Articles | Volume 3-slre1
https://doi.org/10.5194/sp-3-slre1-5-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-3-slre1-5-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sea Level Rise in Europe: Impacts and consequences
Roderik van de Wal
CORRESPONDING AUTHOR
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
Department of Physical Geography, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Mercator Ocean International, 31400 Toulouse, France
Debora Bellafiore
ISMAR – Institute of Marine Sciences, CNR – National Research Council of Italy, 30122 Venice, Italy
Paula Camus
Geomatics and Ocean Engineering Group, Department of Sciences and Technologies of Water and Environment, University of Cantabria, 39005 Santander, Spain
Christian Ferrarin
ISMAR – Institute of Marine Sciences, CNR – National Research Council of Italy, 30122 Venice, Italy
Gualbert Oude Essink
Department of Physical Geography, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Deltares, Boussinesqweg 1, 2629 HV Delft, the Netherlands
Ivan D. Haigh
School of Ocean and Earth Science, University of Southampton, European Way, Southampton, SO14 3ZH, UK
Piero Lionello
Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
Arjen Luijendijk
Deltares, Boussinesqweg 1, 2629 HV Delft, the Netherlands
Alexandra Toimil
IHCantabria – Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Isabel Torres 15, 39011 Santander, Spain
Joanna Staneva
Department on Hydrodynamics and Data Assimilation, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
Michalis Vousdoukas
Department of Marine Sciences, University the Aegean, 81100 Mytilene, Greece
Related authors
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Jorjo Bernales, Constantijn J. Berends, Willem Jan van de Berg, and Roderik S. W. van de Wal
The Cryosphere, 19, 283–301, https://doi.org/10.5194/tc-19-283-2025, https://doi.org/10.5194/tc-19-283-2025, 2025
Short summary
Short summary
In this study, we present an improved way of representing ice thickness change rates in an ice sheet model. We apply this method using two ice sheet models of the Antarctic Ice Sheet. We found that the two largest outlet glaciers on the Antarctic Ice Sheet, Thwaites Glacier and Pine Island Glacier, will collapse without further warming on a timescale of centuries. This would cause a sea level rise of about 1.2 m globally.
Caroline Jacoba van Calcar, Pippa L. Whitehouse, Roderik S. W. van de Wal, and Wouter van der Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2982, https://doi.org/10.5194/egusphere-2024-2982, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The bedrock response to a melting Antarctic ice sheet delays grounding line retreat by up to 130 years and reduces sea level rise by up to 23% compared to excluding this effect. Current ice sheet models often use computationally fast but simplified Earth models that do not capture this feedback well. We recommend parameters for simple Earth models that approximate bedrock uplift and ice sheet evolution from a complex ice sheet - Earth model to improve sea level projections of the next centuries.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Bart van den Hurk, Nadia Pinardi, Alexander Bisaro, Giulia Galluccio, José A. Jiménez, Kate Larkin, Angélique Melet, Lavinia Giulia Pomarico, Kristin Richter, Kanika Singh, Roderik van de Wal, and Gundula Winter
State Planet, 3-slre1, 1, https://doi.org/10.5194/sp-3-slre1-1-2024, https://doi.org/10.5194/sp-3-slre1-1-2024, 2024
Short summary
Short summary
The Summary for Policymakers compiles findings from “Sea Level Rise in Europe: 1st Assessment Report of the Knowledge Hub on Sea Level Rise”. It covers knowledge gaps, observations, projections, impacts, adaptation measures, decision-making principles, and governance challenges. It provides information for each European basin (Mediterranean, Black Sea, North Sea, Baltic Sea, Atlantic, and Arctic) and aims to assist policymakers in enhancing the preparedness of European coasts for sea level rise.
Meike D. W. Scherrenberg, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-57, https://doi.org/10.5194/cp-2024-57, 2024
Revised manuscript under review for CP
Short summary
Short summary
Glacial cycle duration changed from 41.000 to 100.000 years during the Mid-Pleistocene Transition (MPT), but the cause is still under debate. We simulate the MPT with an ice-sheet model forced by prescribed CO2 and insolation, and simple ice-climate interactions. Before the MPT, glacial cycles follow insolation. After the MPT, low CO2 levels may compensate warming at insolation maxima, increasing the length of glacial cycles until the North American ice sheet becomes large and thereby unstable.
Meike D. W. Scherrenberg, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past, 20, 1761–1784, https://doi.org/10.5194/cp-20-1761-2024, https://doi.org/10.5194/cp-20-1761-2024, 2024
Short summary
Short summary
During Late Pleistocene glacial cycles, the Eurasian and North American ice sheets grew and melted, resulting in over 100 m of sea-level change. Studying the melting of past ice sheets can improve our understanding of how ice sheets might respond in the future. In this study, we find that melting increases due to proglacial lakes forming at the margins of the ice sheets, primarily due to the reduced basal friction of floating ice. Furthermore, bedrock uplift rates can strongly influence melting.
