased substantially with permanent mooring and pro-
grammes such as Argo and the Global Drifter Program, to-
gether with satellite measurements (e.g. Tanhua et al., 2019).
The GOOS is providing these recent years a valuable repre-
sentation of the large-scale dynamics and some aliased rep-
resentation of the ocean fine scales where measurements are
performed. This led to the evaluation of OOFS performance
by direct comparison with observations and to the definition
of the Class 4 metrics detailed in Sotillo et al. (2025).

In summary, Class 4 metrics aims to compare observa-
tions with the equivalent model forecast at the same time
and place, for different lead times (Hernandez et al., 2015a).
Thus, these metrics, for different kinds of ocean variables,
characterize the performance of a given OOFS against ob-
servations in the observation space. One of the advantages
of using the observations as the reference frame is that other
OOFSs can similarly be compared to the same data, in the
same manner. Hence Class 4 metrics have been used since
the beginning when comparing several OOFSs and their per-
formance with the same “truth” (Hernandez et al., 2015a).
When the observations are not assimilated by the OOFS, one
can get a fully independent error assessment that can be sta-
tistically representative of the overall quality of the OOFS.
Otherwise, one can consider that the overall error level is un-
derestimated. However, this still provides an objective mea-
sure of the actual gap between the OOFS estimate and the
“ocean truth” at the exact location and time of the observa-
tion used as reference.

Within GODAE OceanView, the Class 4 intercomparison
project has been operating since 2013. A first set of intercom-
parison of six global OOFSs (Ryan et al., 2015) was an op-
portunity to present new metrics (radar plot, Taylor diagrams,
best system mapping, bar charts, rank histograms, etc.). The
same Class 4 information was also used with more specific
metrics around Australia (Divakaran et al., 2015), with the
objective of the Australian Bureau of Meteorology to iden-
tify a path of improvements for its own OOFS. This was
also a first demonstration of one of the benefits of such inter-
comparison: the in-house routine validation in Australia took
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advantage of the internationally shared and compared multi-
system Class 4 information to enhance its own daily basis
verification procedures. The Class 4 intercomparison is still
routinely performed (Fig. 1) and is continuously extended. A
recent intercomparison based on Class 4 for surface velocity
using drifters by Aijaz et al. (2023) offers an additional eval-
uation of OOFS surface dynamics performance, key for ap-
plications like search and rescue, marine pollution forecasts,
and many other drift-dependent applications.

Another issue of Class 4 comparison to observations was
the routine evaluation of the overall quality of the GOOS.
Performing comparisons with observations of several OOFSs
also gives more confidence in identifying observation out-
liers and incorrect measurements: a feedback procedure was
proposed to inform data centres that could carry out a sec-
ond loop of data corrections, for the benefit of all data users
(Hernandez et al., 2015b). This approach is now considered
in the frame of the recent project SYNOBS endorsed by the
United Nations Ocean Decade programme (Fujii et al., 2019,
2024). SYNOBS aims at evaluating the best combinations of
ocean-observing platforms through observing system design
carried out by different operational centres (e.g. Balmaseda
et al., 2024a). The existing intercomparison framework will
allow faster common assessment among the different con-
tributors.

Mentioned above, comparison to observations raises the
key issue of representativity, both from the observation and
the modelling side. And subsequently, double penalty effects
must be taken into account when measuring the skill of a
given product for given scales or ocean regimes. It is neces-
sary to carefully address the following questions: what are
the scales sampled by a given observing system? What are
the effective scales and ocean processes represented by a
given OOFS? What ocean processes do they represent? The
classical example is comparison of satellite altimetry and/or
tide gauge observations with the sea surface height given by
an OOFS: if the latter does not represent the tidal dynam-
ics, obviously, observations need to be pre-processed to filter
out tidal signals. This is the reason that the concept of “inter-
nal” metrics, aiming to measure the efficiency of the OOFS
at the expected scales, was distinguished from the concept
of “external” metrics, where operational products’ reliability
and fitness for purpose need to be assessed in the light of the
user’s requirements (Hernandez et al., 2018) and taken into
account while performing intercomparisons. In addition, par-
ticular attention needs to be given to the representativity and
uncertainty of observations. It is mandatory to take them into
account while comparing several OOFSs with observations,
in particular when referring to re-processed/re-gridded obser-
vation products (also called Level 4 or L4 type of observed
products).
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3.2 Ensemble forecast comparison: assessment
through ensemble mean, ensemble spread and
clusters

