Articles | Volume 1-osr7
https://doi.org/10.5194/sp-1-osr7-13-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-1-osr7-13-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unusual coccolithophore blooms in Scottish waters
Richard Renshaw
CORRESPONDING AUTHOR
Hadley Centre, Met Office, FitzRoy Road, Exeter EX1 3PB, UK
Eileen Bresnan
Marine Scotland Marine Laboratory, 375 Victoria Rd, Aberdeen AB11 9DB, UK
Susan Kay
Hadley Centre, Met Office, FitzRoy Road, Exeter EX1 3PB, UK
Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK
Robert McEwan
Cefas, Barrack Rd, Weymouth DT4 8UB, UK
Peter I. Miller
Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK
Paul Tett
Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK
Related authors
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc’h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-3143, https://doi.org/10.5194/egusphere-2024-3143, 2024
Short summary
Short summary
We describe major improvements of the Met Office's global ocean-sea ice forecasting system. The models and the way observations are used to improve the forecasts were changed, which led to a significant error reduction of 1-day forecasts. The new system performance in past conditions, where sub-surface observations are scarce, was improved with more consistent ocean heat content estimates. The new system will be of better use for climate studies and will provide improved forecasts for end users.
Jozef Skakala, David Ford, Keith Haines, Amos Lawless, Matthew Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Mike Bell, Davi Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
EGUsphere, https://doi.org/10.5194/egusphere-2024-1737, https://doi.org/10.5194/egusphere-2024-1737, 2024
Short summary
Short summary
In this paper we review marine data assimilation (MDA) in the UK, its stakeholders, needs, past and present developments in different areas of UK MDA, and offer a vision for their longer future. The specific areas covered are ocean physics and sea ice, marine biogeochemistry, coupled MDA, MDA informing observing network design and MDA theory. We also discuss future vision for MDA resources: observations, software, hardware and people skills.
Michael Mayer, Takamasa Tsubouchi, Susanna Winkelbauer, Karin Margretha H. Larsen, Barbara Berx, Andreas Macrander, Doroteaciro Iovino, Steingrímur Jónsson, and Richard Renshaw
State Planet, 1-osr7, 14, https://doi.org/10.5194/sp-1-osr7-14-2023, https://doi.org/10.5194/sp-1-osr7-14-2023, 2023
Short summary
Short summary
This paper compares oceanic fluxes across the Greenland–Scotland Ridge (GSR) from ocean reanalyses to largely independent observational data. Reanalyses tend to underestimate the inflow of warm waters of subtropical Atlantic origin and hence oceanic heat transport across the GSR. Investigation of a strong negative heat transport anomaly around 2018 highlights the interplay of variability on different timescales and the need for long-term monitoring of the GSR to detect forced climate signals.
Jonathan Andrew Baker, Richard Renshaw, Laura Claire Jackson, Clotilde Dubois, Doroteaciro Iovino, Hao Zuo, Renellys C. Perez, Shenfu Dong, Marion Kersalé, Michael Mayer, Johannes Mayer, Sabrina Speich, and Tarron Lamont
State Planet, 1-osr7, 4, https://doi.org/10.5194/sp-1-osr7-4-2023, https://doi.org/10.5194/sp-1-osr7-4-2023, 2023
Short summary
Short summary
We use ocean reanalyses, in which ocean models are combined with observations, to infer past changes in ocean circulation and heat transport in the South Atlantic. Comparing these estimates with other observation-based estimates, we find differences in their trends, variability, and mean heat transport but closer agreement in their mean overturning strength. Ocean reanalyses can help us understand the cause of these differences, which could improve estimates of ocean transports in this region.
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc’h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-3143, https://doi.org/10.5194/egusphere-2024-3143, 2024
Short summary
Short summary
We describe major improvements of the Met Office's global ocean-sea ice forecasting system. The models and the way observations are used to improve the forecasts were changed, which led to a significant error reduction of 1-day forecasts. The new system performance in past conditions, where sub-surface observations are scarce, was improved with more consistent ocean heat content estimates. The new system will be of better use for climate studies and will provide improved forecasts for end users.