Kim de Wit, Kim M. Cohen, and Roderik S. W. Van de Wal
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-271, https://doi.org/10.5194/essd-2024-271, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In the Holocene, deltas and coastal plains developed due to relative sea level rise (RSLR). Past coastal and inland water levels are preserved in geological indicators, like basal peats. We present a data set of 712 Holocene water-level indicators from the Dutch coastal plain, relevant for studying RSLR and regional subsidence, compiled in HOLSEA workbook format. Our new, internally consistent, expanded documentation encourages multiple data uses and to report RSLR uncertainties transparently.
Daniel Francis James Gunning, Kerim Hestnes Nisancioglu, Emilie Capron, and Roderik van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-1384, https://doi.org/10.5194/egusphere-2024-1384, 2024
Short summary
Short summary
This work documents the first results from ZEMBA: an energy balance model of the climate system. The model is a computationally efficient tool designed to study the response of climate to changes in the Earth’s orbit. We demonstrate ZEMBA reproduces many features of the Earth’s climate for both the pre-industrial period and the Earth’s most recent cold extreme- the Last Glacial Maximum. We intend to develop ZEMBA further and investigate the glacial cycles of the last 2.5 million years.
Constantijn J. Berends, Victor Azizi, Jorge Bernales, and Roderik S. W. van de Wal
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-5, https://doi.org/10.5194/gmd-2024-5, 2024
Revised manuscript under review for GMD
Short summary
Short summary
Ice-sheet models are computer programs that can simulate how the Greenland and Antarctic ice sheets will evolve in the future. The accuracy of these models depends on their resolution: how small the details are that the model can resolve. We have created a model with a variable resolution, which can resolve a lot of detail in areas where lots of changes happen in the ice, and less detail in areas where the ice does not move so much. This makes the model both accurate and fast.
Lennert B. Stap, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past, 20, 257–266, https://doi.org/10.5194/cp-20-257-2024, https://doi.org/10.5194/cp-20-257-2024, 2024
Short summary
Short summary
Analysing simulations of Antarctic Ice Sheet variability during the early and mid-Miocene (23 to 14 Myr ago), we find that the ice sheet area adapts faster and more strongly than volume to climate change on quasi-orbital timescales. Considering the recent discovery that ice area, rather than volume, influences deep-ocean temperatures, this implies that the Miocene Antarctic Ice Sheet affects deep-ocean temperatures more than its volume suggests.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Caroline J. van Calcar, Roderik S. W. van de Wal, Bas Blank, Bas de Boer, and Wouter van der Wal
Geosci. Model Dev., 16, 5473–5492, https://doi.org/10.5194/gmd-16-5473-2023, https://doi.org/10.5194/gmd-16-5473-2023, 2023
Short summary
Short summary
The waxing and waning of the Antarctic ice sheet caused the Earth’s surface to deform, which is stabilizing the ice sheet and mainly determined by the spatially variable viscosity of the mantle. Including this feedback in model simulations led to significant differences in ice sheet extent and ice thickness over the last glacial cycle. The results underline and quantify the importance of including this local feedback effect in ice sheet models when simulating the Antarctic ice sheet evolution.
Erwin Lambert, André Jüling, Roderik S. W. van de Wal, and Paul R. Holland
The Cryosphere, 17, 3203–3228, https://doi.org/10.5194/tc-17-3203-2023, https://doi.org/10.5194/tc-17-3203-2023, 2023
Short summary
Short summary
A major uncertainty in the study of sea level rise is the melting of the Antarctic ice sheet by the ocean. Here, we have developed a new model, named LADDIE, that simulates this ocean-driven melting of the floating parts of the Antarctic ice sheet. This model simulates fine-scale patterns of melting and freezing and requires significantly fewer computational resources than state-of-the-art ocean models. LADDIE can be used as a new tool to force high-resolution ice sheet models.
Iris Keizer, Dewi Le Bars, Cees de Valk, André Jüling, Roderik van de Wal, and Sybren Drijfhout
Ocean Sci., 19, 991–1007, https://doi.org/10.5194/os-19-991-2023, https://doi.org/10.5194/os-19-991-2023, 2023
Short summary
Short summary
Using tide gauge observations, we show that the acceleration of sea-level rise (SLR) along the coast of the Netherlands started in the 1960s but was masked by wind field and nodal-tide variations. This finding aligns with global SLR observations and expectations based on a physical understanding of SLR related to global warming.
