Articles | Volume 4-osr8
https://doi.org/10.5194/sp-4-osr8-12-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-4-osr8-12-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variability in manometric sea level from reanalyses and observation-based products over the Arctic and North Atlantic oceans and the Mediterranean Sea
Institute of Marine Sciences (ISMAR), National Research Council (CNR), 00133 Rome, Italy
Giulia Chierici
Institute of Marine Sciences (ISMAR), National Research Council (CNR), 00133 Rome, Italy
Julia Pfeffer
Magellium, 31520 Ramonville-Saint-Agne, France
Anne Barnoud
Magellium, 31520 Ramonville-Saint-Agne, France
Romain Bourdalle-Badie
Mercator Ocean International (MOI), 31400 Toulouse, France
Alejandro Blazquez
Laboratory of Space Geophysical and Oceanographic Studies (LEGOS), 31401 Toulouse, France
Davide Cavaliere
Institute of Marine Sciences (ISMAR), National Research Council (CNR), 00133 Rome, Italy
Noémie Lalau
Magellium, 31520 Ramonville-Saint-Agne, France
Benjamin Coupry
Magellium, 31520 Ramonville-Saint-Agne, France
Marie Drevillon
Mercator Ocean International (MOI), 31400 Toulouse, France
Sebastien Fourest
Laboratory of Space Geophysical and Oceanographic Studies (LEGOS), 31401 Toulouse, France
Gilles Larnicol
Magellium, 31520 Ramonville-Saint-Agne, France
Chunxue Yang
Institute of Marine Sciences (ISMAR), National Research Council (CNR), 00133 Rome, Italy
Related authors
Marie Bouih, Anne Barnoud, Chunxue Yang, Andrea Storto, Alejandro Blazquez, William Llovel, Robin Fraudeau, and Anny Cazenave
EGUsphere, https://doi.org/10.5194/egusphere-2024-3945, https://doi.org/10.5194/egusphere-2024-3945, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Present-day sea level rise is not uniform regionally. For better understanding of regional sea level variations, a classical approach is to compare the observed sea level trend patterns with those of the sum of the contributions. If the regional sea level budget is not closed, this allows to detect errors in the observing systems. Our study based on this approach shows the the budget is not closed in the North Atlantic Ocean and identifies as main suspect, errors in Argo-based salinity data.
Andrea Storto, Sergey Frolov, Laura Slivinski, and Chunxue Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-185, https://doi.org/10.5194/gmd-2024-185, 2024
Preprint under review for GMD
Short summary
Short summary
Inaccuracies in air-sea heat fluxes severely downgrade the accuracy of ocean numerical simulations. Here, we use artificial neural networks to correct the air-sea heat fluxes as a function of oceanic and atmospheric state predictors. The correction successfully improves surface and subsurface ocean temperatures beyond the training period and in prediction experiments.
Vincenzo de Toma, Daniele Ciani, Yassmin Hesham Essa, Chunxue Yang, Vincenzo Artale, Andrea Pisano, Davide Cavaliere, Rosalia Santoleri, and Andrea Storto
Geosci. Model Dev., 17, 5145–5165, https://doi.org/10.5194/gmd-17-5145-2024, https://doi.org/10.5194/gmd-17-5145-2024, 2024
Short summary
Short summary
This study explores methods to reconstruct diurnal variations in skin sea surface temperature in a model of the Mediterranean Sea. Our new approach, considering chlorophyll concentration, enhances spatial and temporal variations in the warm layer. Comparative analysis shows context-dependent improvements. The proposed "chlorophyll-interactive" method brings the surface net total heat flux closer to zero annually, despite a net heat loss from the ocean to the atmosphere.
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Eric Jansen, Sam Pimentel, Wang-Hung Tse, Dimitra Denaxa, Gerasimos Korres, Isabelle Mirouze, and Andrea Storto
Ocean Sci., 15, 1023–1032, https://doi.org/10.5194/os-15-1023-2019, https://doi.org/10.5194/os-15-1023-2019, 2019
Short summary
Short summary
The assimilation of satellite SST data into ocean models is complex. The temperature of the thin uppermost layer that is measured by satellites may differ from the much thicker upper layer used in numerical models, leading to biased results. This paper shows how canonical correlation analysis can be used to generate observation operators from existing datasets of model states and corresponding observation values. This type of operator can correct for near-surface effects when assimilating SST.
Gerasimos Korres, Dimitra Denaxa, Eric Jansen, Isabelle Mirouze, Sam Pimentel, Wang-Hung Tse, and Andrea Storto
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-158, https://doi.org/10.5194/os-2018-158, 2019
Preprint withdrawn
Short summary
Short summary
A statistical-dynamical observation operator (SOSSTA) for satellite SST data assimilation able to account for SST diurnal variability, is formulated and implemented into the POSEIDON forecasting system (Aegean Sea). Model experiments where daytime SST retrievals from the SEVIRI infrared radiometer are introduced into the data assimilation procedure through the application of the observation operator, showed an improvement of the POSEIDON modelling system performance.
Marianne Pietschnig, Michael Mayer, Takamasa Tsubouchi, Andrea Storto, Sebastian Stichelberger, and Leopold Haimberger
Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-98, https://doi.org/10.5194/os-2017-98, 2017
Revised manuscript not accepted
Short summary
Short summary
New estimates of volume and temperature transports into the Arctic Ocean through the four major gateways (Davis, Fram and Bering Strait and the Barents Sea Opening) have recently become available. These estimates are derived from moored observations. In this study, the same transports derived from a recent ocean reanalysis are compared to the observation-based estimates in the straits. In addition, cross-section plots of velocity, temperature and temperature flux density are investigated.
Zhaoyi Wang, Andrea Storto, Nadia Pinardi, Guimei Liu, and Hui Wang
Nat. Hazards Earth Syst. Sci., 17, 17–30, https://doi.org/10.5194/nhess-17-17-2017, https://doi.org/10.5194/nhess-17-17-2017, 2017
Andrea Storto and Simona Masina
Earth Syst. Sci. Data, 8, 679–696, https://doi.org/10.5194/essd-8-679-2016, https://doi.org/10.5194/essd-8-679-2016, 2016
Short summary
Short summary
A large number of applications related to the study of ocean climate require reliable datasets of the main physical variables of the ocean. Ocean reanalyses are a methodology based on the synthesis of information from ocean observations and models, and near-surface atmospheric observations into a dataset in a way as consistent in time as possible. In this paper, we describe and validate an upgraded version of the CMCC global ocean physical reanalysis (1980–present) at 1 / 4° resolution.
