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Abstract. The severe changes in climate resulting in the polar oceans getting warmer – with drastic conse-
quences to their physical, biogeochemical, and biological state – require forecasting systems that can accurately
simulate and skilfully predict the state of the ice cover and its temporal evolution. Sea-ice processes significantly
impact ocean circulation, water mass formation and modifications, and air–sea fluxes. They comprise vertical
processes, mainly related to thermodynamics, and horizontal ones, due to internal sea-ice mechanics and motion.
We provide an overview on how these processes can be modelled and how operational systems work, in com-
bination with data assimilation techniques, to enhance accuracy and reliability. We also emphasise the need for
advancing research on improving such numerical techniques by highlighting current limits and ways forward.

1 Introduction

The main objective of an operational sea-ice forecasting sys-
tem is to provide users with a reliable estimate of the state
of the ice cover and its temporal evolution. To meet this
goal, the system needs to be coupled to, or use data from,
ocean and atmosphere forecasting systems. Some form of
data assimilation is also required to provide the model with
the best possible starting position, accounting for the chaotic
nature of the atmosphere–ocean–ice system. Users of sea-ice
forecasting systems can either be ship captains operating in
the polar regions or intermediate service providers. With a
changing climate and warming polar oceans, the number of
stakeholders interested in operating in ice-infested waters is
growing.

Sea-ice processes are profoundly important for the ocean
circulation and water mass modifications, so ocean models
of the polar regions are always coupled to a sea-ice model,
both for operational forecasting and climate projection pur-
poses. Sea-ice models have their origin in the climate mod-
elling community in the 1970s and were subsequently part

of the ocean general circulation model. They have since then
evolved to provide sea-ice forecasts in their own right and
have been made modular to avoid being bound to a given
choice of physical ocean model (Blockley et al., 2020). Sea-
ice observations from satellites are assimilated in the pre-
diction systems (Buehner et al., 2017). This chapter gives a
summary of the short-term (up to 10 d) sea-ice forecasting
systems for the polar regions.

2 Overview of processes in sea ice

The physical processes simulated by sea-ice models are com-
monly split into two: vertical processes, related to ther-
modynamic growth and melt, and mechanical and dynam-
ical processes influencing the horizontal movement of ice.
This dynamic–thermodynamic separation has practical ad-
vantages for computations.
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2.1 Thermodynamics

The ocean can freeze in different phases of sea ice, start-
ing with frazil crystals and their conglomerates into a liquid
mush referred to as grease ice, then pancake ice in the pres-
ence of waves, or slush when the waves flood the snow (Wad-
hams, 2000). Slush, grease, pancakes, and ice may sound
like a perfect birthday party, until you realise that there is
also salt in the ice (Feltham et al., 2006; De La Rosa et al.,
2011; Jutras et al., 2016). The latter will be rejected to the
ocean through brine channels but usually after its multi-year
birthday party (e.g. Notz and Worster, 2009). Once a layer
of ice has formed on the surface of the ocean, new ice is
mostly formed from below as crystals moving upward from
the ocean mixed layer affix to the base of the ice in a process
known as “congelation growth”. Sea ice also freezes laterally
within open leads and between ice floes. Snow accumulates
on top of the sea ice and forms an efficient thermal insula-
tor and a white coating that reflects solar radiation back to
the atmosphere. A smaller amount of snow ice comes from
compacted snow above the ice. The insulating effect of snow
inhibits both sea-ice growth in early winter and sea-ice melt
in late winter (Bigdeli et al., 2020).

When summertime approaches, the snow melts first and
forms melt ponds at the surface of the ice. These dark ponds
absorb more solar radiation and enhance the summer melt.

The sea ice itself works as an insulating layer between the
ocean and the atmosphere, with thick ice a better insulator
than thin ice.