Jozef Skakala, David Ford, Keith Haines, Amos Lawless, Matthew Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Mike Bell, Davi Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
EGUsphere, https://doi.org/10.5194/egusphere-2024-1737, https://doi.org/10.5194/egusphere-2024-1737, 2024
Short summary
Short summary
In this paper we review marine data assimilation (MDA) in the UK, its stakeholders, needs, past and present developments in different areas of UK MDA, and offer a vision for their longer future. The specific areas covered are ocean physics and sea ice, marine biogeochemistry, coupled MDA, MDA informing observing network design and MDA theory. We also discuss future vision for MDA resources: observations, software, hardware and people skills.
Michael Mayer, Takamasa Tsubouchi, Susanna Winkelbauer, Karin Margretha H. Larsen, Barbara Berx, Andreas Macrander, Doroteaciro Iovino, Steingrímur Jónsson, and Richard Renshaw
State Planet, 1-osr7, 14, https://doi.org/10.5194/sp-1-osr7-14-2023, https://doi.org/10.5194/sp-1-osr7-14-2023, 2023
Short summary
Short summary
This paper compares oceanic fluxes across the Greenland–Scotland Ridge (GSR) from ocean reanalyses to largely independent observational data. Reanalyses tend to underestimate the inflow of warm waters of subtropical Atlantic origin and hence oceanic heat transport across the GSR. Investigation of a strong negative heat transport anomaly around 2018 highlights the interplay of variability on different timescales and the need for long-term monitoring of the GSR to detect forced climate signals.
Jonathan Andrew Baker, Richard Renshaw, Laura Claire Jackson, Clotilde Dubois, Doroteaciro Iovino, Hao Zuo, Renellys C. Perez, Shenfu Dong, Marion Kersalé, Michael Mayer, Johannes Mayer, Sabrina Speich, and Tarron Lamont
State Planet, 1-osr7, 4, https://doi.org/10.5194/sp-1-osr7-4-2023, https://doi.org/10.5194/sp-1-osr7-4-2023, 2023
Short summary
Short summary
We use ocean reanalyses, in which ocean models are combined with observations, to infer past changes in ocean circulation and heat transport in the South Atlantic. Comparing these estimates with other observation-based estimates, we find differences in their trends, variability, and mean heat transport but closer agreement in their mean overturning strength. Ocean reanalyses can help us understand the cause of these differences, which could improve estimates of ocean transports in this region.
Ricardo González-Gil, Neil S. Banas, Eileen Bresnan, and Michael R. Heath
Biogeosciences, 19, 2417–2426, https://doi.org/10.5194/bg-19-2417-2022, https://doi.org/10.5194/bg-19-2417-2022, 2022
Short summary
Short summary
In oceanic waters, the accumulation of phytoplankton biomass in winter, when light still limits growth, is attributed to a decrease in grazing as the mixed layer deepens. However, in coastal areas, it is not clear whether winter biomass can accumulate without this deepening. Using 21 years of weekly data, we found that in the Scottish coastal North Sea, the seasonal increase in light availability triggers the accumulation of phytoplankton biomass in winter, when light limitation is strongest.
Clare Ostle, Kevin Paxman, Carolyn A. Graves, Mathew Arnold, Luis Felipe Artigas, Angus Atkinson, Anaïs Aubert, Malcolm Baptie, Beth Bear, Jacob Bedford, Michael Best, Eileen Bresnan, Rachel Brittain, Derek Broughton, Alexandre Budria, Kathryn Cook, Michelle Devlin, George Graham, Nick Halliday, Pierre Hélaouët, Marie Johansen, David G. Johns, Dan Lear, Margarita Machairopoulou, April McKinney, Adam Mellor, Alex Milligan, Sophie Pitois, Isabelle Rombouts, Cordula Scherer, Paul Tett, Claire Widdicombe, and Abigail McQuatters-Gollop
Earth Syst. Sci. Data, 13, 5617–5642, https://doi.org/10.5194/essd-13-5617-2021, https://doi.org/10.5194/essd-13-5617-2021, 2021
Short summary
Short summary
Plankton form the base of the marine food web and are sensitive indicators of environmental change. The Plankton Lifeform Extraction Tool brings together disparate plankton datasets into a central database from which it extracts abundance time series of plankton functional groups, called
lifeforms, according to shared biological traits. This tool has been designed to make complex plankton datasets accessible and meaningful for policy, public interest, and scientific discovery.