Paolo Oddo, Andrea Storto, Srdjan Dobricic, Aniello Russo, Craig Lewis, Reiner Onken, and Emanuel Coelho
Ocean Sci., 12, 1137–1153, https://doi.org/10.5194/os-12-1137-2016, https://doi.org/10.5194/os-12-1137-2016, 2016
Doroteaciro Iovino, Simona Masina, Andrea Storto, Andrea Cipollone, and Vladimir N. Stepanov
Geosci. Model Dev., 9, 2665–2684, https://doi.org/10.5194/gmd-9-2665-2016, https://doi.org/10.5194/gmd-9-2665-2016, 2016
Short summary
Short summary
An 11-year simulation of a global eddying ocean (1/16) configuration is presented. Model performance is evaluated against observations and a twin 1/4 configuration. The model realistically represents the variability at upper and intermediate depths, the position and strength of the surface circulation, and exchanges of mass through key passages. Sea ice properties are close to satellite observations. This simulation constitutes the groundwork for future applications to short range ocean forecasting.
L. Visinelli, S. Masina, M. Vichi, and A. Storto
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-5399-2014, https://doi.org/10.5194/bgd-11-5399-2014, 2014
Revised manuscript not accepted
Marie Bouih, Anne Barnoud, Chunxue Yang, Andrea Storto, Alejandro Blazquez, William Llovel, Robin Fraudeau, and Anny Cazenave
EGUsphere, https://doi.org/10.5194/egusphere-2024-3945, https://doi.org/10.5194/egusphere-2024-3945, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Present-day sea level rise is not uniform regionally. For better understanding of regional sea level variations, a classical approach is to compare the observed sea level trend patterns with those of the sum of the contributions. If the regional sea level budget is not closed, this allows to detect errors in the observing systems. Our study based on this approach shows the the budget is not closed in the North Atlantic Ocean and identifies as main suspect, errors in Argo-based salinity data.
Andrea Storto, Sergey Frolov, Laura Slivinski, and Chunxue Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-185, https://doi.org/10.5194/gmd-2024-185, 2024
Preprint under review for GMD
Short summary
Short summary
Inaccuracies in air-sea heat fluxes severely downgrade the accuracy of ocean numerical simulations. Here, we use artificial neural networks to correct the air-sea heat fluxes as a function of oceanic and atmospheric state predictors. The correction successfully improves surface and subsurface ocean temperatures beyond the training period and in prediction experiments.
Amélie Loubet, Simon J. van Gennip, Romain Bourdallé-Badie, and Marie Drevillon
State Planet Discuss., https://doi.org/10.5194/sp-2024-31, https://doi.org/10.5194/sp-2024-31, 2024
Preprint under review for SP
Short summary
Short summary
Marine Heatwaves (MHWs) are intensifying due to climate change. In 2023, the Copernicus Marine forecast system tracked a significant MHW event in the North Tropical Atlantic. Here we show this event was unprecedented, at the surface and at depth. It peaked in the northeast in May, spreading southwest to reach the Caribbean by fall. In the east and centre, the MHW remained within the surface layers, while in the Caribbean, it reached deeper levels due to warm waters advected by equatorial eddies.
Antonio Sánchez-Román, Flora Gues, Romain Bourdalle-Badie, Marie-Isabelle Pujol, Ananda Pascual, and Marie Drévillon
State Planet, 4-osr8, 4, https://doi.org/10.5194/sp-4-osr8-4-2024, https://doi.org/10.5194/sp-4-osr8-4-2024, 2024
Short summary
Short summary
This study investigates the changing pattern of the Gulf Stream over the last 3 decades as observed in the altimetric record (1993–2022). Changes in the Gulf Stream path have an effect on its speed (and associated energy) and also on waters transported towards the subpolar North Atlantic, impacting Europe's climate. The observed shifts in the paths seem to be linked to variability in the North Atlantic Ocean during winter that may play an important role.
Florence Marti, Benoit Meyssignac, Victor Rousseau, Michaël Ablain, Robin Fraudeau, Alejandro Blazquez, and Sébastien Fourest
State Planet, 4-osr8, 3, https://doi.org/10.5194/sp-4-osr8-3-2024, https://doi.org/10.5194/sp-4-osr8-3-2024, 2024
Short summary
Short summary
As space geodetic observations are used to monitor the global ocean heat content change, they allow estimating the Earth energy imbalance (EEI). Over 1993–2022, the space geodetic EEI estimate shows a positive trend of 0.29 W m−2 per decade, indicating accelerated warming of the ocean in line with other independent estimates. The study highlights the importance of comparing various estimates and their uncertainties to reliably assess EEI changes.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Marcos G. Sotillo, Marie Drevillon, and Fabrice Hernandez
State Planet Discuss., https://doi.org/10.5194/sp-2024-33, https://doi.org/10.5194/sp-2024-33, 2024
Preprint under review for SP
Short summary
Short summary
Operational forecasting systems requires best practices for assessing the quality of ocean products. The Authors discusses on the role of observing network for performing validation of ocean models, identifying current gaps, but also emphasizing the need of new metrics. An analysis on the level of maturity of validation processes from global to regional systems is provided. A rich variety of approaches exists. Example of Copernicus Marine product quality organization is provided.
Vincenzo de Toma, Daniele Ciani, Yassmin Hesham Essa, Chunxue Yang, Vincenzo Artale, Andrea Pisano, Davide Cavaliere, Rosalia Santoleri, and Andrea Storto
Geosci. Model Dev., 17, 5145–5165, https://doi.org/10.5194/gmd-17-5145-2024, https://doi.org/10.5194/gmd-17-5145-2024, 2024
Short summary
Short summary
This study explores methods to reconstruct diurnal variations in skin sea surface temperature in a model of the Mediterranean Sea. Our new approach, considering chlorophyll concentration, enhances spatial and temporal variations in the warm layer. Comparative analysis shows context-dependent improvements. The proposed "chlorophyll-interactive" method brings the surface net total heat flux closer to zero annually, despite a net heat loss from the ocean to the atmosphere.
