Articles | Volume 5-opsr
https://doi.org/10.5194/sp-5-opsr-24-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-5-opsr-24-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Distributed environments for ocean forecasting: the role of cloud computing
Stefania Ciliberti
CORRESPONDING AUTHOR
Nologin Oceanic Weather Systems, Santiago de Compostela, Spain
Gianpaolo Coro
Istituto di Scienza e Tecnologie dell'Informazione “Alessandro Faedo”, Area della Ricerca CNR di Pisa, Pisa, Italy
Related authors
Liying Wan, Marcos Garcia Sotillo, Mike Bell, Yann Drillet, Roland Aznar, and Stefania Ciliberti
State Planet, 5-opsr, 15, https://doi.org/10.5194/sp-5-opsr-15-2025, https://doi.org/10.5194/sp-5-opsr-15-2025, 2025
Short summary
Short summary
Operating the ocean value chain requires the implementation of steps that must work systematically and automatically to generate ocean predictions and deliver this information. The paper illustrates the main challenges foreseen by operational chains in integrating complex numerical frameworks from the global to coastal scale and discusses existing tools that facilitate orchestration, including examples of existing systems and their capacity to provide high-quality and timely ocean forecasts.
Jennifer Veitch, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Mauro Cirano, Emanuela Clementi, Fraser Davidson, Ghada el Serafy, Guilherme Franz, Patrick Hogan, Sudheer Joseph, Svitlana Liubartseva, Yasumasa Miyazawa, Heather Regan, and Katerina Spanoudaki
State Planet, 5-opsr, 6, https://doi.org/10.5194/sp-5-opsr-6-2025, https://doi.org/10.5194/sp-5-opsr-6-2025, 2025
Short summary
Short summary
Ocean forecast systems provide information about a future state of the ocean. This information is provided in the form of decision support tools, or downstream applications, that can be accessed by various stakeholders to support livelihoods, coastal resilience and the good governance of the marine environment. This paper provides an overview of the various downstream applications of ocean forecast systems that are utilized around the world.
Mauro Cirano, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Emanuela Clementi, Boris Dewitte, Matias Dinápoli, Ghada El Serafy, Patrick Hogan, Sudheer Joseph, Yasumasa Miyazawa, Ivonne Montes, Diego A. Narvaez, Heather Regan, Claudia G. Simionato, Gregory C. Smith, Joanna Staneva, Clemente A. S. Tanajura, Pramod Thupaki, Claudia Urbano-Latorre, and Jennifer Veitch
State Planet, 5-opsr, 5, https://doi.org/10.5194/sp-5-opsr-5-2025, https://doi.org/10.5194/sp-5-opsr-5-2025, 2025
Short summary
Short summary
Operational ocean forecasting systems (OOFSs) are crucial for human activities, environmental monitoring, and policymaking. An assessment across eight key regions highlights strengths and gaps, particularly in coastal and biogeochemical forecasting. AI offers improvements, but collaboration, knowledge sharing, and initiatives like the OceanPrediction Decade Collaborative Centre (DCC) are key to enhancing accuracy, accessibility, and global forecasting capabilities.
Yann Drillet, Matthew Martin, Yosuke Fujii, Eric Chassignet, and Stefania Ciliberti
State Planet, 5-opsr, 2, https://doi.org/10.5194/sp-5-opsr-2-2025, https://doi.org/10.5194/sp-5-opsr-2-2025, 2025
Short summary
Short summary
This article describes the various stages of research and development that have been carried out over the last few decades to produce an operational reference service for global ocean monitoring and forecasting.
Michael J. Bell, Andreas Schiller, and Stefania Ciliberti
State Planet, 5-opsr, 10, https://doi.org/10.5194/sp-5-opsr-10-2025, https://doi.org/10.5194/sp-5-opsr-10-2025, 2025
Short summary
Short summary
We provide an introduction to physical ocean models, at elementary and intermediate levels, describing the properties they represent, the principles and equations they use to evolve these properties, the physical phenomena they simulate, and the wider context and prospects for their further development. We also outline, at a more technical level, the methods and approximations that they use and the difficulties that limit their accuracy or reliability.