The atmospheric community developed ensemble forecasts,
first to represent uncertainties of seasonal predictions consid-
ering the stochastic behaviour of atmospheric simulations.
This was done using an individual forecasting system, by
running a series of deterministic forecasts in parallel where
some initial or forcing conditions were stochastically modi-
fied between members. The purpose of performing the inter-
comparison of the forecast members was to (1) identify com-
mon patterns from the probability distribution for eventually
defining clusters, (2) compute probabilistic occurrences of
specific events, and (3) use the ensemble spread as a proxy
for forecast skill and performance assessment and try to
separate outliers. The associated verification framework has
been largely documented (e.g. Casati et al., 2008) and de-
fined for the atmospheric components of the seasonal fore-
cast activities (e.g. Coelho et al., 2019). For the ocean en-
vironment, this approach is currently used by weather pre-
diction centres in charge of marine meteorology forecasting,
i.e. wind and wave forecasts. For instance, the evaluation ex-
ercise performed by the National Oceanic and Atmospheric
Administration (NOAA) National Centers for Environmen-
tal Prediction (NCEP), evaluating ensemble and determinis-
tic forecasts, concluded, among other results, that the ensem-
ble wave skill score at day 10 outperformed the deterministic
one at day 7 (Campos et al., 2018). Another example is the
recent intercomparison of seasonal ensemble forecasts from
two centres contributing to the Copernicus Climate Change
Service (C3S), which quantified their respective skill on sea
surface height, ocean heat content and sea surface tempera-
ture (Balmaseda et al., 2024b).

At this stage, unlike weather prediction centres, ensemble
forecasting from individual systems is not generalized in op-
erational oceanography, although dedicated experiments are
carried out in many areas (e.g. Pinardi et al., 2011; Schiller
et al., 2020). And through specific data assimilation methods
like the ensemble Kalman filter (Evensen, 2003), several cen-
tres are producing ensemble forecasts routinely (e.g. Lis®ter
et al., 2003; Keppenne et al., 2008; Seo et al., 2009). How-
ever, a large community effort dedicated to intercomparisons
of ensemble forecasts produced by different centres has not
yet been achieved.

Here we propose to illustrate ensemble approach bene-
fits with a multi-system intercomparison as proposed by the
CLIVAR/GSOP initiative (mentioned above) and the Ocean
Reanalysis Intercomparison Project (ORA-IP) (detailed in
Sect. 3.4 below and also discussed by Storto et al., (2019)).
Figure 2 illustrates the assessment of a commonly used indi-
cator for the so-called “Atlantic Nifio” regimes in the tropical
Atlantic, associated with the “Atlantic zonal mode” and tar-
geting the equatorial cold tongue that develops in the Gulf
of Guinea from April to July (Valles-Casanova et al., 2020).
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Figure 1. Operational centres and countries involved in a common intercomparison international framework during the last 20 years. Circles
indicate their size and numbers the products/locations participating in the ORA-IP (Balmaseda et al., 2015). Green circles for ORA-IP only
and red circles for centres that are contributing in addition to the Class 4 routine intercomparison (Hernandez et al., 2015a). Red stars indicate
centres solely participating in the Class 4 intercomparison. Countries in pink, yellow and orange contribute, respectively, to Class 4, ORA-IP

and both exercises.

All products —observation-derived-only and reanalysis esti-
mates (see Balmaseda et al., 2015, for products’ details) —
give a consistent representation of the seasonal and interan-
nual variability, from which an interannual trend can be de-
duced over the 1980-2024 period (ensemble-average trend in
Fig. 2¢ of 0.02 °C per year). The ensemble average is com-
puted like the multi-product-mean in Uotila et al. (2018) and
without ARMORS3D, the observation-derived-only product
used as “ground truth” (Guinehut et al., 2012), and without
the GREP reanalysis, already an ensemble average of var-
ious reanalyses (Masina et al., 2015). Figure 2b shows the
time series of the so-called SST (sea surface temperature) in-
dex: the box-averaged temperature anomalies relative to the
annual climatology (computed with the ensemble average).
All products exhibit the same interannual patterns, although
some discrepancies are observed at intra-seasonal timescales.
This is reflected by the small differences in the standard de-
viations computed for each time series over the denser pe-
riod (1993-2023). A more precise view of the differences of
each product’s SST index with the ensemble average is given
by Fig. 2a, quantified by their respective root-mean-square
differences. Before 1993, the ensemble average is computed
only with the ERAS reanalysis and the OSTIA-observation-
derived-only product, covering this period. Consequently,
Fig. 2a exhibits a large discrepancy of these two products
with respect to the ensemble average. The 1993-2023 period
is chosen to assess the relative merit of each product, quan-
tified using the ARMORS3D observation-derived-only prod-
uct, not included in the ensemble-average computation in the
Taylor diagram (Fig. 2d). First, one can see very large differ-
ences with OSTIA, the other observation-derived-only prod-
uct, suggesting that the impact of their respective representa-
tivity of SST in the ATL3 box and possibly mapping/obser-
vation errors should be investigated further. The lesson here
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is that the “ground truth” also presents subjective drawbacks
that need to be taken into account while measuring the rel-
ative merit in this multi-product ensemble assessment. The
Taylor diagram reflects the very close performances of all
products altogether in a cluster. The ensemble average per-
forms better than individual reanalyses. The GREP multi-
reanalyses product presents also good performances in repre-
senting the ATL3 index relatively to ARMOR3D. This con-
firms previous findings (e.g. Masina et al., 2015; Uotila et al.,
2018; Storto et al., 2019) showing the “bias-reduction” bene-
fits of ensemble averaging. In practice, the ensemble average
provides a valuable estimate of the decadal SST trend in the
ATL3 box. The ensemble-average estimate is also useful in
identifying outliers.