Constantijn J. Berends, Roderik S. W. van de Wal, Tim van den Akker, and William H. Lipscomb
The Cryosphere, 17, 1585–1600, https://doi.org/10.5194/tc-17-1585-2023, https://doi.org/10.5194/tc-17-1585-2023, 2023
Short summary
Short summary
The rate at which the Antarctic ice sheet will melt because of anthropogenic climate change is uncertain. Part of this uncertainty stems from processes occurring beneath the ice, such as the way the ice slides over the underlying bedrock.
Inversion methodsattempt to use observations of the ice-sheet surface to calculate how these sliding processes work. We show that such methods cannot fully solve this problem, so a substantial uncertainty still remains in projections of sea-level rise.
Meike D. W. Scherrenberg, Constantijn J. Berends, Lennert B. Stap, and Roderik S. W. van de Wal
Clim. Past, 19, 399–418, https://doi.org/10.5194/cp-19-399-2023, https://doi.org/10.5194/cp-19-399-2023, 2023
Short summary
Short summary
Ice sheets have a large effect on climate and vice versa. Here we use an ice sheet computer model to simulate the last glacial cycle and compare two methods, one that implicitly includes these feedbacks and one that does not. We found that when including simple climate feedbacks, the North American ice sheet develops from two domes instead of many small domes. Each ice sheet melts slower when including feedbacks. We attribute this difference mostly to air temperature–ice sheet interactions.
Constantijn J. Berends, Heiko Goelzer, Thomas J. Reerink, Lennert B. Stap, and Roderik S. W. van de Wal
Geosci. Model Dev., 15, 5667–5688, https://doi.org/10.5194/gmd-15-5667-2022, https://doi.org/10.5194/gmd-15-5667-2022, 2022
Short summary
Short summary
The rate at which marine ice sheets such as the West Antarctic ice sheet will retreat in a warming climate and ocean is still uncertain. Numerical ice-sheet models, which solve the physical equations that describe the way glaciers and ice sheets deform and flow, have been substantially improved in recent years. Here we present the results of several years of work on IMAU-ICE, an ice-sheet model of intermediate complexity, which can be used to study ice sheets of both the past and the future.
Lennert B. Stap, Constantijn J. Berends, Meike D. W. Scherrenberg, Roderik S. W. van de Wal, and Edward G. W. Gasson
The Cryosphere, 16, 1315–1332, https://doi.org/10.5194/tc-16-1315-2022, https://doi.org/10.5194/tc-16-1315-2022, 2022
Short summary
Short summary
To gain understanding of how the Antarctic ice sheet responded to CO2 changes during past warm climate conditions, we simulate its variability during the Miocene. We include feedbacks between the ice sheet and atmosphere in our model and force the model using time-varying climate conditions. We find that these feedbacks reduce the amplitude of ice volume variations. Erosion-induced changes in the bedrock below the ice sheet that manifested during the Miocene also have a damping effect.
Constantijn J. Berends, Heiko Goelzer, and Roderik S. W. van de Wal
Geosci. Model Dev., 14, 2443–2470, https://doi.org/10.5194/gmd-14-2443-2021, https://doi.org/10.5194/gmd-14-2443-2021, 2021
Short summary
Short summary
The largest uncertainty in projections of sea-level rise comes from ice-sheet retreat. To better understand how these ice sheets respond to the changing climate, ice-sheet models are used, which must be able to reproduce both their present and past evolution. We have created a model that is fast enough to simulate an ice sheet at a high resolution over the course of an entire 120 000-year glacial cycle. This allows us to study processes that cannot be captured by lower-resolution models.
Constantijn J. Berends, Bas de Boer, and Roderik S. W. van de Wal
Clim. Past, 17, 361–377, https://doi.org/10.5194/cp-17-361-2021, https://doi.org/10.5194/cp-17-361-2021, 2021
Short summary
Short summary
For the past 2.6 million years, the Earth has experienced glacial cycles, where vast ice sheets periodically grew to cover large parts of North America and Eurasia. In the earlier part of this period, this happened every 40 000 years. This value changed 1.2 million years ago to 100 000 years: the Mid-Pleistocene Transition. We investigate this interesting period using an ice-sheet model, studying the interactions between ice sheets and the global climate.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Sophie Nowicki, Heiko Goelzer, Hélène Seroussi, Anthony J. Payne, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Patrick Alexander, Xylar S. Asay-Davis, Alice Barthel, Thomas J. Bracegirdle, Richard Cullather, Denis Felikson, Xavier Fettweis, Jonathan M. Gregory, Tore Hattermann, Nicolas C. Jourdain, Peter Kuipers Munneke, Eric Larour, Christopher M. Little, Mathieu Morlighem, Isabel Nias, Andrew Shepherd, Erika Simon, Donald Slater, Robin S. Smith, Fiammetta Straneo, Luke D. Trusel, Michiel R. van den Broeke, and Roderik van de Wal
The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, https://doi.org/10.5194/tc-14-2331-2020, 2020
Short summary
Short summary
This paper describes the experimental protocol for ice sheet models taking part in the Ice Sheet Model Intercomparion Project for CMIP6 (ISMIP6) and presents an overview of the atmospheric and oceanic datasets to be used for the simulations. The ISMIP6 framework allows for exploring the uncertainty in 21st century sea level change from the Greenland and Antarctic ice sheets.