Manuel García-León, José María García-Valdecasas, Lotfi Aouf, Alice Dalphinet, Juan Asensio, Stefania Angela Ciliberti, Breogán Gómez, Víctor Aquino, Roland Aznar, and Marcos Sotillo
EGUsphere, https://doi.org/10.5194/egusphere-2025-657, https://doi.org/10.5194/egusphere-2025-657, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Accurate short-term wave forecasts are key for coastal activities. These forecasts rely on wind and currents as forcing, which in this work were both enhanced using neural networks (NNs) trained with satellite and radar data. Tested at three European sites, the NN-corrected winds were 35 % more accurate, and currents also improved. This led to improved IBI wave model predictions of wave height and period by 10 % and 17 %, respectively; even correcting under extreme events.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Giovanni Coppini, Palmalisa Marra, Rita Lecci, Nadia Pinardi, Sergio Cretì, Mario Scalas, Luca Tedesco, Alessandro D'Anca, Leopoldo Fazioli, Antonio Olita, Giuseppe Turrisi, Cosimo Palazzo, Giovanni Aloisio, Sandro Fiore, Antonio Bonaduce, Yogesh Vittal Kumkar, Stefania Angela Ciliberti, Ivan Federico, Gianandrea Mannarini, Paola Agostini, Roberto Bonarelli, Sara Martinelli, Giorgia Verri, Letizia Lusito, Davide Rollo, Arturo Cavallo, Antonio Tumolo, Tony Monacizzo, Marco Spagnulo, Rorberto Sorgente, Andrea Cucco, Giovanni Quattrocchi, Marina Tonani, Massimiliano Drudi, Paola Nassisi, Laura Conte, Laura Panzera, Antonio Navarra, and Giancarlo Negro
Nat. Hazards Earth Syst. Sci., 17, 533–547, https://doi.org/10.5194/nhess-17-533-2017, https://doi.org/10.5194/nhess-17-533-2017, 2017
Short summary
Short summary
SeaConditions aims to support the users by providing the environmental information in due time and with adequate accuracy in the marine and coastal environments, enforcing users' sea situational awareness. SeaConditions consists of a web and mobile application for the provision of meteorological and oceanographic observation and forecasting products. The iOS/Android apps were downloaded by more than 105 000 users and more than 100 000 users have visited the web version (www.sea-conditions.com).
Nadia Pinardi, Vladyslav Lyubartsev, Nicola Cardellicchio, Claudio Caporale, Stefania Ciliberti, Giovanni Coppini, Francesca De Pascalis, Lorenzo Dialti, Ivan Federico, Marco Filippone, Alessandro Grandi, Matteo Guideri, Rita Lecci, Lamberto Lamberti, Giuliano Lorenzetti, Paolo Lusiani, Cosimo Damiano Macripo, Francesco Maicu, Michele Mossa, Diego Tartarini, Francesco Trotta, Georg Umgiesser, and Luca Zaggia
Nat. Hazards Earth Syst. Sci., 16, 2623–2639, https://doi.org/10.5194/nhess-16-2623-2016, https://doi.org/10.5194/nhess-16-2623-2016, 2016
Short summary
Short summary
A multiscale sampling experiment was carried out in the Gulf of Taranto (eastern Mediterranean) providing the first synoptic evidence of the large-scale circulation structure and associated mesoscale variability. The circulation is shown to be dominated by an anticyclonic gyre and upwelling areas at the gyre periphery.
Liying Wan, Marcos Garcia Sotillo, Mike Bell, Yann Drillet, Roland Aznar, and Stefania Ciliberti
State Planet, 5-opsr, 15, https://doi.org/10.5194/sp-5-opsr-15-2025, https://doi.org/10.5194/sp-5-opsr-15-2025, 2025
Short summary
Short summary
Operating the ocean value chain requires the implementation of steps that must work systematically and automatically to generate ocean predictions and deliver this information. The paper illustrates the main challenges foreseen by operational chains in integrating complex numerical frameworks from the global to coastal scale and discusses existing tools that facilitate orchestration, including examples of existing systems and their capacity to provide high-quality and timely ocean forecasts.
Jennifer Veitch, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Mauro Cirano, Emanuela Clementi, Fraser Davidson, Ghada el Serafy, Guilherme Franz, Patrick Hogan, Sudheer Joseph, Svitlana Liubartseva, Yasumasa Miyazawa, Heather Regan, and Katerina Spanoudaki
State Planet, 5-opsr, 6, https://doi.org/10.5194/sp-5-opsr-6-2025, https://doi.org/10.5194/sp-5-opsr-6-2025, 2025
Short summary
Short summary
Ocean forecast systems provide information about a future state of the ocean. This information is provided in the form of decision support tools, or downstream applications, that can be accessed by various stakeholders to support livelihoods, coastal resilience and the good governance of the marine environment. This paper provides an overview of the various downstream applications of ocean forecast systems that are utilized around the world.