Michaël Ablain, Noémie Lalau, Benoit Meyssignac, Robin Fraudeau, Anne Barnoud, Gérald Dibarboure, Alejandro Egido, and Craig James Donlon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1802, https://doi.org/10.5194/egusphere-2024-1802, 2024
Short summary
Short summary
This study proposes a novel cross-validation method to assess the instrumental stability in sea level trends. The method involves implementing a second tandem flight phase between two successive altimeter missions a few years after the first. The trend in systematic instrumental differences made during the two tandem phases can be estimated below ±0.1 mm/yr (16–84 % confidence level) on a global scale, for time intervals between the tandem phases of four years or more.
Sylvain Cailleau, Laurent Bessières, Léonel Chiendje, Flavie Dubost, Guillaume Reffray, Jean-Michel Lellouche, Simon van Gennip, Charly Régnier, Marie Drevillon, Marc Tressol, Matthieu Clavier, Julien Temple-Boyer, and Léo Berline
Geosci. Model Dev., 17, 3157–3173, https://doi.org/10.5194/gmd-17-3157-2024, https://doi.org/10.5194/gmd-17-3157-2024, 2024
Short summary
Short summary
In order to improve Sargassum drift forecasting in the Caribbean area, drift models can be forced by higher-resolution ocean currents. To this goal a 3 km resolution regional ocean model has been developed. Its assessment is presented with a particular focus on the reproduction of fine structures representing key features of the Caribbean region dynamics and Sargassum transport. The simulated propagation of a North Brazil Current eddy and its dissipation was found to be quite realistic.
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023, https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary
Short summary
The GRACE (Gravity Recovery And Climate Experiment) satellite mission enabled the quantification of water mass redistributions from 2002 to 2017. The analysis of GRACE satellite data shows here that slow changes in terrestrial water storage occurring over a few years to a decade are severely underestimated by global hydrological models. Several sources of errors may explain such biases, likely including the inaccurate representation of groundwater storage changes.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Anny Cazenave, Julia Pfeffer, Mioara Mandea, and Veronique Dehant
Earth Syst. Dynam., 14, 733–735, https://doi.org/10.5194/esd-14-733-2023, https://doi.org/10.5194/esd-14-733-2023, 2023
Short summary
Short summary
While a 6-year oscillation has been reported for some time in the motions of the fluid outer core of the Earth, in the magnetic field and in the Earth rotation, novel results indicate that the climate system also oscillates at this 6-year frequency. This strongly suggests the existence of coupling mechanisms affecting the Earth system as a whole, from the deep Earth interior to the surface fluid envelopes.
Victor Rousseau, Robin Fraudeau, Matthew Hammond, Odilon Joël Houndegnonto, Michaël Ablain, Alejandro Blazquez, Fransisco Mir Calafat, Damien Desbruyères, Giuseppe Foti, William Llovel, Florence Marti, Benoît Meyssignac, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-236, https://doi.org/10.5194/essd-2023-236, 2023
Preprint withdrawn
Short summary
Short summary
The estimation of regional Ocean Heat Content (OHC) is crucial for climate analysis and future climate predictions. In our study, we accurately estimate regional OHC changes in the Atlantic Ocean using satellite and in situ data. Findings reveal significant warming in the Atlantic basin from 2002 to 2020 with a mean trend of 0.17W/m², representing 230 times the power of global nuclear plants. The product has also been successfully validated in the North Atlantic basin using in situ data.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Anne Barnoud, Julia Pfeffer, Anny Cazenave, Robin Fraudeau, Victor Rousseau, and Michaël Ablain
Ocean Sci., 19, 321–334, https://doi.org/10.5194/os-19-321-2023, https://doi.org/10.5194/os-19-321-2023, 2023
Short summary
Short summary
The increase in ocean mass due to land ice melting is responsible for about two-thirds of the global mean sea level rise. The ocean mass variations are monitored by GRACE and GRACE Follow-On gravimetry satellites that faced instrumental issues over the last few years. In this work, we assess the robustness of these data by comparing the ocean mass gravimetry estimates to independent observations (other satellite observations, oceanographic measurements and land ice and water models).
Florence Marti, Alejandro Blazquez, Benoit Meyssignac, Michaël Ablain, Anne Barnoud, Robin Fraudeau, Rémi Jugier, Jonathan Chenal, Gilles Larnicol, Julia Pfeffer, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 229–249, https://doi.org/10.5194/essd-14-229-2022, https://doi.org/10.5194/essd-14-229-2022, 2022
Short summary
Short summary
The Earth energy imbalance at the top of the atmosphere due to the increase in greenhouse gases and aerosol concentrations is responsible for the accumulation of energy in the climate system. With its high thermal inertia, the ocean accumulates most of this energy excess in the form of heat. The estimation of the global ocean heat content through space geodetic observations allows monitoring of the energy imbalance with realistic uncertainties to better understand the Earth’s warming climate.
Théo Brivoal, Guillaume Samson, Hervé Giordani, Romain Bourdallé-Badie, Florian Lemarié, and Gurvan Madec
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-78, https://doi.org/10.5194/os-2020-78, 2020
Preprint withdrawn
Short summary
Short summary
We investigate the interactions between near-surface winds and oceanic surface currents on the north-east atlantic region using a simplified lower atmosphere model coupled with an ocean model. we show that the upper ocean kinetic energy is significantly reduced due to these interactions, but in a smaller amplitude than if the wind feedback is ignored. We also show that wind-current interactions affect the deeper ocean by modifying its vertical structure and consequently the pressure field.
Evan Mason, Simón Ruiz, Romain Bourdalle-Badie, Guillaume Reffray, Marcos García-Sotillo, and Ananda Pascual
Ocean Sci., 15, 1111–1131, https://doi.org/10.5194/os-15-1111-2019, https://doi.org/10.5194/os-15-1111-2019, 2019
Short summary
Short summary
The Copernicus Marine Service (CMEMS) provides oceanographic products and services. Using a mesoscale eddy tracker, we evaluate the performance of three CMEMS model products in the western Mediterranean. Performance testing provides valuable feedback to the model developers. The eddy tracker allows us to construct 3-D eddy composites for each model in the Alboran Sea gyres. Comparison of the composites with data from Argo floats highlights the importance of data assimilation for these models.