Heiko Goelzer, Brice P. Y. Noël, Tamsin L. Edwards, Xavier Fettweis, Jonathan M. Gregory, William H. Lipscomb, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-2020, https://doi.org/10.5194/tc-14-1747-2020, 2020
Short summary
Short summary
Future sea-level change projections with process-based ice sheet models are typically driven with surface mass balance forcing derived from climate models. In this work we address the problems arising from a mismatch of the modelled ice sheet geometry with the one used by the climate model. The proposed remapping method reproduces the original forcing data closely when applied to the original geometry and produces a physically meaningful forcing when applied to different modelled geometries.
Heiko Goelzer, Violaine Coulon, Frank Pattyn, Bas de Boer, and Roderik van de Wal
The Cryosphere, 14, 833–840, https://doi.org/10.5194/tc-14-833-2020, https://doi.org/10.5194/tc-14-833-2020, 2020
Short summary
Short summary
In our ice-sheet modelling experience and from exchange with colleagues in different groups, we found that it is not always clear how to calculate the sea-level contribution from a marine ice-sheet model. This goes hand in hand with a lack of documentation and transparency in the published literature on how the sea-level contribution is estimated in different models. With this brief communication, we hope to stimulate awareness and discussion in the community to improve on this situation.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Constantijn J. Berends, Bas de Boer, Aisling M. Dolan, Daniel J. Hill, and Roderik S. W. van de Wal
Clim. Past, 15, 1603–1619, https://doi.org/10.5194/cp-15-1603-2019, https://doi.org/10.5194/cp-15-1603-2019, 2019
Short summary
Short summary
The Late Pliocene, 3.65–2.75 million years ago, is the most recent period in Earth's history that was warmer than the present. This makes it interesting for climatological research, because it provides a possible analogue for the near future. We used a coupled ice-sheet–climate model to simulate the behaviour of these systems during this period. We show that the warmest moment saw a sea-level rise of 8–14 m, with a CO2 concentration of 320–400 ppmv.
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Constantijn J. Berends, Bas de Boer, and Roderik S. W. van de Wal
Geosci. Model Dev., 11, 4657–4675, https://doi.org/10.5194/gmd-11-4657-2018, https://doi.org/10.5194/gmd-11-4657-2018, 2018
Short summary
Short summary
We have devised a novel way to couple a climate model to an ice-sheet model. Usually, climate models are too slow to simulate more than a few centuries, whereas our new model set-up can simulate a full 120 000-year ice age in about 12 h. This makes it possible to look at the interactions between global climate and ice sheets on long timescales, something which is relevant for both research into past climate and future projections.
Eef C. H. van Dongen, Nina Kirchner, Martin B. van Gijzen, Roderik S. W. van de Wal, Thomas Zwinger, Gong Cheng, Per Lötstedt, and Lina von Sydow
Geosci. Model Dev., 11, 4563–4576, https://doi.org/10.5194/gmd-11-4563-2018, https://doi.org/10.5194/gmd-11-4563-2018, 2018
Short summary
Short summary
Ice flow forced by gravity is governed by the full Stokes (FS) equations, which are computationally expensive to solve. Therefore, approximations to the FS equations are used, especially when modeling an ice sheet on long time spans. Here, we report a combination of an approximation with the FS equations that allows simulating the dynamics of ice sheets over long time spans without introducing artifacts caused by application of approximations in parts of the domain where they are not valid.