Mauro Cirano, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Emanuela Clementi, Boris Dewitte, Matias Dinápoli, Ghada El Serafy, Patrick Hogan, Sudheer Joseph, Yasumasa Miyazawa, Ivonne Montes, Diego A. Narvaez, Heather Regan, Claudia G. Simionato, Gregory C. Smith, Joanna Staneva, Clemente A. S. Tanajura, Pramod Thupaki, Claudia Urbano-Latorre, and Jennifer Veitch
State Planet, 5-opsr, 5, https://doi.org/10.5194/sp-5-opsr-5-2025, https://doi.org/10.5194/sp-5-opsr-5-2025, 2025
Short summary
Short summary
Operational ocean forecasting systems (OOFSs) are crucial for human activities, environmental monitoring, and policymaking. An assessment across eight key regions highlights strengths and gaps, particularly in coastal and biogeochemical forecasting. AI offers improvements, but collaboration, knowledge sharing, and initiatives like the OceanPrediction Decade Collaborative Centre (DCC) are key to enhancing accuracy, accessibility, and global forecasting capabilities.
Yann Drillet, Matthew Martin, Yosuke Fujii, Eric Chassignet, and Stefania Ciliberti
State Planet, 5-opsr, 2, https://doi.org/10.5194/sp-5-opsr-2-2025, https://doi.org/10.5194/sp-5-opsr-2-2025, 2025
Short summary
Short summary
This article describes the various stages of research and development that have been carried out over the last few decades to produce an operational reference service for global ocean monitoring and forecasting.
Michael J. Bell, Andreas Schiller, and Stefania Ciliberti
State Planet, 5-opsr, 10, https://doi.org/10.5194/sp-5-opsr-10-2025, https://doi.org/10.5194/sp-5-opsr-10-2025, 2025
Short summary
Short summary
We provide an introduction to physical ocean models, at elementary and intermediate levels, describing the properties they represent, the principles and equations they use to evolve these properties, the physical phenomena they simulate, and the wider context and prospects for their further development. We also outline, at a more technical level, the methods and approximations that they use and the difficulties that limit their accuracy or reliability.
Manuel García-León, José María García-Valdecasas, Lotfi Aouf, Alice Dalphinet, Juan Asensio, Stefania Angela Ciliberti, Breogán Gómez, Víctor Aquino, Roland Aznar, and Marcos Sotillo
EGUsphere, https://doi.org/10.5194/egusphere-2025-657, https://doi.org/10.5194/egusphere-2025-657, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Accurate short-term wave forecasts are key for coastal activities. These forecasts rely on wind and currents as forcing, which in this work were both enhanced using neural networks (NNs) trained with satellite and radar data. Tested at three European sites, the NN-corrected winds were 35 % more accurate, and currents also improved. This led to improved IBI wave model predictions of wave height and period by 10 % and 17 %, respectively; even correcting under extreme events.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Giovanni Coppini, Palmalisa Marra, Rita Lecci, Nadia Pinardi, Sergio Cretì, Mario Scalas, Luca Tedesco, Alessandro D'Anca, Leopoldo Fazioli, Antonio Olita, Giuseppe Turrisi, Cosimo Palazzo, Giovanni Aloisio, Sandro Fiore, Antonio Bonaduce, Yogesh Vittal Kumkar, Stefania Angela Ciliberti, Ivan Federico, Gianandrea Mannarini, Paola Agostini, Roberto Bonarelli, Sara Martinelli, Giorgia Verri, Letizia Lusito, Davide Rollo, Arturo Cavallo, Antonio Tumolo, Tony Monacizzo, Marco Spagnulo, Rorberto Sorgente, Andrea Cucco, Giovanni Quattrocchi, Marina Tonani, Massimiliano Drudi, Paola Nassisi, Laura Conte, Laura Panzera, Antonio Navarra, and Giancarlo Negro
Nat. Hazards Earth Syst. Sci., 17, 533–547, https://doi.org/10.5194/nhess-17-533-2017, https://doi.org/10.5194/nhess-17-533-2017, 2017
Short summary
Short summary
SeaConditions aims to support the users by providing the environmental information in due time and with adequate accuracy in the marine and coastal environments, enforcing users' sea situational awareness. SeaConditions consists of a web and mobile application for the provision of meteorological and oceanographic observation and forecasting products. The iOS/Android apps were downloaded by more than 105 000 users and more than 100 000 users have visited the web version (www.sea-conditions.com).