2.2 Mechanics

Sea ice deforms under the action of winds and currents. Their
surface drag accumulated over hundreds of kilometres of sea
ice results in formidable forces able to crack open the thick-
est ice or pile it up into pressure ridges, cracks, leads, and
ridges in what are called linear kinematic features of sea
ice. First-year ice (FYI) can become about 1 m thick, while
multi-year ice (MYI) is more often deformed via compres-
sive stresses and can easily reach 2 m or above. The conver-
gence of ice is a major threat to navigation, and only a few
ice-strengthened vessels or icebreakers are designed to with-
stand such forces. The deformation of sea ice has been mea-
sured by drifting buoys and satellite data, and scaling laws
have revealed multi-fractal properties (Weiss and Marsan,
2004) and power law behaviour (Weiss et al., 2009).

Waves formed in the open ocean will often reach the ice
and attenuate within the ice pack, flexing and occasionally
breaking the ice into smaller floes along the way. Smaller
ice floes offer more reflecting edges and are more efficient at
scattering waves. Wave scattering represents a negative feed-
back in the wave–ice interactions, among other nonlinear en-
ergy dissipation processes (Squire, 2020). This equilibrium
results in a wave-broken marginal ice zone (MIZ), which is
typically 100 km wide in the Arctic but can reach 1000 km

in the Southern Ocean where waves are bigger and the ice
is thinner. Sea ice can also be submerged by waves, mak-
ing the surface more saline. Wave-breaking effects enhance
the lateral melting of ice during summer but also enhance its
freezing during winter.

2.3 Biogeochemistry

There is life in sea ice, not only the occasional seal innocently
sunbathing as a polar bear lurks around, but as dense activ-
ity under the sea ice following the growth of red ice algae
(Duarte et al., 2017). The availability of light below the ice
and the size of brine channels determine the growth of algae
and the peculiar ecosystem that depends on them (Arrigo,
2014). The algae will find nutrients in the sea ice; some will
be trapped in the ice during freezing, providing a sheltered
food store for micro-organisms, and then later ejected to the
ocean through brine channels (Lund-Hansen et al., 2024).

Sea ice carries sediments while drifting from the shal-
low shelf seas to the central Arctic, together with nutri-
ents, various biological materials, and occasionally pollu-
tants (Krumpen et al., 2019).

Sea ice acts as a lid preventing the exchange of greenhouse
gases between ocean and atmosphere, but the sea ice also
holds its own carbon pump accounting for 30 % of the carbon
uptake in the Arctic (Richaud et al., 2023).

3 Numerical models

Operational sea-ice models are based on complex commu-
nity codes, simulating the dynamical properties (the constitu-
tive law or rheology) and the thermodynamics of sea ice. The
most widespread rheological model of sea ice is the viscous–
plastic model, often met in the elastic–viscous–plastic (EVP)
form which is more efficient for massively parallel com-
puting. One or the other is implemented in the Community
Ice CodE (CICE), the Sea Ice modeling Integrated Initiative
(SI3), the Louvain-la-Neuve sea Ice Model (LIM), the MIT
general circulation model (MITgcm), and GFDL’s Sea Ice
Simulator (SIS2). The previous models all use an Eulerian
model grid, but a recent code, the next-generation sea-ice
model (neXtSIM), has adopted an adaptive Lagrangian mesh,
along with a more recent brittle Bingham–Maxwell rheology
(Ólason et al., 2022) that exhibits linear features of sea-ice
deformations apparent in Fig. 1. All recent sea-ice models
are multi-category models and thus explicitly simulate an ice
thickness distribution. They also include a sea-ice age tracer
and can thus predict areas of FYI and MYI. Their use in op-
erational forecasts is indicated in Table 1.

The above ocean and sea-ice models are coupled via ad-
vanced software (OASIS, ESMF, CCSM) that make them
modular, but some ocean models come with an integrated
sea-ice model, for example, the NEMO, the MITgcm, the
MOM, the HBM and the FESOM2 codes. The latter is us-
ing finite volume (Danilov et al., 2017).
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Figure 1. Example of sea-ice thickness analysis from the neXtSIM-F (left) system and the assimilated CS2SMOS data; visualisation from
the Copernicus Marine Service (http://marine.copernicus.eu, last access: 24 March 2025).