S. A. Krueger-Hadfield, C. Balestreri, J. Schroeder, A. Highfield, P. Helaouët, J. Allum, R. Moate, K. T. Lohbeck, P. I. Miller, U. Riebesell, T. B. H. Reusch, R. E. M. Rickaby, J. Young, G. Hallegraeff, C. Brownlee, and D. C. Schroeder
Biogeosciences, 11, 5215–5234, https://doi.org/10.5194/bg-11-5215-2014, https://doi.org/10.5194/bg-11-5215-2014, 2014
D. R. Clark, I. J. Brown, A. P. Rees, P. J. Somerfield, and P. I. Miller
Biogeosciences, 11, 4985–5005, https://doi.org/10.5194/bg-11-4985-2014, https://doi.org/10.5194/bg-11-4985-2014, 2014
Cited articles
Autret, E., Tandéo, P., Paul, F., and Piollé, J. F.: EU Copernicus
Marine Service Quality Information Document for the European North West
Shelf/Iberia Biscay Irish Seas – High Resolution L4 Sea Surface Temperature
Reprocessed, SST_ATL_SST_L4_REP_OBSERVATONS_010_026, Issue 1.4,
Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-SST-QUID-010-026.pdf,
last access: 12 April 2023, 2021a. a
Autret, E., Piollé, J. F., Tandéo, P., and Prévost, C.: EU
Copernicus Marine Service Product User Manual for the European North West
Shelf/Iberia Biscay Irish Seas – High Resolution L4 Sea Surface Temperature
Reprocessed, SST_ATL_SST_L4_REP_OBSERVATONS_010_026, Issue 1.4,
Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-SST-PUM-010-026.pdf (last access: 12 April 2023), 2021b. a
Balch, W. M., Bowler, B. C., Drapeau, D. T., Lubelczyk, L. C., Lyczkowski, E.,
Mitchell, C., and Wyeth, A.: Coccolithophore distributions of the North and
South Atlantic Ocean, Deep Sea Research Part I: Oceanographic Research
Papers, 151, 103 066, https://doi.org/10.1016/j.dsr.2019.06.012, 2019. a
Beaugrand, G., McQuatters-Gollop, A., Edwards, M., and Goberville, E.:
Long-term responses of North Atlantic calcifying plankton to climate change,
Nature Climate Change, 3, 263–267, https://doi.org/10.1038/nclimate1753, 2013. a
Bowers, D., Harker, G., Smith, P., and Tett, P.: Optical Properties of a Region
of Freshwater Influence (The Clyde Sea), Estuarine, Coastal and Shelf
Science, 50, 717–726, https://doi.org/10.1006/ecss.1999.0600, 2000. a
Bradshaw, H.: Marine algae turned Scotland's water bright blue, BBC News
Online, https://www.bbc.co.uk/news/uk-scotland-57720790 (last access: 30 May 2023),
2021. a
Bresnan, E., Cook, K., Hindson, J., Hughes, S., Lacaze, J. P., Walsham, P.,
Webster, L., and Turrell, W. R.: The Scottish coastal observatory 1997-2013
part 2: description of Scotland's coastal waters, Scottish Marine and
Freshwater Science, 7, 278, https://doi.org/10.7489/1881-1, 2016. a
Brewin, R. J. W., Ciavatta, S., Sathyendranath, S., Jackson, T., Tilstone, G.,
Curran, K., Airs, R. L., Cummings, D., Brotas, V., Organelli, E., Dall'Olmo,
G., and Raitsos, D. E.: Uncertainty in Ocean-Color Estimates of Chlorophyll
for Phytoplankton Groups, Front. Mar. Sci., 4, 104,
https://doi.org/10.3389/fmars.2017.00104, 2017. a
Collela, S., Böhm, E., Cesarini, C., Garnesson, P., Netting, J., and
Calton, B.: EU Copernicus Marine Service Product User Manual for North
Atlantic Ocean Colour Plankton, Reflectance, Transparency and Optics MY L3
daily observations, Issue 3.0, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-OC-PUM.pdf (last access: 12 April 2023), 2022. a
Copernicus Climate Change Service, Climate Data Store: ERA5 hourly data on
single levels from 1940 to present, Copernicus Climate Change Service (C3S)
Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023. a
Davidson, K., Tett, P., and Gowen, R.: Chapter 4 Harmful Algal Blooms, in:
Marine Pollution and Human Health, pp. 95–127, The Royal Society of
Chemistry, https://doi.org/10.1039/9781849732871-00095, 2011. a
Delandmeter, P. and van Sebille, E.: The Parcels v2.0 Lagrangian framework: new field interpolation schemes, Geosci. Model Dev., 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, 2019. a, b
Edwards, A., Baxter, M. S., Ellett, D. J., Martin, J. H. A., Meldrum, D. T.,
and Griffiths, C. R.: Clyde Sea hydrography, Proc. Roy. Soc.