Nadia Pinardi, Vladyslav Lyubartsev, Nicola Cardellicchio, Claudio Caporale, Stefania Ciliberti, Giovanni Coppini, Francesca De Pascalis, Lorenzo Dialti, Ivan Federico, Marco Filippone, Alessandro Grandi, Matteo Guideri, Rita Lecci, Lamberto Lamberti, Giuliano Lorenzetti, Paolo Lusiani, Cosimo Damiano Macripo, Francesco Maicu, Michele Mossa, Diego Tartarini, Francesco Trotta, Georg Umgiesser, and Luca Zaggia
Nat. Hazards Earth Syst. Sci., 16, 2623–2639, https://doi.org/10.5194/nhess-16-2623-2016, https://doi.org/10.5194/nhess-16-2623-2016, 2016
Short summary
Short summary
A multiscale sampling experiment was carried out in the Gulf of Taranto (eastern Mediterranean) providing the first synoptic evidence of the large-scale circulation structure and associated mesoscale variability. The circulation is shown to be dominated by an anticyclonic gyre and upwelling areas at the gyre periphery.
Cited articles
Abraham, S., Paul, A. K., Khan, R. I. S., and Butt, A. R.: On the Use of Containers in High Performance Computing Environments, 2020 IEEE 13th International Conference on Cloud Computing (CLOUD), 19–23 October 2020, Beijing, China, https://doi.org/10.1109/CLOUD49709.2020.00048, 2020.
Alvarez Fanjul, E., Ciliberti, S., and Bahurel, P.: Implementing Operational Ocean Monitoring and Forecasting Systems, IOC-UNESCO, GOOS-275, https://doi.org/10.48670/ETOOFS, 2022.
Assante, M., Candela, L., Castelli, D., Cirillo, R., Coro, G., Frosini, L., Lelii, L., Mangiacrapa, F., Pagano, P., Panichi, G., and Sinibaldi, F.: Enacting open science by D4Science, Future Gener. Comp. Sy., 101, 555–563, https://doi.org/10.1016/j.future.2019.05.063, 2019.
Bahurel, P., Adragna, F., Bell, M., Jacq, F., Johannessen, J., Le Traon, P.-Y., Pinardi, N., and She, J.: Ocean Monitoring and Forecasting Core Services, the European MyOcean Example, Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society, 21–25 September 2009, Venice, Italy, https://doi.org/10.5270/OceanObs09.pp.02, 2010.
Benedicic, L., Cruz, F. A., Madonna, A., and Mariotti, K.: Sarus: Highly Scalable Docker Containers for HPC Systems, in: High Performance Computing, ISC High Performance 2019, Lecture Notes in Computer Science, editd by: Weiland, M., Juckeland, G., Alam, S., and Jagode, H., Springer, Cham, vol. 11887, https://doi.org/10.1007/978-3-030-34356-9_5, 2019.
Butler, K. and Merati, N.: Chapter 2 – Analysis patterns for cloud centric atmospheric and ocean research, in: Cloud Computing in Ocean and Atmospheric Sciences, Academic Press, Elsevier, 15–34, https://doi.org/10.1016/B978-0-12-803192-6.00002-5, 2016.
Chellappa, R.: Intermediaries in cloud-computing: A new computing paradigm, INFORMS Dallas 1997, Cluster: Electronic Commerce, Dallas, Texas, 1997.
Chen, G., Yang, J., Huang, B., Ma, C., Tian, F., Ge, L., Xia, L., and Li, J.: Toward digital twin of the ocean: from digitalization to cloning, Intell. Mar. Technol. Syst., 1, 3, https://doi.org/10.1007/s44295-023-00003-2, 2023.
Chung, M. T., Quang-Hung, N., Nguyen, M.-T., and Thoai, N.: Using Docker in high performance computing applications, 2016 IEEE Sixth International Conference on Communications and Electronics (ICCE), 27–29 July 2016, Ha-Long, Vietnam, https://doi.org/10.1109/CCE.2016.7562612, 2016.