Sarah L. Bradley, Thomas J. Reerink, Roderik S. W. van de Wal, and Michiel M. Helsen
Clim. Past, 14, 619–635, https://doi.org/10.5194/cp-14-619-2018, https://doi.org/10.5194/cp-14-619-2018, 2018
Heiko Goelzer, Sophie Nowicki, Tamsin Edwards, Matthew Beckley, Ayako Abe-Ouchi, Andy Aschwanden, Reinhard Calov, Olivier Gagliardini, Fabien Gillet-Chaulet, Nicholas R. Golledge, Jonathan Gregory, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Joseph H. Kennedy, Eric Larour, William H. Lipscomb, Sébastien Le clec'h, Victoria Lee, Mathieu Morlighem, Frank Pattyn, Antony J. Payne, Christian Rodehacke, Martin Rückamp, Fuyuki Saito, Nicole Schlegel, Helene Seroussi, Andrew Shepherd, Sainan Sun, Roderik van de Wal, and Florian A. Ziemen
The Cryosphere, 12, 1433–1460, https://doi.org/10.5194/tc-12-1433-2018, https://doi.org/10.5194/tc-12-1433-2018, 2018
Short summary
Short summary
We have compared a wide spectrum of different initialisation techniques used in the ice sheet modelling community to define the modelled present-day Greenland ice sheet state as a starting point for physically based future-sea-level-change projections. Compared to earlier community-wide comparisons, we find better agreement across different models, which implies overall improvement of our understanding of what is needed to produce such initial states.
Brice Noël, Willem Jan van de Berg, J. Melchior van Wessem, Erik van Meijgaard, Dirk van As, Jan T. M. Lenaerts, Stef Lhermitte, Peter Kuipers Munneke, C. J. P. Paul Smeets, Lambertus H. van Ulft, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, https://doi.org/10.5194/tc-12-811-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional climate model RACMO2.3p2 at 11 km resolution (1958–2016) over the Greenland ice sheet (GrIS). The model successfully reproduces the present-day climate and surface mass balance, i.e. snowfall minus meltwater run-off, of the GrIS compared to in situ observations. Since run-off from marginal narrow glaciers is poorly resolved at 11 km, further statistical downscaling to 1 km resolution is required for mass balance studies.
Werner M. J. Lazeroms, Adrian Jenkins, G. Hilmar Gudmundsson, and Roderik S. W. van de Wal
The Cryosphere, 12, 49–70, https://doi.org/10.5194/tc-12-49-2018, https://doi.org/10.5194/tc-12-49-2018, 2018
Short summary
Short summary
Basal melting of ice shelves is a major factor in the decline of the Antarctic Ice Sheet, which can contribute significantly to sea-level rise. Here, we investigate a new basal melt model based on the dynamics of meltwater plumes. For the first time, this model is applied to all Antarctic ice shelves. The model results in a realistic melt-rate pattern given suitable data for the topography and ocean temperature, making it a promising tool for future simulations of the Antarctic Ice Sheet.
Renske C. de Winter, Thomas J. Reerink, Aimée B. A. Slangen, Hylke de Vries, Tamsin Edwards, and Roderik S. W. van de Wal
Nat. Hazards Earth Syst. Sci., 17, 2125–2141, https://doi.org/10.5194/nhess-17-2125-2017, https://doi.org/10.5194/nhess-17-2125-2017, 2017
Short summary
Short summary
This paper provides a full range of possible future sea levels on a regional scale, since it includes extreme, but possible, contributions to sea level change from dynamical mass loss from the Greenland and Antarctica ice sheets. In contrast to the symmetric distribution used in the IPCC report, it is found that an asymmetric distribution toward high sea level change values locally can increase the mean sea level by 1.8 m this century.
Lennert B. Stap, Roderik S. W. van de Wal, Bas de Boer, Richard Bintanja, and Lucas J. Lourens
Clim. Past, 13, 1243–1257, https://doi.org/10.5194/cp-13-1243-2017, https://doi.org/10.5194/cp-13-1243-2017, 2017
Short summary
Short summary
We show the results of transient simulations with a coupled climate–ice sheet model over the past 38 million years. The CO2 forcing of the model is inversely obtained from a benthic δ18O stack. These simulations enable us to study the influence of ice sheet variability on climate change on long timescales. We find that ice sheet–climate interaction strongly enhances Earth system sensitivity and polar amplification.
Michiel M. Helsen, Roderik S. W. van de Wal, Thomas J. Reerink, Richard Bintanja, Marianne S. Madsen, Shuting Yang, Qiang Li, and Qiong Zhang
The Cryosphere, 11, 1949–1965, https://doi.org/10.5194/tc-11-1949-2017, https://doi.org/10.5194/tc-11-1949-2017, 2017
Short summary
Short summary
Ice sheets reflect most incoming solar radiation back into space due to their high reflectivity (albedo). The albedo of ice sheets changes as a function of, for example, liquid water content and ageing of snow. In this study we have improved the description of albedo over the Greenland ice sheet in a global climate model. This is an important step, which also improves estimates of the annual ice mass gain or loss over the ice sheet using this global climate model.