Note that in recent methodologies, ensemble forecast com-
parison is performed using “ensemble clustering”, also called
“consensus clustering”, which aims at producing a synthe-
sis among an identified cluster from a given dataset (e.g.
Hakobyan, 2010). The construction of the clusters from the
initial dataset (here the different members of the ensemble
forecast) can use many criteria. In the frame of GODAE
OceanView, the Class 1 metrics were designed to compare
OOFS variables on specific model grids and layers in simi-
lar ways (Hernandez et al., 2015b). In the Class 1 approach,
OOFS outputs are re-gridded and resampled in a common
grid and time frame (e.g. daily 2D model fields) and com-
pared to a common reference (e.g. a regular L4 mapping of
sea surface temperature from satellite retrievals). In this in-
tercomparison, Class 1 files from various global OOFSs were
used to compare and evaluate the quality of the ensemble
mean; the weighted ensemble mean; and the k-mean clus-
tering algorithm mean (Hartigan and Wong, 1979), which
proved to be the more accurate (Hernandez et al., 2015b).
Consensus clustering is now used for machine learning, and
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this might be one of the next stages associated with model
products’ intercomparison and ocean state estimation in the
near future.

3.3 Regional forecast intercomparison and nesting
strategy evaluation

Over recent years, the validation methodology proposed by
the GODAE global ocean community has been adopted by
many operational regional centres (some examples are given
by Hernandez et al., 2015b), in particular because the coastal
community started to relate inside GODAE OceanView with
the IVTT. Specific assessments also started to be carried out,
like assessing the behaviour of the ocean under tropical cy-
clone conditions using several OOFSs and ad hoc metrics
(Zhu et al., 2016) or predicting the beaching of Sargassum in
the Caribbean using global and regional OOFSs (Cailleau et
al., 2024).

On a regional basis, specific systematic multi-product val-
idation tools are gradually developed (e.g. Lorente et al.,
2016, 2019). These tools, operated by a given operational
centre, are efficient essentially if an inter-operable data server
policy is implemented among the operational ocean commu-
nity, in order to allow the real-time intercomparison of differ-
ent sources of products. In parallel, regional and coastal sys-
tem evaluation relies on specific local observing systems, like
high-frequency (HF) radar, offering an “ocean truth”, repre-
senting the ocean dynamics at higher resolution (Kourafalou
et al., 2015), which cannot be represented by global OOFSs.

However, it is worth noting that comprehensive multi-
product operational intercomparison is not common at re-
gional scales. Unlike global OOFSs, there are rarely many
fine-scale regional OOFSs that overlap in a given coastal re-
gion, even along the well-covered European marginal seas
(Capet et al., 2020). And conducting a regional intercompar-
ison gathering essentially global OOFSs would provide little
information compared with the global intercomparison ini-
tiatives already underway.