Fowler, M.: Analysis Patterns: Reusable Object Models, Object Technology Series, Addison–Wesley Publishing Company, Reading, ISBN 978-0-201-89542-1, 1997.
Gantikow, H., Walter, S., and Reich, C.: Rootless Containers with Podman for HPC, in: High Performance Computing, ISC High Performance 2020, Lecture Notes in Computer Science, edited by: Jagode, H., Anzt, H., Juckeland, G., and Ltaief, H., Springer, Cham, 12321, https://doi.org/10.1007/978-3-030-59851-8_23, 2020.
Geyer-Schulz, A. and Hahsler, M.: Software Engineering with Analysis Patterns, Working Papers on Information Systems, Information Business and Operations, 01/2001, Institut für Informationsverarbeitung und Informationswirtschaft, WU Vienna University of Economics and Business, Vienna, https://doi.org/10.57938/b8d9c0a2-92e7-489f-bec9-b08485ed7c42, 2001.
Heimbach, P., O'Donncha, F., Smith, T., Garcia-Valdecasas, J. M., Arnaud, A., and Wan, L.: Crafting the Future: Machine Learning for Ocean Forecasting, in: Ocean prediction: present status and state of the art (OPSR), edited by: Álvarez Fanjul, E., Ciliberti, S. A., Pearlman, J., Wilmer-Becker, K., and Behera, S., Copernicus Publications, State Planet, 5-opsr, 22, https://doi.org/10.5194/sp-5-opsr-22-2025, 2025.
Hong, J., Dreibholz, T., Schenkel, J. A., and Hu, J. A.: An Overview of Multi-cloud Computing, in: Web, Artificial Intelligence and Network Applications, edited: Barolli, L., Takizawa, M., Xhafa, F., and Enokido, T., WAINA 2019, Advances in Intelligent Systems and Computing, vol. 927, Springer, Cham, https://doi.org/10.1007/978-3-030-15035-8_103, 2019.
Jacobsen, D. M. and Canon, R. S.: Contain This, Unleashing Docker for HPC, Cray User Group 2015, https://www.nersc.gov/assets/Uploads/cug2015udi.pdf (last access: 29 July 2024), 2015.
Kurtzer, G. M., Sochat, V., and Bauer, M. W.: Singularity: Scientific containers for mobility of compute, PLOS ONE, 12, 1–20, https://doi.org/10.1371/journal.pone.0177459, 2017.
Mahmood Z., Puttini, R., and Erl, T.: Cloud Computing: Concepts, Technology & Architecture, 1st edn., Prentice Hall Press, USA, ISBN 9780133387520, 2013.
Mancini, M. and Aloisio, G.: How advanced cloud technologies can impact and change HPC environments for simulation, 2015 International Conference on High Performance Computing & Simulation (HPCS), 20–24 July 2015, Amsterdam, the Netherlands, 667–668, https://doi.org/10.1109/HPCSim.2015.7237116, 2015.
Mell, P. and Grance, T.: The NIST Definition of Cloud Computing, Computing Security Resource Center, NIST Special Publication 800-145, National Institute of Standards and Technology, https://doi.org/10.6028/NIST.SP.800-145, 2011.
Pearlman, J., Bushnell, M., Coppola, L., Karstensen, J., Buttigieg, P. L., Pearlman, F., Simpson, P., Barbier, M., Muller-Karger, F. E., Munoz-Mas, C., Pissierssens, P., Chandler, C., Hermes, J., Heslop, E., Jenkyns, R., Achterberg, E. P., Bensi, M., Bittig, H. C., Blandin, J., Bosch, J., Bourles, B., Bozzano, R., Buck, J. J. H., Burger, E. F., Cano, D., Cardin, V., Llorens, M. C., Cianca, A., Chen, H., Cusack, C., Delory, E., Garello, R., Giovanetti, G., Harscoat, V., Hartman, S., Heitsenrether, R., Jirka, S., Lara-Lopez, A., Lantéri, N., Leadbetter, A., Manzella, G., Maso, J., McCurdy, A., Moussat, E., Ntoumas, M., Pensieri, S., Petihakis, G., Pinardi, N., Pouliquen, S., Przeslawski, R., Roden, N. P., Silke, J., Tamburri, M. N., Tang, H., Tanhua, T., Telszewski, M., Testor, P., Thomas, J., Waldmann, C., and Whoriskey, F.: Evolving and Sustaining Ocean Best Practices and Standards for the Next Decade, Front. Mar. Sci., 6, 277, https://doi.org/10.3389/fmars.2019.00277, 2019.