Eric Jansen, Sam Pimentel, Wang-Hung Tse, Dimitra Denaxa, Gerasimos Korres, Isabelle Mirouze, and Andrea Storto
Ocean Sci., 15, 1023–1032, https://doi.org/10.5194/os-15-1023-2019, https://doi.org/10.5194/os-15-1023-2019, 2019
Short summary
Short summary
The assimilation of satellite SST data into ocean models is complex. The temperature of the thin uppermost layer that is measured by satellites may differ from the much thicker upper layer used in numerical models, leading to biased results. This paper shows how canonical correlation analysis can be used to generate observation operators from existing datasets of model states and corresponding observation values. This type of operator can correct for near-surface effects when assimilating SST.
Gerasimos Korres, Dimitra Denaxa, Eric Jansen, Isabelle Mirouze, Sam Pimentel, Wang-Hung Tse, and Andrea Storto
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-158, https://doi.org/10.5194/os-2018-158, 2019
Preprint withdrawn
Short summary
Short summary
A statistical-dynamical observation operator (SOSSTA) for satellite SST data assimilation able to account for SST diurnal variability, is formulated and implemented into the POSEIDON forecasting system (Aegean Sea). Model experiments where daytime SST retrievals from the SEVIRI infrared radiometer are introduced into the data assimilation procedure through the application of the observation operator, showed an improvement of the POSEIDON modelling system performance.
Jean-Michel Lellouche, Eric Greiner, Olivier Le Galloudec, Gilles Garric, Charly Regnier, Marie Drevillon, Mounir Benkiran, Charles-Emmanuel Testut, Romain Bourdalle-Badie, Florent Gasparin, Olga Hernandez, Bruno Levier, Yann Drillet, Elisabeth Remy, and Pierre-Yves Le Traon
Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, https://doi.org/10.5194/os-14-1093-2018, 2018
Short summary
Short summary
In the coming decades, a strong growth of the ocean economy is expected. Scientific advances in operational oceanography will play a crucial role in addressing many environmental challenges and in the development of ocean-related economic activities. In this context, remarkable improvements have been achieved with the current Mercator Ocean system. 3-D water masses, sea level, sea ice and currents have been improved, and thus major oceanic variables are hard to distinguish from the data.
Marianne Pietschnig, Michael Mayer, Takamasa Tsubouchi, Andrea Storto, Sebastian Stichelberger, and Leopold Haimberger
Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-98, https://doi.org/10.5194/os-2017-98, 2017
Revised manuscript not accepted
Short summary
Short summary
New estimates of volume and temperature transports into the Arctic Ocean through the four major gateways (Davis, Fram and Bering Strait and the Barents Sea Opening) have recently become available. These estimates are derived from moored observations. In this study, the same transports derived from a recent ocean reanalysis are compared to the observation-based estimates in the straits. In addition, cross-section plots of velocity, temperature and temperature flux density are investigated.
Zhaoyi Wang, Andrea Storto, Nadia Pinardi, Guimei Liu, and Hui Wang
Nat. Hazards Earth Syst. Sci., 17, 17–30, https://doi.org/10.5194/nhess-17-17-2017, https://doi.org/10.5194/nhess-17-17-2017, 2017
Andrea Storto and Simona Masina
Earth Syst. Sci. Data, 8, 679–696, https://doi.org/10.5194/essd-8-679-2016, https://doi.org/10.5194/essd-8-679-2016, 2016
Short summary
Short summary
A large number of applications related to the study of ocean climate require reliable datasets of the main physical variables of the ocean. Ocean reanalyses are a methodology based on the synthesis of information from ocean observations and models, and near-surface atmospheric observations into a dataset in a way as consistent in time as possible. In this paper, we describe and validate an upgraded version of the CMCC global ocean physical reanalysis (1980–present) at 1 / 4° resolution.
Paolo Oddo, Andrea Storto, Srdjan Dobricic, Aniello Russo, Craig Lewis, Reiner Onken, and Emanuel Coelho
Ocean Sci., 12, 1137–1153, https://doi.org/10.5194/os-12-1137-2016, https://doi.org/10.5194/os-12-1137-2016, 2016
Helene T. Hewitt, Malcolm J. Roberts, Pat Hyder, Tim Graham, Jamie Rae, Stephen E. Belcher, Romain Bourdallé-Badie, Dan Copsey, Andrew Coward, Catherine Guiavarch, Chris Harris, Richard Hill, Joël J.-M. Hirschi, Gurvan Madec, Matthew S. Mizielinski, Erica Neininger, Adrian L. New, Jean-Christophe Rioual, Bablu Sinha, David Storkey, Ann Shelly, Livia Thorpe, and Richard A. Wood
Geosci. Model Dev., 9, 3655–3670, https://doi.org/10.5194/gmd-9-3655-2016, https://doi.org/10.5194/gmd-9-3655-2016, 2016
Short summary
Short summary
We examine the impact in a coupled model of increasing atmosphere and ocean horizontal resolution and the frequency of coupling between the atmosphere and ocean. We demonstrate that increasing the ocean resolution from 1/4 degree to 1/12 degree has a major impact on ocean circulation and global heat transports. The results add to the body of evidence suggesting that ocean resolution is an important consideration when developing coupled models for weather and climate applications.
Doroteaciro Iovino, Simona Masina, Andrea Storto, Andrea Cipollone, and Vladimir N. Stepanov
Geosci. Model Dev., 9, 2665–2684, https://doi.org/10.5194/gmd-9-2665-2016, https://doi.org/10.5194/gmd-9-2665-2016, 2016
Short summary
Short summary
An 11-year simulation of a global eddying ocean (1/16) configuration is presented. Model performance is evaluated against observations and a twin 1/4 configuration. The model realistically represents the variability at upper and intermediate depths, the position and strength of the surface circulation, and exchanges of mass through key passages. Sea ice properties are close to satellite observations. This simulation constitutes the groundwork for future applications to short range ocean forecasting.