4 Data assimilation

The most important step to initialise a forecast is to assimi-
late the latest available observations into a numerical model.
Some of the most important observations are available in
near-real time with sea-ice concentration, thickness, and mo-
tions, but feeding them into the model is a delicate matter
(Bertino and Holland, 2017; Buehner et al., 2017). Unob-
served variables and the ocean properties below the ice must
be estimated by multivariate update because of the complex
processes both within the sea ice and between the ice and
ocean. The irregular observational sampling also requires a
flow-dependent spatial interpolation. Operational centres run
numerical models and data assimilation codes on dedicated
high-performance computers (HPCs).

The data assimilation methods in operation are most often
the 3D variational (3DVAR) method (Tonani et al., 2015; Wa-
ters et al., 2015; Mogensen et al., 2012; Hebert et al., 2015;
Smith et al., 2016; Usui et al., 2006), assimilating sea-ice
concentration and more recently sea-ice thickness (Mignac et
al., 2022). The 4DVAR method is not presently used in oper-
ational forecasts but can provide long-term optimised model
trajectories that are fully consistent with the model equations
(Nguyen et al., 2021). The ensemble Kalman filter (EnKF) is
also used in the TOPAZ system to assimilate concentrations,
thickness, and motion vectors (Xie et al., 2017) and has been
tested with neXtSIM (Cheng et al., 2023), although a cheaper
nudging is used operationally (Williams et al., 2021). The
EnKF does not intrude in the model software, and the re-
sulting forecast system is modular. Even though operational
centres use the state of the art with respect to sea-ice data
assimilation, they are still inaccurate in locating the ice edge

(about 40 km at analysis time; Carrières et al., 2017) and even
less accurate in locating the boundary between FYI and MYI
(200 km errors rather than 40 km).

Biases in sea-ice area coverage arise from multiple
sources, primarily from biased ocean and atmospheric
boundary conditions but also from intrinsic biases of the sea-
ice model itself. These biases interact with each other in com-
plex ways (feedback loops or cancellation of errors). Data
assimilation methods rely on unbiasedness assumptions and
do not remove biases entirely, often transferring them to un-
observed variables. Short of a complete observing network,
there are ongoing efforts in improving sea-ice models that
we believe can reduce biases, provided that incoming biases
from new ocean and atmospheric models are also reducing.

With improved observational data coverage, increased
computational power, and improved representation of key
physical processes, rapid improvements in sea-ice mod-
elling and forecasting capabilities are expected in the coming
decade. One research thrust concerns modelling the marginal
ice zone, most notably wave–ice interactions (e.g. Boutin et
al., 2022) and modelling sea ice as individual floes (e.g. Hor-
vat, 2022). A second thrust is improvements in the sea-ice
rheology used for the pack ice (e.g. Ólason et al., 2022). Im-
proved rheology will improve the ice drift and the location of
the boundary between FYI and MYI (e.g. Regan et al., 2023).
Finally, machine learning approaches are flourishing, which
seek to develop fast, surrogate modelling and forecasting ca-
pabilities (e.g. Hoffman et al., 2023; Durand et al., 2024;
Gregory et al., 2024). Sea-ice exists at the boundary between
the atmosphere and ocean, so sea-ice forecasts depend on ac-
curate atmosphere, ocean, and even wave forecasts. Improv-
ing those is, therefore, very important for improving sea-ice

State Planet, 5-opsr, 14, 2025 https://doi.org/10.5194/sp-5-opsr-14-2025
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forecasts. We see fully coupled atmosphere–ocean–wave–ice
models with fully coupled data assimilation as a vital long-
term goal for sea-ice forecasting systems.

Even though every improvement to the atmosphere, ice,
and ocean models is welcome, they require time-consuming
rounds of testing in forced and coupled models. In the mean-
time, post-processing techniques, now aided by machine
learning, are a novelty in sea-ice forecasting (Palerme and
Müller, 2021; Palerme et al., 2024) and reanalysis (Edel et
al., 2025).

Data availability. Data used in Fig. 1 are freely available
at https://doi.org/10.48670/moi-00004 (EU Copernicus Ma-
rine Service Product, 2024a; Williams et al., 2021) and
https://doi.org/10.48670/moi-00125 (EU Copernicus Marine
Service Product, 2024b; Ricker et al., 2017).
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