Edinburgh. B, 90, 67–83,
https://doi.org/10.1017/S0269727000004887, 1986. a, b
Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S.,
Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., and Smith,
J. E.: Global analysis of nitrogen and phosphorus limitation of primary
producers in freshwater, marine and terrestrial ecosystems, Ecol. Lett.,
10, 1135–1142, https://doi.org/10.1111/j.1461-0248.2007.01113.x, 2007. a
EU Copernicus Service Product: Atlantic – European North West Shelf – Ocean Physics Reanalysis, Mercator Ocean International, Copernicus Services [data set], https://doi.org/10.48670/moi-00059, 2021a. a
EU Copernicus Service Product: European North West Shelf/Iberia Biscay Irish Seas – High Resolution L4 Sea Surface Temperature Reprocessed, Mercator Ocean International, Copernicus Services [data set], https://doi.org/10.48670/moi-00153, 2021b. a
EU Copernicus Service Product: North Atlantic Ocean Colour Plankton, Reflectance, Transparency and Optics MY L3 daily observations, Mercator Ocean International, Copernicus Services [data set], https://doi.org/10.48670/moi-00286, 2022. a
Evers-King, H., Miller, P., Loveday, B., and Wallace, L.: Ocean colour data
reveals the extent of beautiful blue waters associated with a phytoplankton
bloom observed by hikers around the Isle of Arran in June 2021, EUMETSAT
press release, August 2021,
https://www.eumetsat.int/big-bloom-firth-clyde (last access: 30 May 2023), 2021. a
Findlay, H., Artoli, Y., Birchenough, S., Hartman, S., León, P., and
Stiasny, M.: Climate change impacts on ocean acidification relevant to the UK
and Ireland, MCCIP Sci. Rev., 2022, 24 pp., https://doi.org/10.14465/2022.reu03.oac, 2022. a
Frada, M., Probert, I., Allen, M. J., Wilson, W. H., and de Vargas, C.: The
“Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection, P. Natl. Acad.