F. Dupont, S. Higginson, R. Bourdallé-Badie, Y. Lu, F. Roy, G. C. Smith, J.-F. Lemieux, G. Garric, and F. Davidson
Geosci. Model Dev., 8, 1577–1594, https://doi.org/10.5194/gmd-8-1577-2015, https://doi.org/10.5194/gmd-8-1577-2015, 2015
Short summary
Short summary
1/12th degree resolution runs of Arctic--Atlantic were compared for the period 2003-2009. We found good representation of sea surface height and of its statistics; model temperature and salinity in general agreement with in situ measurements, but upper ocean properties in Beaufort Sea are challenging; distribution of concentration and volume of sea ice is improved when slowing down the ice and further improvements require better initial conditions and modifications to mixing.
G. Reffray, R. Bourdalle-Badie, and C. Calone
Geosci. Model Dev., 8, 69–86, https://doi.org/10.5194/gmd-8-69-2015, https://doi.org/10.5194/gmd-8-69-2015, 2015
A. M. Treguier, J. Deshayes, J. Le Sommer, C. Lique, G. Madec, T. Penduff, J.-M. Molines, B. Barnier, R. Bourdalle-Badie, and C. Talandier
Ocean Sci., 10, 243–255, https://doi.org/10.5194/os-10-243-2014, https://doi.org/10.5194/os-10-243-2014, 2014
L. Visinelli, S. Masina, M. Vichi, and A. Storto
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-5399-2014, https://doi.org/10.5194/bgd-11-5399-2014, 2014
Revised manuscript not accepted
Cited articles
Ablain, M., Legeais, J. F., Prandi, P., Marcos, M., Fenoglio-Marc, L., Dieng, H. B., Benveniste, J., and Cazenave, A.: Satellite altimetry-based sea level at global and regional scales, Surv. Geophys., 38, 7–31, 2017.
Ambaum, M. H. P., Hoskins, B. J., and Stephenson, D. B.: Arctic Oscillation or North Atlantic Oscillation?, J. Climate, 14, 3495–3507, https://doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2, 2001.
Amin, H., Bagherbandi, M., and Sjöberg, L. E.: Quantifying barystatic sea-level change from satellite altimetry, GRACE and Argo observations over 2005–2016, Adv. Space Res., 65, 1922–1940, 2020.
Andrew, J. A. M., Leach, H., and Woodworth, P. L.: The relationships between tropical Atlantic sea level variability and major climate indices, Ocean Dynam., 56, 452–463, https://doi.org/10.1007/s10236-006-0068-z, 2006.
Androsov, A., Boebel, O., Schröter, J., Danilov, S., Macrander, A., and Ivanciu, I.: Ocean bottom pressure variability: Can it be reliably modeled? J. Geophys. Res.-Oceans, 125, e2019JC015469, https://doi.org/10.1029/2019JC015469, 2020.
Barnoud, A., Pfeffer, J., Guérou, A., Frery, M.-L., Siméon, M., Cazenave, A., Chen, J., Llovel, W., Thierry, V., Legeais, J.-F., and Ablain, M.: Contributions of altimetry and Argo to non-closure of the global mean sea level budget since 2016, Geophys. Res. Lett., 48, e2021GL092824, https://doi.org/10.1029/2021gl092824, 2021.
Barnoud, A., Picard, B., Meyssignac, B., Marti, F., Ablain, M., and Roca, R.: Reducing the uncertainty in the satellite altimetry estimates of global mean sea level trends using highly stable water vapor climate data records, J. Geophys. Res.-Oceans, 128, e2022JC019378, https://doi.org/10.1029/2022JC019378, 2023a.
Barnoud, A., Pfeffer, J., Cazenave, A., Fraudeau, R., Rousseau, V., and Ablain, M.: Revisiting the global mean ocean mass budget over 2005–2020, Ocean Sci., 19, 321–334, https://doi.org/10.5194/os-19-321-2023, 2023b.
Camargo, C. M. L., Riva, R. E. M., Hermans, T. H. J., and Slangen, A. B. A.: Trends and uncertainties of mass-driven sea-level change in the satellite altimetry era, Earth Syst. Dynam., 13, 1351–1375, https://doi.org/10.5194/esd-13-1351-2022, 2022.
Caron, L., Ivins, E., Larour, E., Adhikari, S., Nilsson, J., and Blewitt, G.: GIA model statistics for GRACE hydrology, cryosphere, and ocean science, Geophys. Res. Lett., 45, 2203–2212, 2018.
Cazenave, A., and Moreira, L.: Contemporary sea-level changes from global to local scales: a review, P. Math. Phys. Eng. Sci., 25, 478, 20220049, https://doi.org/10.1098/rspa.2022.0049, 2022.
Chang, L., Tang, H., Wang, Q., and Sun, W.: Global thermosteric sea level change contributed by the deep ocean below 2000 m estimated by Argo and CTD data, Earth Planet. Sc. Lett., 524, 115727, https://doi.org/10.1016/j.epsl.2019.115727, 2019.
Cheng, M., Tapley, B. D., and Ries, J. C.: Deceleration in the Earth's oblateness, J. Geophys. Res., 118, 740–747, https://doi.org/10.1002/jgrb.50058, 2013.
Criado-Aldeanueva, F., Soto-Navarro, F. J., and García-Lafuente, J.: Large-scale atmospheric forcing influencing the long-term variability of Mediterranean heat and freshwater budgets: Climatic indices, J. Hydrometeorol., 15, 650–663, 2014.
Cheng, L., Trenberth, K. E., Gruber, N., Abraham, J. P., Fasullo, J. T., Li, G., Mann, M. E., Zhao, X., and Zhu, J.: Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle, J. Climate, 33, 10357–10381, https://doi.org/10.1175/JCLI-D-20-0366.1, 2020.
Chevan, A. and Sutherland, M.: Hierarchical Partitioning, Am. Stat. 45, 90–96, 1991.
Desportes, C., Garric, G., Régnier, C., Drévillon, M., Parent, L., Drillet, Y., Masina, S., Storto, A., Mirouze, I., Cipollone, A., Zuo, H., Balmaseda, M., Peterson, D., Wood, R., Jackson, L., Mulet, S., Grenier, E., and Gounou, A.: EU Copernicus Marine Service Quality Information Document for the Global Ocean Ensemble Physics Reanalysis, GLOBAL_REANALYSIS_PHY_001_031, Issue 1.1, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-031.pdf (last access: 24 July 2023), 2022.