Priedhorsky, R. and Randles, T.: Charliecloud: Unprivileged Containers for User-Defined Software Stacks in HPC, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis, 12–17 November 2017, Denver, CO, USA, 1–10, https://doi.org/10.1145/3126908.3126925, 2017.
Pushpa, J. and Kalyani, S. A.: Chapter Three – Using fog computing/edge computing to leverage Digital Twin, Advances in Computers, 117, 51–77, https://doi.org/10.1016/bs.adcom.2019.09.003, 2020.
Ramamurthy, M. K.: Data-Proximate Computing, Analytics, and Visualization Using Cloud-Hosted Workflows and Data Services, American Meteorological Society, 98th Annual Meeting, 6–11 January 2018, Austin, USA, https://ams.confex.com/ams/98Annual/webprogram/Paper337167.html (last access: 29 July 2024), 2018.
Vance, T. C., Merati, N., Yang, C., and Yuan, M.: Cloud Computing in Ocean and Atmospheric Sciences, Academic Press, https://doi.org/10.1016/C2014-0-04015-4, 2016.
Vance, T. C., Wengren, M., Burger, E., Hernandez, D., Kearns, T., Medina-Lopez, E., Merati, N., O'Brien, K., O'Neil, J., Potemra, J. T., Signell, R. P., and Wilcox, K.: From the Oceans to the Cloud: Opportunities and Challenges for Data, Models, Computation and Workflows, Front. Mar. Sci., 6, 211, https://doi.org/10.3389/fmars.2019.00211, 2019.
Veitch, J., Alvarez-Fanjul, E., Capet, A., Ciliberti, S., Cirano, M., Clementi, E., Davidson, F., el Sarafy, G., Franz, G., Hogan, P., Joseph, S., Liubartseva, S., Miyazawa, Y., Regan, H., and Spanoudaki, K.: A description of Ocean Forecasting Applications around the Globe, in: Ocean prediction: present status and state of the art (OPSR), edited by: Álvarez Fanjul, E., Ciliberti, S. A., Pearlman, J., Wilmer-Becker, K., and Behera, S., Copernicus Publications, State Planet, 5-opsr, 6, https://doi.org/10.5194/sp-5-opsr-6-2025, 2025.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Bonino da Silva Santos, L., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. S., Groth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Bhaskar, T. V. S. U., Buck, J. J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., André, X., Poffa, N., Yashayaev, I., Barker, P. M., Guinehut, S., Belbéoch, M., Ignaszewski, M., Baringer, M. O. N., Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N., Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P. J. H., Cancouët, R., Coatanoan, C., Dobbler, D., Garcia Juan, A., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourlès, B., Claustre, H., D'Ortenzio, F., Le Reste, S., Le Traon, P.-Y., Rannou, J.-P., Saout-Grit, C., Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G., Poulain, P.-M., Vélez-Belchí, P., Suga, T., Ando, K., Iwasaka, N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., van Wijk, E. M., Carse, F., Donnelly, M., Gould, W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Turton, J., Rama Rao, E. P., Ravichandran, M., Freeland, H. J., Gaboury, I., Gilbert, D., Greenan, B. J. W., Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K. R., Jo, H. J., Kim, S. D., and Park, H. M.: Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats, Front. Mar. Sci., 7, 700, https://doi.org/10.3389/fmars.2020.00700, 2020.
Zhao, Y., Li, Y., Raicu, I., Lu, S., Tian, W., and Liu, H.: Enabling scalable scientific workflow management in the Cloud, Future Gener. Comp. Sy., 46, 3–16, 2015.
Short summary
This review explores how cloud computing technology and its foundational concepts can enhance operational forecasting with scalable, flexible, and measurable resources. It highlights its benefits for the ocean value chain in support of ocean data management, forecasting system infrastructure, data analysis, visualization of ocean forecasts, dissemination, and outreach, showcasing real-world initiatives from the weather and ocean community.
This review explores how cloud computing technology and its foundational concepts can enhance...
Altmetrics
Final-revised paper
Preprint