Markella Prokopiou, Patricia Martinerie, Célia J. Sapart, Emmanuel Witrant, Guillaume Monteil, Kentaro Ishijima, Sophie Bernard, Jan Kaiser, Ingeborg Levin, Thomas Blunier, David Etheridge, Ed Dlugokencky, Roderik S. W. van de Wal, and Thomas Röckmann
Atmos. Chem. Phys., 17, 4539–4564, https://doi.org/10.5194/acp-17-4539-2017, https://doi.org/10.5194/acp-17-4539-2017, 2017
Short summary
Short summary
Nitrous oxide is the third most important anthropogenic greenhouse gas with an increasing mole fraction. To understand its natural and anthropogenic sources
we employ isotope measurements. Results show that while the N2O mole fraction increases, its heavy isotope content decreases. The isotopic changes observed underline the dominance of agricultural emissions especially at the early part of the record, whereas in the later decades the contribution from other anthropogenic sources increases.
Constantijn J. Berends and Roderik S. W. van de Wal
Geosci. Model Dev., 9, 4451–4460, https://doi.org/10.5194/gmd-9-4451-2016, https://doi.org/10.5194/gmd-9-4451-2016, 2016
Short summary
Short summary
This paper describes several improvements to the so-called "flood-fill algorithm" – a computer program widely known for its use in the "paint bucket" tool in several drawing programs such as MS Paint. However, it can also be used to determine the extent and depth of lakes in a topography map, which is useful in hydrology and climatology. In such cases, the default algorithm can be too slow to be of much use. Our improvements can make it up to 100 times faster, making it much more feasible.
Thomas J. Reerink, Willem Jan van de Berg, and Roderik S. W. van de Wal
Geosci. Model Dev., 9, 4111–4132, https://doi.org/10.5194/gmd-9-4111-2016, https://doi.org/10.5194/gmd-9-4111-2016, 2016
Short summary
Short summary
Ice sheets are part of the climate system and interact with the atmosphere and the ocean. OBLIMAP is a powerful tool to map climate fields between GCMs and ISMs (ice sheet models), which run on grids that differ in curvature, resolution and extent. OBLIMAP uses optimal aligned oblique projections, which minimize area distortions. OBLIMAP 2.0 allows for high-frequency embedded coupling and masked mapping. A fast search strategy realizes a huge performance gain and enables high-resolution mapping.
Peter Köhler, Lennert B. Stap, Anna S. von der Heydt, Bas de Boer, and Roderik S. W. van de Wal
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-23, https://doi.org/10.5194/cp-2016-23, 2016
Revised manuscript not accepted
Short summary
Short summary
Evidence indicate that specific equilibrium climate sensitivity, the global annual mean surface temperature change as a response to a change in radiative forcing, is state dependent. We here show that the interpretation of data in the state-dependent case is not straightforward. We analyse the differences of a point-wise approach and one based on a piece-wise linear analysis, combine both, compare with potential model results and apply the theoretical concepts to data of the last 800 kyr.
P. Köhler, B. de Boer, A. S. von der Heydt, L. B. Stap, and R. S. W. van de Wal
Clim. Past, 11, 1801–1823, https://doi.org/10.5194/cp-11-1801-2015, https://doi.org/10.5194/cp-11-1801-2015, 2015
Short summary
Short summary
We find that the specific equilibrium climate sensitivity due to radiative forcing of CO2 and land ice albedo has been state-dependent for the last 2.1Myr (most of the Pleistocene). Its value is ~45% larger during intermediate glaciated climates and interglacial periods than during Pleistocene full glacial conditions. The state dependency is mainly caused by a latitudinal dependency in ice sheet area changes. Due to uncertainties in CO2, firm conclusions for the Pliocene are not yet possible.
B. Noël, W. J. van de Berg, E. van Meijgaard, P. Kuipers Munneke, R. S. W. van de Wal, and M. R. van den Broeke
The Cryosphere, 9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015, https://doi.org/10.5194/tc-9-1831-2015, 2015
Short summary
Short summary
We compare Greenland Ice Sheet surface mass balance (SMB) from the updated polar version of the regional climate model RACMO2.3 and the previous version 2.1. RACMO2.3 has an adjusted rainfall-to-snowfall conversion favouring summer snowfall over rainfall. Enhanced summer snowfall reduce melt rates in the ablation zone by covering dark ice with highly reflective fresh snow. This improves the modelled SMB-elevation gradient and surface energy balance compared to observations in west Greenland.
L. G. van der Wel, H. A. Been, R. S. W. van de Wal, C. J. P. P. Smeets, and H. A. J. Meijer
The Cryosphere, 9, 1089–1103, https://doi.org/10.5194/tc-9-1089-2015, https://doi.org/10.5194/tc-9-1089-2015, 2015
Short summary
Short summary
We performed 2H isotope diffusion measurements in the upper 3 metres of firn at Summit, Greenland, by following over a 4-year period isotope-enriched snow that we deposited.