Di Lorenzo, E., Schneider, N., Cobb, K. M., Franks, P. J. S., Chhak, K., Miller, A. J., McWilliams, J. C., Bograd, S. J., Arango, H., Curchitser, E., Powell, T. M., and Rivière, P.: North Pacific Gyre Oscillation links ocean climate and ecosystem change, Geophys. Res. Lett., 35, L08607, https://doi.org/10.1029/2007GL032838, 2008.
Efron, B.: Bootstrap methods: Another look at the jackknife, Ann. Stat., 7, 1–26, https://doi.org/10.1214/aos/1176344552, 1979.
EU Copernicus Marine Service Product: Global Ocean Ensemble Physics Reanalysis, Mercator Ocean International [data set], https://doi.org/10.48670/moi-00024, 2022a.
EU Copernicus Marine Service Product: Global Ocean Gridded L 4 Sea Surface Heights And Derived Variables Reprocessed 1993 Ongoing, Mercator Ocean International [data set], https://doi.org/10.48670/moi-00148, 2022b.
Fang, M., Li, X., Chen, H. W., and Chen, D.: Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales, Nat. Commun., 13, 1865, https://doi.org/10.1038/s41467-022-29523-x, 2022.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., N. R. Golledge, M. H., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
Frederikse, T., Riva, R. E. M., and King, M. A.: Ocean bottom deformation due to present-day mass redistribution and its impact on sea level observations, Geophys. Res. Lett., 44, 12306–12314, https://doi.org/10.1002/2017GL075419, 2017.
Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., and Wu, Y. H.: The causes of sea-level rise since 1900, Nature, 584, 393–397, https://doi.org/10.1038/s41586-020-2591-3, 2020.
Friedman, J. H., Hastie, T., and Tibshirani, R.: Regularization Paths for Generalized Linear Models via Coordinate Descent, J. Stat. Softw., 33, 1–22, https://doi.org/10.18637/jss.v033.i01, 2010.
Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., Ponte, R. M.: ECCO Version 4 Release 4, https://ecco-group.org/docs/v4r4_synopsis.pdf, last access: 7 August 2020.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates, J. Geophys. Res.-Oceans, 118, 6704–6716, https://doi.org/10.1002/2013JC009067, 2013.
Gounou, A., Drevillon, M., and Clavier, M.: EU Copernicus Marine Service Product User Manual for the Global Ocean Ensemble Physics Reanalysis, GLOBAL_REANALYSIS_PHY_001_031, Issue 1.1, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-031.pdf (last access: 24 July 2023), 2022.
Greatbatch, R. J.: A note on the representation of steric sea level in models that conserve volume rather than mass, J. Geophys. Res., 99, 12767–12771, https://doi.org/10.1029/94JC00847, 1994.
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Cozannet, G. L., Ponte, R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S.: Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global, Surv. Geophys., 40, 1251–1289, https://doi.org/10.1007/s10712-019-09525-z, 2019.
Groemping, U.: Relative Importance for Linear Regression in R: The Package relaimpo, J. Stat. Softw., 17, 1–27, https://doi.org/10.18637/jss.v017.i01, 2006.
Guérou, A., Meyssignac, B., Prandi, P., Ablain, M., Ribes, A., and Bignalet-Cazalet, F.: Current observed global mean sea level rise and acceleration estimated from satellite altimetry and the associated measurement uncertainty, Ocean Sci., 19, 431–451, https://doi.org/10.5194/os-19-431-2023, 2023.
Han, W., Meehl, G. A., Stammer, D., Hu, A., Hamlington, B., Kenigson, J., Palanisamy, H., and Thompson, P.: Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes, Surv. Geophys., 38, 217–250, https://doi.org/10.1007/s10712-016-9386-y, 2017.
Horvath, A., Murböck, M., Pail, R., and Horwath, M.: Decorrelation of GRACE time variable gravity field solutions using full covariance information, Geosciences, 8, 323, https://doi.org/10.3390/geosciences8090323, 2018.
Horwath, M., Gutknecht, B. D., Cazenave, A., Palanisamy, H. K., Marti, F., Marzeion, B., Paul, F., Le Bris, R., Hogg, A. E., Otosaka, I., Shepherd, A., Döll, P., Cáceres, D., Müller Schmied, H., Johannessen, J. A., Nilsen, J. E. Ø., Raj, R. P., Forsberg, R., Sandberg Sørensen, L., Barletta, V. R., Simonsen, S. B., Knudsen, P., Andersen, O. B., Ranndal, H., Rose, S. K., Merchant, C. J., Macintosh, C. R., von Schuckmann, K., Novotny, K., Groh, A., Restano, M., and Benveniste, J.: Global sea-level budget and ocean-mass budget, with a focus on advanced data products and uncertainty characterisation, Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, 2022.
Hughes, C. W., Williams, J., Blaker, A., Coward, A., and Stepanov, V.: A window on the deep ocean: The special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation, Prog. Oceanogr., 161, 19–46, https://doi.org/10.1016/j.pocean.2018.01.011, 2018.
Iglesias, I., Lorenzo, M. N., Lázaro, C., Fernandes, M. J., and Bastos, L.: Sea level anomaly in the North Atlantic and seas around Europe: Long-term variability and response to North Atlantic teleconnection patterns, Sci. Total Environ., 609, 861–874, 2017.
Ishii, M., Kimoto, M., Sakamoto, K., and Iwasaki, S. I.: Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses, J. Oceanogr., 62, 155–170, 2006.
Köhl, A., Stammer, D., and Cornuelle, B.: Interannual to Decadal Changes in the ECCO Global Synthesis, J. Phys. Oceanogr., 37, 313–337, 2007.
Köhl, A., Siegismund, F., and Stammer, D.: Impact of assimilating bottom pressure anomalies from GRACE on ocean circulation estimates, J. Geophys. Res., 117, C04032, https://doi.org/10.1029/2011JC007623, 2012.
Kusche, J., Schmidt, R., Petrovic, S., and Rietbroek, R.: Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model, J. Geodesy, 83, 903–913, https://doi.org/10.1007/s00190-009-0308-3, 2009.
Landerer, F. W. and Volkov, D. L.: The anatomy of recent large sea level fluctuations in the Mediterranean Sea, Geophys. Res. Lett., 40, 553–557, https://doi.org/10.1002/grl.50140, 2013.
Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T., Bertiger, W. I., Bettadpur, S. V., Byun, S. H., Dahle, C., Dobslaw, H., and Fahnestock, E.: Extending the global mass change data record: GRACE Follow-On instrument and science data performance, Geophys. Res. Lett., 47, e2020GL088306, https://doi.org/10.1029/2020GL088306, 2020.
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019, 2019.
Legeais, J.-F., Meyssignac, B., Faugère, Y., Guerou, A., Ablain, M., Pujol, M.-I., Dufau, C., and Dibarboure G: Copernicus Sea Level Space Observations: A Basis for Assessing Mitigation and Developing Adaptation Strategies to Sea Level Rise, Front. Mar. Sci., 8, 704721, https://doi.org/10.3389/fmars.2021.704721, 2021.
Lemoine, J.-M. and Reinquin, F.: Processing of SLR Observations at CNES, Newsletter EGSIEM, 3 pp., http://www.egsiem.eu/images/Newsletters/EGSIEM_newsletter_no10.pdf (last access: 10 September 2024), 2017.
Li, F., Orsolini, Y. J., Wang, H., Gao, Y., and He, S.: Atlantic multidecadal oscillation modulates the impacts of Arctic sea ice decline, Geophys. Res. Lett., 45, 2497–2506, https://doi.org/10.1002/2017GL076210, 2018.
Litzow, M. A., Malick, M. J., Bond, N. A., Cunningham, C. J., Gosselin, J. L., and Ward, E. J.: Quantifying a novel climate through changes in PDO-climate and PDO-salmon relationships, Geophys. Res. Lett., 47, e2020GL087972, https://doi.org/10.1029/2020GL087972, 2020.
Loomis, B. D., Rachlin, K. E., and Luthcke, S. B.: Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise, Geophys. Res. Lett., 46, 6910–6917, https://doi.org/10.1029/2019GL082929, 2019.
Madec G. and The NEMO System Team: NEMO ocean engine, note Du pole de modélisation (Paris, France: Institut Pierre-Simon Laplace), Zenodo [code], https://doi.org/10.5281/zenodo.3248739, 2017.
Magellium/LEGOS: Barystatic and manometric sea level changes from GRACE and GRACE-FO (Version 4) [NetCDF], CNES [data set], https://doi.org/10.24400/527896/A01-2023.011, 2023a.
Magellium/LEGOS: Barystatic and manometric sea level changes from a sea level budget approach (Version 2) [NetCDF], CNES [data set], https://doi.org/10.24400/527896/A01-2023.012, 2023b.
Marcos, M.: Ocean bottom pressure variability in the Mediterranean Sea and its relationship with sea level from a numerical mode, Global Planet. Change, 124, 10–21, 2015.
Mayer, M., Haimberger, L., Pietschnig, M., and Storto, A.: Facets of Arctic energy accumulation based on observations and reanalyses 2000–2015, Geophys. Res. Lett., 43, 10420–10429, https://doi.org/10.1002/2016GL070557, 2016.
Mayer, M., Tietsche, S., Haimberger, L., Tsubouchi, T., Mayer, J., and Zuo, H.: An Improved Estimate of the Coupled Arctic Energy Budget, J. Climate, 32, 7915–7934, https://doi.org/10.1175/JCLI-D-19-0233.1, 2019.
Merrifield, M. A. and Thompson, P. R.: Interdecadal sea level variations in the Pacific: Distinctions between the tropics and extratropics, Geophys. Res. Lett., 45, 6604–6610, 2018.
Muis, S., Haigh, I. D., Guimarães Nobre, G., Aerts, J. C. J. H., and Ward, P. J.: Influence of El Niño-Southern Oscillation on global coastal flooding, Earth's Future, 6, 1311–1322, https://doi.org/10.1029/2018EF000909, 2018.
Olkin, I. and Finn, J. D.: Correlations redux, Psychol. Bull., 118, 155–164, https://doi.org/10.1037/0033-2909.118.1.155, 1995.
Oppenheimer, M., Abdelgawad, A., Hay, J., Glavovic, B., Cai, R., Marzeion, B., Hinkel, J., Cifuentes-Jara, M., Meyssignac, B., Van De Wal, R., DeConto, R., Sebesvari, Z., Magnan, A., and Ghosh, Hay, T. J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 321–445, https://doi.org/10.1017/9781009157964.006, 2019.
Peltier, W. R.: Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G (VM2) Model and GRACE, Annu. Rev. Earth Pl. Sc., 32, 111–149, 2004.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice age terminal deglaciation: the global ICE-6GC (VM5a) model, J. Geophys. Res., 120, 450–487, 2015.
Peralta-Ferriz, C., Morison, J. H., Wallace, J. M., Bonin, J. A., and Zhang, J.: Arctic Ocean Circulation Patterns Revealed by GRACE, J. Climate, 27, 1445–1468, https://doi.org/10.1175/JCLI-D-13-00013.1, 2014.
Pfeffer, J., Cazenave, A., and Barnoud, A.: Analysis of the interannual variability in satellite gravity solutions: detection of climate modes fingerprints in water mass displacements across continents and oceans, Clim. Dynam., 58, 1065–1084, https://doi.org/10.1007/s00382-021-05953-z, 2022.
Prandi, P., Meyssignac, B., Ablain, M., Spada, G., Ribes, A., and Benveniste, J.: Local sea level trends, accelerations and uncertainties over 1993–2019, Sci. Data, 8, 1, https://doi.org/10.1038/s41597-020-00786-7, 2021.
Previdi, M., Smith, K. L., and Polvani, L. M.: Arctic amplification of climate change: a review of underlying mechanisms, Environ. Res. Lett., 16, 093003, https://doi.org/10.1088/1748-9326/ac1c29, 2021.
Pujol, M.-I.: EU Copernicus Marine Service Product User Manual for the For Sea Level Altimeter products, Issue 7.0, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-SL-PUM-008-032-068.pdf (last access: 24 July 2023), 2022.
Pujol, M.-I., Taburet, G., and SL-TAC team: EU Copernicus Marine Service Quality Information Document for the Sea Level TAC – DUACS products, Issue 8.2, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-SL-QUID-008-032-068.pdf (last access: 24 July 2023), 2022.
Revelle, W.: Psych: Procedures for Psychological, Psychometric, and Personality Research, R package version 2.3.6, Northwestern University, Evanston, Illinois [code], https://CRAN.R-project.org/package=psych (last access: 27 June 2024), 2023.