Sci. USA, 105, 15944–15949, https://doi.org/10.1073/pnas.0807707105, 2008. a, b
Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C., and Wanless,
S.: From plankton to top predators: bottom-up control of a marine food web
across four trophic levels, J. An. Ecol., 75, 1259–1268,
https://doi.org/10.1111/j.1365-2656.2006.01148.x, 2006. a
Garnesson, P., Mangin, A., Bretagnon, M., and Jutard, Q.: EU Copernicus Marine
Service Quality Information Document for the North Atlantic Ocean Colour
Plankton, Reflectance, Transparency and Optics MY L3 daily observations,
OCEANCOLOUR_ATL_BGC_L3_MY_009_113, Issue 3.0, Mercator Ocean
International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-OC-QUID-009-111to114-121to124.pdf (last access: 12 April 2023), 2022. a
Hannah, F. and Boney, A.: Nanophytoplankton in the Firth of Clyde, Scotland:
Seasonal abundance, carbon fixation and species composition,
J. Exp. Mar. Biol. Ecol., 67, 105–147,
https://doi.org/10.1016/0022-0981(83)90085-0, 1983. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers,
D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on
single levels from 1940 to present, Copernicus Climate Change Service (C3S)
Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47, 2023. a, b, c
Highfield, A., Evans, C., Walne, A., Miller, P. I., and Schroeder, D. C.: How
many Coccolithovirus genotypes does it take to terminate an Emiliania huxleyi
bloom?, Virology, 466–467, 138–145,
https://doi.org/10.1016/j.virol.2014.07.017, special issue: Giant
Viruses, 2014. a
Johns, C., Bondoc-Naumovitz, K., Matthews, A., Matson, P., Iglesias-Rodriguez,
M. D., Taylor, A., Fuchs, H., and Bidle, K.: Adsorptive exchange of coccolith
biominerals facilitates viral infection, Sci. Adv., 9, eadc8728,
https://doi.org/10.1126/sciadv.adc8728, 2023. a
Kay, S., McEwan, R., and Ford, D.: EU Copernicus Marine Service Quality
Information Document, North West European Shelf Production Centre
NWSHELF_MULTIYEAR_BIO_004_011, Issue 5.1, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-NWS-QUID-004-011.pdf (last access: 12 April 2023), 2021. a
Keuter, S., Young, J. R., Koplovitz, G., Zingone, A., and Frada, M. J.: Novel
heterococcolithophores, holococcolithophores and life cycle combinations from
the families Syracosphaeraceae and Papposphaeraceae and the genus
Florisphaera, J. Micropalaeontol., 40, 75–99,
https://doi.org/10.5194/jm-40-75-2021, 2021. a
Kondrik, D., Kazakov, E., and Pozdnyakov, D.: A synthetic satellite dataset of the spatio-temporal distributions of Emiliania huxleyi blooms and their impacts on Arctic and sub-Arctic marine environments (1998–2016), Earth Syst. Sci. Data, 11, 119–128, https://doi.org/10.5194/essd-11-119-2019, 2019. a, b
León, P., ad Eileen Bresnan, P. W., Hartman, S., Hughes, S., Mackenzie, K.,
and Webster, L.: Seasonal variability of the carbonate system and
coccolithophore Emiliania huxleyi at a Scottish Coastal Observatory
monitoring site, Estuarine, Coast. Shelf Sci., 202, 302–314,
https://doi.org/10.1016/j.ecss.2018.01.011, 2018. a, b
Madec, G. and Team, N. S.: NEMO ocean engine, Zenodo, https://doi.org/10.5281/zenodo.1464816,
2008. a
Marsh, R., Haigh, I. D., Cunningham, S. A., Inall, M. E., Porter, M., and Moat, B. I.: Large-scale forcing of the European Slope Current and associated inflows to the North Sea, Ocean Sci., 13, 315–335, https://doi.org/10.5194/os-13-315-2017, 2017. a
Marshall, S. M. and Orr, A. P.: The Relation of the Plankton to some Chemical
and Physical Factors in the Clyde Sea Area, J. Mar. Biol.