But there is an increasing number of operational centres, or
programmes like the CMEMS, that operate both regional and
global systems over the same area and that have started to in-
tercompare their different systems. For instance, two OOFSs
of the same kind, Mercator and MFS (Mediterranean Fore-
casting System), are compared in the western Mediterranean
basin, and their respective strengths and weaknesses are eval-
uated over specific subdomains (Juza et al., 2015). The ben-
efit of improving the resolution of a regional OOFS is mea-
sured by comparing the coarse and fine grid systems using
the same metrics (Crocker et al., 2020). In the CMEMS, most
regional systems are nested into the global system. Hence, in-
tercomparison between “parent” and “child” systems started
to arise with the objective of measuring the benefit and added
value for users of proposed regional and coastal products (De
Mey et al., 2009). Several overlapping regional systems in
the CMEMS can be compared to the global solution (Juza et
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al., 2016; Lorente et al., 2019). Examples can also be given
for the Canadian Arctic and North Atlantic regional OOFS
(Dupont et al., 2015), the US East Coast OOFS and reanal-
yses (Wilkin et al., 2022), and the Australian global and re-
gional OOFS evaluations that focus on specific case stud-
ies and applications: disaster/search and rescue, defence/a-
coustic, and sea level/coastal management (Schiller et al.,
2020). Some of these intercomparisons compare the regional
OOFS of interest with several global products in order to
measures both the local and global forecast skill, consider-
ing fine scales. In this case, using similar metrics, typically
Class 4, for evaluating all these systems brings a series of
questions. Which are the scales represented by the child sys-
tem that is lacking in the parent system or in the observa-
tions? What is the impact of the different kind of forcings and
different kind of assimilated dataset? How do errors propa-
gate from the global to the nested system and degrade the
expected seamless transition from the open ocean to coastal
dynamics? How are specific ocean processes of interest rep-
resented in different systems? How reliable are they for end
users’ needs in different systems?

3.4 Evaluating retrospective views of the ocean
dynamics: dedicated ocean reanalyses
intercomparison project and ways to improve
intercomparison methodologies

Past numerical simulations and ocean reanalyses were natu-
rally the first step built in academia to study ocean processes
over long periods, with the support of the increasing num-
ber of ocean observations over time and the improvement of
assimilation techniques. Evaluation of such reanalysis repre-
senting decades of ocean behaviour through comprehensive
intercomparison projects requires considerable resources and
preparation. Most are conducted outside of routine opera-
tions by forecasting centres. They represent a milestone in
progress in the field, from the point of view of both the eval-
uation of the system/reanalysis itself and the new validation
methodologies that have been tested and implemented.

In the direct line of the GSOP project, the Ocean Reanaly-
sis Intercomparison Project (ORA-IP) brought together more
than 20 operational centres in order to intercompare more
than 25 products (including observed products) spanning 20
to 50 years and focusing on eight EOVs — ocean heat content,
steric height, sea level, surface heat fluxes, mixed layer depth,
salinity, depth of the 20 °C isotherm and sea ice (Fig. 1). One
of the objectives was to infer a new ocean state estimation
of the global ocean, trying to reduce the so-called structural
uncertainty, i.e. the uncertainty associated with the state esti-
mation methodology, which cannot be sampled with a single
system. Uncertainty is sensitive to the temporal variations of
the observing system and to the errors of the ocean model,
atmospheric fluxes and assimilation system, which are of-
ten flow-dependent and not easy to estimate. Following the
Class 1 metrics approach, the ORA-IP is based on common
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Figure 2. (a)—(c) Time series from 1980 to 2024 of SST products, monthly and spatially averaged into the ATL3 box located in the eastern
equatorial band [20° W—0°E, 2.5°S-2.5°N] of the tropical Atlantic. (a) Differences relative to the ensemble average (root-mean-square
differences (RMSDs) indicated in the legend). (b) The ATL3 index computed as anomalies relative to the climatology mean (standard
deviations indicated in the legend). (¢) The time series of box-averaged SST in the ATL3 box. (d) The associated Taylor diagram of the ATL3
index, using the ARMOR3D product as a reference. Statistics of root-mean-square differences, correlation with ARMOR3D and standard
deviations for each product are given in the legend. All products were extracted from the Copernicus Marine Data Store and Climate Data

Store.

grid re-interpolated products and monthly averages that were
compared similarly over the 1993-2010 period under the re-
sponsibility of a leading expert for each of the eight EOVs.
Results highlighted impacts of model resolution, components
of the observing system assimilated, complexity of the ocean
models and the data assimilation scheme, and quality of ex-
ternal forcing (Palmer et al., 2015; Shi et al., 2015; Storto
et al., 2015; Toyoda et al., 2015a, b; Valdivieso et al., 2015;
Chevallier et al., 2016).

New independent metrics were tested and used to evalu-
ate each product and also the ensemble mean. The ensemble
spread was identified as a measure of uncertainty. Follow-
ing Storto et al. (2019), ocean reanalyses offer state-of-the-
art representation of the past and present state of the global
and regional oceans. Their accuracy depends on many fac-
tors, one of the most important being the observations avail-
able and the constraints they provide. Intercomparison helps
in identifying the impact of their absence in the past and de-
fines where they are most crucial in the quality of present
and future reanalyses. And consequently, suggestions for im-
provements of the GOOS are provided.