Schindelegger, M., Harker, A. A., Ponte, R. M., Dobslaw, H., and Salstein, D. A.: Convergence of daily GRACE solutions and models of submonthly ocean bottom pressure variability, J. Geophys. Res.-Oceans, 126, e2020JC017031, https://doi.org/10.1029/2020JC017031, 2021.
Steiger, J. H.: Tests for comparing elements of a correlation matrix, Psychol. Bull., 87, 245–251, 1980.
Storto, A. and Yang, C.: Acceleration of the ocean warming from 1961 to 2022 unveiled by large-ensemble reanalyses, Nat. Commun., 15, 545, https://doi.org/10.1038/s41467-024-44749-7, 2024.
Storto, A., Dobricic, S., Masina, S., and Di Pietro, P.: Assimilating Along-Track Altimetric Observations through Local Hydrostatic Adjustment in a Global Ocean Variational Assimilation System, Mon. Weather Rev., 139, 738–754, https://doi.org/10.1175/2010MWR3350.1, 2011.
Storto A, Masina, S., Balmaseda, M., Guinehut, S., Xue, Y., Szekely, T., Fukumori, I., Forget, G., Chang, Y.-S., Good, S. A., Köhl, A., Vernieres, G., Ferry, N., Peterson, K. A., Behringer, D., Ishii, M., Masuda, S., Fujii, Y., Toyoda, T., Yin, Y., Valdivieso, M., Barnier, B., Boyer, T., Lee, T., Gourrion, J., Wang, O., Heimbach, P., Rosati, A., Kovach, R., Hernandez, F., Martin, M. J., Kamachi, M., Kuragano, T., Mogensen, K., Alves, O., Haines, K., and Wang, X.: Steric sea level variability (1993–2010) in an ensemble of ocean reanalyses and objective analyses, Clim. Dynam., 49, 709–729, https://doi.org/10.1007/s00382-015-2554-9, 2017.
Storto, A., Bonaduce, A., Feng, X., and Yang, C.: Steric Sea Level Changes from Ocean Reanalyses at Global and Regional Scales, Water, 11, 1987, https://doi.org/10.3390/w11101987, 2019a.
Storto, A., Alvera-Azcárate, A., Balmaseda, M. A., Barth, A., Chevallier, M., Counillon, F., Domingues, C. M., Drevillon, M., Drillet, Y., Forget, G., Garric, G., Haines, K., Hernandez, F., Iovino, D., Jackson, L. C., Lellouche, J.-M., Masina, S., Mayer, M., Oke, P. R., Penny, S. G., Peterson, K. A., Yang, C., and Zuo, H.: Ocean Reanalyses: Recent Advances and Unsolved Challenges, Front. Mar. Sci., 6, 418, https://doi.org/10.3389/fmars.2019.00418, 2019b.
Storto, A., Masina, S., Simoncelli, S., Iovino, D., Cipollone, A., Drevillon, M., Drillet, Y., von Schuckman, K., Parent, L., Garric, G., Greiner, E., Desportes, C., Zuo, H., Balmaseda, M., and Peterson, K. A.: The added value of the multi-system spread information for ocean heat content and steric sea level investigations in the CMEMS GREP ensemble reanalysis product, Clim. Dynam., 53, 287–312, https://doi.org/10.1007/s00382-018-4585-5, 2019c.
Storto, A., Cheng, L., and Yang, C.: Revisiting the 2003–18 Deep Ocean Warming through Multiplatform Analysis of the Global Energy Budget, J. Climate, 35, 4701–4717, https://doi.org/10.1175/JCLI-D-21-0726.1, 2022.
Sun, Y., Ditmar, P., and Riva, R.: Observed changes in the Earth's dynamic oblateness from GRACE data and geophysical models, J. Geod., 90, 81–89, https://doi.org/10.1007/s00190-015-0852-y, 2016.
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M. M.: GRACE measurements of mass variability in the Earth system, Science, 305, 503–505, https://doi.org/10.1126/science.1099192, 2004.
Tibshirani, R.: Regression shrinkage and selection via the lasso, J. Roy. Stat. Soc. B, 58, 267–288, 1996.
Tibshirani, R.: The LASSO method for variable selection in the Cox model, Statist. Med., 16, 385-395, https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3, 1997.
Tsimplis, M. N. and Josey, S. A.: Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic, Geophys. Res. Lett., 28, 803–806, https://doi.org/10.1029/2000GL012098, 2001.
Volkov, D. L., Baringer, M., Smeed, D., Johns, W., and Landerer, F. W.: Teleconnection between the Atlantic Meridional Overturning Circulation and Sea Level in the Mediterranean Sea, J. Climate, 32, 935–955, https://doi.org/10.1175/JCLI-D-18-0474.1, 2019.
Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Bhaskar, T. V. S. U., Buck, J. J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., André, X., Poffa, N., Yashayaev, I., Barker, P. M., Guinehut, S., Belbéoch, M., Ignaszewski, M., Baringer, M. O., Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N., Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P. J. H., Cancouët, R., Coatanoan, C., Dobbler, D., Juan, A. G., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourlès, B., Claustre, H., D'Ortenzio, F., Le Reste, S., Le Traon, P.-Y., Rannou, J.-P., Saout-Grit, C., Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G., Poulain, P.-M., Vélez-Belchí, P., Suga, T., Ando, K., Iwasaska, N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., van Wijk, E. M., Carse, F., Donnelly, M., Gould, W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Turton, J., Rama Rao, E. P., Ravichandran, M., Freeland, H. J., Gaboury, I., Gilbert, D., Greenan, B. J. W., Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K., Jo, H., Kim, S.-D., and Park, H.-M.: Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats, Front. Mar. Sci., 7, 700, https://doi.org/10.3389/fmars.2020.00700, 2020.
Short summary
The variability in the manometric sea level (i.e. the sea level mass component) in three ocean basins is investigated in this study using three different methods (reanalyses, gravimetry, and altimetry in combination with in situ observations). We identify the emerging long-term signals, the consistency of the datasets, and the influence of large-scale climate modes on the regional manometric sea level variations at both seasonal and interannual timescales.
The variability in the manometric sea level (i.e. the sea level mass component) in three ocean...
Altmetrics
Final-revised paper
Preprint