We found that the diffusion process was much less rapid than in the most commonly used model. We discuss several aspects of the diffusion process that are still poorly constrained and might lead to this discrepancy. Quantitative knowledge of diffusion is necessary for use of the diffusion process itself as a climate proxy.
B. de Boer, A. M. Dolan, J. Bernales, E. Gasson, H. Goelzer, N. R. Golledge, J. Sutter, P. Huybrechts, G. Lohmann, I. Rogozhina, A. Abe-Ouchi, F. Saito, and R. S. W. van de Wal
The Cryosphere, 9, 881–903, https://doi.org/10.5194/tc-9-881-2015, https://doi.org/10.5194/tc-9-881-2015, 2015
Short summary
Short summary
We present results from simulations of the Antarctic ice sheet by means of an intercomparison project with six ice-sheet models. Our results demonstrate the difficulty of all models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line. Improved grounding-line physics could be essential for a correct representation of the migration of the grounding line of the Antarctic ice sheet during the Pliocene.
R. S. W. van de Wal, C. J. P. P. Smeets, W. Boot, M. Stoffelen, R. van Kampen, S. H. Doyle, F. Wilhelms, M. R. van den Broeke, C. H. Reijmer, J. Oerlemans, and A. Hubbard
The Cryosphere, 9, 603–611, https://doi.org/10.5194/tc-9-603-2015, https://doi.org/10.5194/tc-9-603-2015, 2015
Short summary
Short summary
This paper addresses the feedback between ice flow and melt rates. Using 20 years of data covering the whole ablation area, we show that there is not a strong positive correlation between annual ice velocities and melt rates. Rapid variations around the equilibrium line indicate the possibility of rapid variations high on the ice sheet.
S. J. Koenig, A. M. Dolan, B. de Boer, E. J. Stone, D. J. Hill, R. M. DeConto, A. Abe-Ouchi, D. J. Lunt, D. Pollard, A. Quiquet, F. Saito, J. Savage, and R. van de Wal
Clim. Past, 11, 369–381, https://doi.org/10.5194/cp-11-369-2015, https://doi.org/10.5194/cp-11-369-2015, 2015
Short summary
Short summary
The paper assess the Greenland Ice Sheet’s sensitivity to a warm period in the past, a time when atmospheric CO2 concentrations were comparable to current levels. We quantify ice sheet volume and locations in Greenland and find that the ice sheets are less sensitive to differences in ice sheet model configurations than to changes in imposed climate forcing. We conclude that Pliocene ice was most likely to be limited to highest elevations in eastern and southern Greenland.
P. M. Alexander, M. Tedesco, X. Fettweis, R. S. W. van de Wal, C. J. P. P. Smeets, and M. R. van den Broeke
The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, https://doi.org/10.5194/tc-8-2293-2014, 2014
L. B. Stap, R. S. W. van de Wal, B. de Boer, R. Bintanja, and L. J. Lourens
Clim. Past, 10, 2135–2152, https://doi.org/10.5194/cp-10-2135-2014, https://doi.org/10.5194/cp-10-2135-2014, 2014
B. de Boer, P. Stocchi, and R. S. W. van de Wal
Geosci. Model Dev., 7, 2141–2156, https://doi.org/10.5194/gmd-7-2141-2014, https://doi.org/10.5194/gmd-7-2141-2014, 2014
A. B. A. Slangen, R. S. W. van de Wal, Y. Wada, and L. L. A. Vermeersen
Earth Syst. Dynam., 5, 243–255, https://doi.org/10.5194/esd-5-243-2014, https://doi.org/10.5194/esd-5-243-2014, 2014
M. M. Helsen, W. J. van de Berg, R. S. W. van de Wal, M. R. van den Broeke, and J. Oerlemans
Clim. Past, 9, 1773–1788, https://doi.org/10.5194/cp-9-1773-2013, https://doi.org/10.5194/cp-9-1773-2013, 2013
M. M. Helsen, R. S. W. van de Wal, M. R. van den Broeke, W. J. van de Berg, and J. Oerlemans
The Cryosphere, 6, 255–272, https://doi.org/10.5194/tc-6-255-2012, https://doi.org/10.5194/tc-6-255-2012, 2012
R. S. W. van de Wal, B. de Boer, L. J. Lourens, P. Köhler, and R. Bintanja
Clim. Past, 7, 1459–1469, https://doi.org/10.5194/cp-7-1459-2011, https://doi.org/10.5194/cp-7-1459-2011, 2011
A. B. A. Slangen and R. S. W. van de Wal
The Cryosphere, 5, 673–686, https://doi.org/10.5194/tc-5-673-2011, https://doi.org/10.5194/tc-5-673-2011, 2011
D. Liebrand, L. J. Lourens, D. A. Hodell, B. de Boer, R. S. W. van de Wal, and H. Pälike