Figure 2 shows that multi-product intercomparisons al-
low key indicator of the ocean environment changes to be
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inferred together with estimates of their uncertainties. Be-
yond reanalyses assessment based on EOVs, the next stage
of ocean reanalyses intercomparison should first target key
ocean processes that affect the climate system, identify their
past occurrences, and better unravel their mechanisms and
interactions, in order to estimate their present and future im-
pacts. Machine learning approaches are expected to explore
ocean variability in a multi-system framework more system-
atically and disentangle ocean key mechanisms for further
identification in ocean simulations (e.g. Ahmad, 2019; Son-
newald et al., 2021; Salman, 2023). In particular, in ESM
simulations, initial conditions are crucial: more realistic clus-
ters of ocean reanalyses with better characterization of their
errors and limitations (with or without the support of artifi-
cial intelligence) would ensure more reliable global and re-
gional climate projections and associated skill assessment.
Following this framework, ocean reanalyses intercomparison
initiatives should also target end users’ applications and so-
cietal impacts and identify requirements in terms of OOFS
resolution, frequency and complexity, together with adequate
observing systems, able to provide reliable and useful an-
swers. Emerging international panels like the OceanPredic-
tion Decade Collaborative Centre should help in providing

https://doi.org/10.5194/sp-5-opsr-17-2025



F. Hernandez et al.: Intercomparison for ocean forecasting

intercomparison standards and recommendations from the
user’s point of view (Ciliberti et al., 2023). As already com-
mented above, large and comprehensive multi-reanalyses
intercomparisons are demanding and bring technical chal-
lenges in terms of storage, access, distribution and shareabil-
ity. Cloud computing, ad hoc data mining technics and other
artificial intelligence approaches will be needed to obtain
valuable outcomes from the increasing number of available
numerical ocean products resolving finer scales over longer
periods.

3.5 A perspective of ocean reanalyses intercomparison:
ocean state monitoring

An important outcome of the ORA-IP has been the devel-
opment of the Real Time Multiple Ocean Reanalysis Inter-
comparison, carried out routinely every month by NOAA/N-
CEP, whose main objective is to gather operational hind-
casts in order to perform ocean state monitoring (OSM)
over the tropical Pacific, inferring the state of the ocean by
computing the ensemble mean and identifying robust pat-
terns using the ensemble spread (Xue et al., 2017). Note
that OSM has growing importance in operational oceanog-
raphy: through key EOVs it offers an assessment of the evo-
lution of the ocean component as part of the real-time cli-
mate system evolution. Validation performed in the frame
of OSM also provides a level of uncertainty for seasonal
forecasts performed every month by many centres nowa-
days. OSM activity brought the CMEMS into routine cal-
culation of Ocean Monitoring Indicators (OMIs), whose re-
liability and uncertainty are estimated through intercom-
parison of multiple products. Using OMIs, in 2018 the
CMEMS started to produce the Ocean State Report (von
Schuckmann et al., 2018) on an annual basis, now on
its eighth edition (https://marine.copernicus.eu/access-data/
ocean-state-report, last access: 29 January 2025).

Data availability. Ocean products used to produce Fig. 2 were
downloaded in November 2024 from the Copernicus Marine Data
Store and Climate Data Store (https://marine.copernicus.eu/ and
https://climate.copernicus.eu/, last access: 29 January 2025).

— ERAS: https://doi.org/10.24381/cds.f17050d7 (Hersbach et
al., 2023).

— OSTIA:  https://doi.org/10.48670/moi-00165
2023a; Good et al., 2020).

— GLORYSI12V1: https://doi.org/10.48670/moi-00021
(CMEMS, 2023b; Lellouche et al., 2021).

— ARMOR3D: https://doi.org/10.48670/moi-00052 (CMEMS,
2024a; Guinehut et al., 2012).

- GLO12V4 and PSY4QV3RI1: https://doi.org/10.48670/
moi-00016 (CMEMS, 2024b; Lellouche et al., 2018).

— GREP and FOAM/GloSea and C-GLORS and ORAS5 and
GLORYS2V4: https://doi.org/10.48670/moi-00024 (CMEMS,
2024c; Masina et al., 2015).

(CMEMS,
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Figures 1 and 2 are produced using Python 3.6 Matplotlib modules.
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