Articles | Volume 5-opsr
https://doi.org/10.5194/sp-5-opsr-14-2025
https://doi.org/10.5194/sp-5-opsr-14-2025
02 Jun 2025
 | OPSR | Chapter 5.5
 | 02 Jun 2025 | OPSR | Chapter 5.5

Numerical models for monitoring and forecasting sea ice: a short description of present status

Laurent Bertino, Patrick Heimbach, Ed Blockley, and Einar Ólason

Related authors

Data assimilation schemes for ocean forecasting: state of the art
Matthew J. Martin, Ibrahim Hoteit, Laurent Bertino, and Andrew M. Moore
State Planet, 5-opsr, 9, https://doi.org/10.5194/sp-5-opsr-9-2025,https://doi.org/10.5194/sp-5-opsr-9-2025, 2025
Short summary
Reconstruction of Arctic sea ice thickness (1992–2010) based on a hybrid machine learning and data assimilation approach
Léo Edel, Jiping Xie, Anton Korosov, Julien Brajard, and Laurent Bertino
The Cryosphere, 19, 731–752, https://doi.org/10.5194/tc-19-731-2025,https://doi.org/10.5194/tc-19-731-2025, 2025
Short summary
Four-dimensional variational data assimilation with a sea-ice thickness emulator
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Julien Brajard, and Laurent Bertino
EGUsphere, https://doi.org/10.5194/egusphere-2024-4028,https://doi.org/10.5194/egusphere-2024-4028, 2025
Short summary
Data-driven emulation of melt ponds on Arctic sea ice
Simon Driscoll, Alberto Carrassi, Julien Brajard, Laurent Bertino, Einar Ólason, Marc Bocquet, and Amos Lawless
EGUsphere, https://doi.org/10.5194/egusphere-2024-2476,https://doi.org/10.5194/egusphere-2024-2476, 2024
Short summary
Multivariate state and parameter estimation with data assimilation applied to sea-ice models using a Maxwell elasto-brittle rheology
Yumeng Chen, Polly Smith, Alberto Carrassi, Ivo Pasmans, Laurent Bertino, Marc Bocquet, Tobias Sebastian Finn, Pierre Rampal, and Véronique Dansereau
The Cryosphere, 18, 2381–2406, https://doi.org/10.5194/tc-18-2381-2024,https://doi.org/10.5194/tc-18-2381-2024, 2024
Short summary

Cited articles

Arrigo, K. R.: Sea Ice Ecosystems, Annu. Rev. Mar. Sci., 6, 439–467, https://doi.org/10.1146/annurev-marine-010213-135103, 2014. 
Bertino, L. and Holland, M. M.: Coupled ice-ocean modeling and predictions. In The Sea, the Science of Ocean Prediction, Part 2. Special Issue, Journal of Marine Resources, 75, 839–875, https://doi.org/10.1357/002224017823524017, 2017. 
Bigdeli, A., Nguyen, A. T., Pillar, H. R., Ocana, V., and Heimbach, P.: Atmospheric Warming Drives Growth in Arctic Sea Ice: A Key Role for Snow, Geophys. Res. Lett., 47, 5204, https://doi.org/10.1029/2020gl090236, 2020. 
Boutin, G., Williams, T., Horvat, C., and Brodeau, L.: Modelling the Arctic wave-affected marginal ice zone: a comparison with ICESat-2 observations, Philos. T. Roy. Soc. A, 380, 2235, https://doi.org/10.1098/rsta.2021.0262, 2022. 
Download
Short summary
Forecasts of sea ice are in high demand in the polar regions, and they are also quickly improving and becoming more easily accessible to non-experts. We provide here a brief status of the short-term forecasting services – typically 10 d ahead – and an outlook of their upcoming developments.
Share
Altmetrics
Final-revised paper
Preprint