Assoc. UK, 14, 837–868,
https://doi.org/10.1017/S0025315400051110, 1927. a, b
Mayers, K., Poulton, A., Daniels, C., Wells, S., Woodward, E., Tarran, G.,
Widdicombe, C., Mayor, D., Atkinson, A., and Giering, S.: Growth and
mortality of coccolithophores during spring in a temperate Shelf Sea (Celtic
Sea, April 2015), Prog. Oceanogr., 177, 101928,
https://doi.org/10.1016/j.pocean.2018.02.024, shelf Sea Biogeochemistry: Pelagic
Processes., 2019. a, b
McQuatters-Gollop, A., Atkinson, A., Aubert, A., Bedford, J., Best, M.,
Bresnan, E., Cook, K., Devlin, M., Gowen, R., Johns, D. G., Machairopoulou,
M., McKinney, A., Mellor, A., Ostle, C., Scherer, C., and Tett, P.: Plankton
lifeforms as a biodiversity indicator for regional-scale assessment of
pelagic habitats for policy, Ecol. Indic., 101, 913–925,
https://doi.org/10.1016/j.ecolind.2019.02.010, 2019. a
Mogensen, K., Balmaseda, M. A., and Weaver, A.: The NEMOVAR ocean data
assimilation system as implemented in the ECMWF ocean analysis for System 4, ECMWF Technical Memoranda, https://doi.org/10.21957/x5y9yrtm, 2012. a
Monteiro, F. M., Bach, L. T., Brownlee, C., Bown, P., Rickaby, R. E. M.,
Poulton, A. J., Tyrrell, T., Beaufort, L., Dutkiewicz, S., Gibbs, S.,
Gutowska, M. A., Lee, R., Riebesell, U., Young, J., and Ridgwell, A.: Why
marine phytoplankton calcify, Sci. Adv., 2, e1501822,
https://doi.org/10.1126/sciadv.1501822, 2016. a
Müller, M. N.: On the Genesis and Function of Coccolithophore Calcification,
Front. Mar. Sci., 6, https://doi.org/10.3389/fmars.2019.00049, 2019. a
OC-CCI: Product User Guide v5.0, Ocean Colour Climate Change Initiative, ESA,
D4.2, https://doi.org/10.5285/1dbe7a109c0244aaad713e078fd3059a, 2020. a
Pingree, R. D., Maddock, L., and Butler, E. I.: The influence of biological
activity and physical stability in determining the chemical distributions of
inorganic phosphate, silicate and nitrate, J. Mar. Biolo.
Assoc. UK, 57, 1065–1073,
https://doi.org/10.1017/S0025315400026138, 1977. a
Renshaw, R., Wakelin, S., Golbeck, I., and O'Dea, E.: EU Copernicus Marine Service Quality Information Document for the Atlantic – European North West Shelf – Ocean Physics Reanalysis, NWSHELF_MULTIYEAR_PHY_004_009, Issue 5.2, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-NWS-QUID-004-009.pdf (last access: 12 April 2023), 2021. a, b, c
Riebesell, U., Bach, L. T., Bellerby, R. G. J., Monsalve, J. R. B., Boxhammer,
T., Czerny, J., Larsen, A., Ludwig, A., and Schulz, K. G.: Competitive
fitness of a predominant pelagic calcifier impaired by ocean acidification,
Nat. Geosci., 10, 19–23, https://doi.org/10.1038/ngeo2854, 2017. a
Rivero-Calle, S., Gnanadesikan, A., Castillo, C. E. D., Balch, W. M., and
Guikema, S. D.: Multidecadal increase in North Atlantic coccolithophores and
the potential role of rising CO2, Science, 350, 1533–1537,
https://doi.org/10.1126/science.aaa8026, 2015. a
Röhrs, J., Sutherland, G., Jeans, G., Bedington, M., Sperrevik, A. K.,
Dagestad, K.-F., Gusdal, Y., Mauritzen, C., Dale, A., and LaCasce, J. H.:
Surface currents in operational oceanography: Key applications, mechanisms,
and methods, J. Oper. Oceanogr., 16, 60–88,
https://doi.org/10.1080/1755876X.2021.1903221, 2023. a
Rost, B. and Riebesell, U.: Coccolithophores and the biological pump: responses
to environmental changes, 99–125, Springer Berlin Heidelberg, Berlin,
Heidelberg, https://doi.org/10.1007/978-3-662-06278-4_5, 2004. a
Siemering, B., Bresnan, E., Painter, S. C., Daniels, C. J., Inall, M., and
Davidson, K.: Phytoplankton Distribution in Relation to Environmental Drivers
on the North West European Shelf Sea, PLOS ONE, 11, 1–24,
https://doi.org/10.1371/journal.pone.0164482, 2016. a
Simpson, J. and Rippeth, T.: The Clyde Sea: a Model of the Seasonal Cycle of
Stratification and Mixing, Estuarine, Coast. Shelf Sci., 37,
129–144, https://doi.org/10.1006/ecss.1993.1047, 1993. a, b
Slesser, G. and Turrell, W.: Annual Cycles of Physical, Chemical and Biological
Parameters in Scottish Waters, Scottish Marine and Freshwater Science, 4,
17 pp., https://doi.org/10.7489/1511-1, 2013. a
Stief, P., Schauberger, C., Lund, M. B., Greve, A., Abed, R. M. M., Al-Najjar,
M. A. A., Attard, K., Bonaglia, S., Deutzmann, J. S., Franco-Cisterna, B.,
García-Robledo, E., Holtappels, M., John, U., Maciute, A., Magee, M. J.,
Pors, R., Santl-Temkiv, T., Scherwass, A., Sevilgen, D. S., de Beer, D.,
Glud, R. N., Schramm, A., and Kamp, A.: Intracellular nitrate storage by
diatoms can be an important nitrogen pool in freshwater and marine
ecosystems, Commun. Earth Environ., 3, 154–164,
https://doi.org/10.1038/s43247-022-00485-8, 2022.
