Articles | Volume 2-oae2023
https://doi.org/10.5194/sp-2-oae2023-12-2023
https://doi.org/10.5194/sp-2-oae2023-12-2023
27 Nov 2023
 | OAE Guide 2023 | Chapter 12
 | 27 Nov 2023 | OAE Guide 2023 | Chapter 12

Monitoring, reporting, and verification for ocean alkalinity enhancement

David T. Ho, Laurent Bopp, Jaime B. Palter, Matthew C. Long, Philip W. Boyd, Griet Neukermans, and Lennart T. Bach

Related authors

Impulse response functions as a framework for quantifying ocean-based carbon dioxide removal
Elizabeth Yankovsky, Mengyang Zhou, Michael Tyka, Scott Bachman, David Ho, Alicia Karspeck, and Matthew Long
EGUsphere, https://doi.org/10.5194/egusphere-2024-2697,https://doi.org/10.5194/egusphere-2024-2697, 2024
Short summary
Air–sea gas exchange in a seagrass ecosystem – results from a 3He ∕ SF6 tracer release experiment
Ryo Dobashi and David T. Ho
Biogeosciences, 20, 1075–1087, https://doi.org/10.5194/bg-20-1075-2023,https://doi.org/10.5194/bg-20-1075-2023, 2023
Short summary
Dissolved carbon biogeochemistry and export in mangrove-dominated rivers of the Florida Everglades
David T. Ho, Sara Ferrón, Victor C. Engel, William T. Anderson, Peter K. Swart, René M. Price, and Leticia Barbero
Biogeosciences, 14, 2543–2559, https://doi.org/10.5194/bg-14-2543-2017,https://doi.org/10.5194/bg-14-2543-2017, 2017
Short summary
Contribution of dissolved organic matter to submicron water-soluble organic aerosols in the marine boundary layer over the eastern equatorial Pacific
Yuzo Miyazaki, Sean Coburn, Kaori Ono, David T. Ho, R. Bradley Pierce, Kimitaka Kawamura, and Rainer Volkamer
Atmos. Chem. Phys., 16, 7695–7707, https://doi.org/10.5194/acp-16-7695-2016,https://doi.org/10.5194/acp-16-7695-2016, 2016
Short summary

Cited articles

Andersson, A. J., Krug, L. A., Bates, N. R., and Doney, S. C.: Sea–air CO2 flux in the North Atlantic subtropical gyre: Role and influence of Sub-Tropical Mode Water formation, Deep-Sea Res. II, 91, 57–70, https://doi.org/10.1016/j.dsr2.2013.02.022, 2013. 
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep-Sea Res. II, 49, 219–236, https://doi.org/10.1016/S0967-0645(01)00101-1, 2001. 
Bach, L. T.: The additionality problem of Ocean Alkalinity Enhancement, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2023-122, in review, 2023. 
Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S., and Renforth, P.: CO2 Removal with Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems, Frontiers in Climate, 1, 7, https://doi.org/10.3389/fclim.2019.00007, 2019.​​​​​​​ 
Bach, L. T., Ho, D. T., Boyd, P. W., and Tyka, M. D.: Toward a consensus framework to evaluate air–sea CO2 equilibration for marine CO2 removal, Limnol. Oceanogr. Lett., 8, 685–798, https://doi.org/10.1002/lol2.10330, 2023. 
Download
Short summary
Monitoring, reporting, and verification (MRV) refers to the multistep process to quantify the amount of carbon dioxide removed by a carbon dioxide removal (CDR) activity. Here, we make recommendations for MRV for Ocean Alkalinity Enhancement (OAE) research, arguing that it has an obligation for comprehensiveness, reproducibility, and transparency, as it may become the foundation for assessing large-scale deployment. Both observations and numerical simulations will be needed for MRV.
Altmetrics
Final-revised paper
Preprint