a
Tonani, M., Ascione, I., and Saulter, A.: EU Copernicus Marine Service Product
User Manual for the North West European Shelf Ocean Physical and
Biogeochemical Reanalysis NWSHELF_MULTIYEAR_PHY_004_009,
NWSHELF_MULTIYEAR_BGC_004_011, Issue 1.3, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-NWS-PUM-004-009-011.pdf (last access: 12 April 2023), 2022. a
van Bleijswijk, J., van der Wal, P., Kempers, R., Veldhuis, M., Young, J. R.,
Muyzer, G., de Vrind-de Jong, E., and Westbroek, P.: Distribution of two
types of Emiliania Huxleyi (Prymnesiophyceae) in the North East
Atlantic region as determined by Immunofluorescence and Coccolith Morphology
1, J. Phycology, 27, 566–570,
https://doi.org/10.1111/j.0022-3646.1991.00566.x, 1991. a
Verity, P. G.: Growth rates of natural tintinnid populations in Narragansett
Bay, Mar. Ecol. Prog. Series, 29, 117–126, https://doi.org/10.3354/meps029117,
1986. a
Voss, K. J., Balch, W. M., and Kilpatrick, K. A.: Scattering and attenuation
properties of Emiliania huxleyi cells and their detached coccoliths,
Limnol. Oceanogr., 43, 870–876,
https://doi.org/10.4319/lo.1998.43.5.0870, 1998. a
Waters, J., Lea, D. J., Martin, M. J., Mirouze, I., Weaver, A., and While, J.:
Implementing a variational data assimilation system in an operational 1/4
degree global ocean model, Q. J. Roy. Meteorol.
Soc., 141, 333–349, https://doi.org/10.1002/qj.2388, 2015. a
Weather Magazine 2021a: April 2021 Most places cold, sunny and very dry,
Weather, 76, i–iv, https://doi.org/10.1002/wea.4005, 2021. a
Weather Magazine 2021b: May 2021 Cold, dull and wet, Weather, 76, i–iv,
https://doi.org/10.1002/wea.4026, 2021. a
Whyte, C., Swan, S., and Davidson, K.: Changing wind patterns linked to
unusually high Dinophysis blooms around the Shetland Islands,
Scotland, Harmful Algae, 39, 365–373, https://doi.org/10.1016/j.hal.2014.09.006, 2014. a
Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M., and Brown, C. W.:
Poleward expansion of the coccolithophore Emiliania huxleyi,
J. Plankton Res., 36, 316–325, https://doi.org/10.1093/plankt/fbt110,
2013. a
Young, J. R., Davis, S. A., Bown, P. R., and Mann, S.: Coccolith Ultrastructure
and Biomineralisation, J. Struct. Biol., 126, 195–215,
https://doi.org/10.1006/jsbi.1999.4132, 1999. a
Short summary
There were two unusual blooms in Scottish waters in summer 2021. Both turned the sea a turquoise colour visible from space, typical of coccolithophore blooms. We use reanalysis and satellite data to examine the environment that led to these blooms. We suggest unusual weather was a contributory factor in both cases.
There were two unusual blooms in Scottish waters in summer 2021. Both turned the sea a turquoise...
Altmetrics
Final-revised paper
Preprint