Clim. Past, 7, 869–880, https://doi.org/10.5194/cp-7-869-2011, https://doi.org/10.5194/cp-7-869-2011, 2011
I. G. M. Wientjes, R. S. W. Van de Wal, G. J. Reichart, A. Sluijs, and J. Oerlemans
The Cryosphere, 5, 589–601, https://doi.org/10.5194/tc-5-589-2011, https://doi.org/10.5194/tc-5-589-2011, 2011
M. R. van den Broeke, C. J. P. P. Smeets, and R. S. W. van de Wal
The Cryosphere, 5, 377–390, https://doi.org/10.5194/tc-5-377-2011, https://doi.org/10.5194/tc-5-377-2011, 2011
M. A. G. den Ouden, C. H. Reijmer, V. Pohjola, R. S. W. van de Wal, J. Oerlemans, and W. Boot
The Cryosphere, 4, 593–604, https://doi.org/10.5194/tc-4-593-2010, https://doi.org/10.5194/tc-4-593-2010, 2010
T. J. Reerink, M. A. Kliphuis, and R. S. W. van de Wal
Geosci. Model Dev., 3, 13–41, https://doi.org/10.5194/gmd-3-13-2010, https://doi.org/10.5194/gmd-3-13-2010, 2010
M. van den Broeke, P. Smeets, J. Ettema, C. van der Veen, R. van de Wal, and J. Oerlemans
The Cryosphere, 2, 179–189, https://doi.org/10.5194/tc-2-179-2008, https://doi.org/10.5194/tc-2-179-2008, 2008
J. Oerlemans, M. Dyurgerov, and R. S. W. van de Wal
The Cryosphere, 1, 59–65, https://doi.org/10.5194/tc-1-59-2007, https://doi.org/10.5194/tc-1-59-2007, 2007
J. O. Sewall, R. S. W. van de Wal, K. van der Zwan, C. van Oosterhout, H. A. Dijkstra, and C. R. Scotese
Clim. Past, 3, 647–657, https://doi.org/10.5194/cp-3-647-2007, https://doi.org/10.5194/cp-3-647-2007, 2007
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Jorjo Bernales, Constantijn J. Berends, Willem Jan van de Berg, and Roderik S. W. van de Wal
The Cryosphere, 19, 283–301, https://doi.org/10.5194/tc-19-283-2025, https://doi.org/10.5194/tc-19-283-2025, 2025
Short summary
Short summary
In this study, we present an improved way of representing ice thickness change rates in an ice sheet model. We apply this method using two ice sheet models of the Antarctic Ice Sheet. We found that the two largest outlet glaciers on the Antarctic Ice Sheet, Thwaites Glacier and Pine Island Glacier, will collapse without further warming on a timescale of centuries. This would cause a sea level rise of about 1.2 m globally.
Joanna Staneva, Angelique Melet, Jennifer Veitch, and Pascal Matte
State Planet Discuss., https://doi.org/10.5194/sp-2024-44, https://doi.org/10.5194/sp-2024-44, 2024
Preprint under review for SP
Short summary
Short summary
Coastal areas are critical for society, with a significant portion of the global population residing near the coast. Predicting ocean conditions in these regions is challenging due to the need to model complex processes like tidal currents, wind-wave interactions, and shallow water dynamics. This paper explores advancements in high-resolution coastal modeling and observations, which improve predictions and refine monitoring systems. It highlights innovative approaches to enhance coastal realism
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024, https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary
Short summary
Climate-change-induced sea level rise increases the frequency of extreme sea levels. We analyze projected changes in extreme sea levels for western European coasts produced with high-resolution models (∼ 6 km). Unlike commonly used coarse-scale global climate models, this approach allows us to simulate key processes driving coastal sea level variations, such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Rodrigo Campos-Caba, Jacopo Alessandri, Paula Camus, Andrea Mazzino, Francesco Ferrari, Ivan Federico, Michalis Vousdoukas, Massimo Tondello, and Lorenzo Mentaschi
Ocean Sci., 20, 1513–1526, https://doi.org/10.5194/os-20-1513-2024, https://doi.org/10.5194/os-20-1513-2024, 2024
Short summary
Short summary
Here we show the development of high-resolution simulations of storm surge in the northern Adriatic Sea employing different atmospheric forcing data and physical configurations. Traditional metrics favor a simulation forced by a coarser database and employing a less sophisticated setup. Closer examination allows us to identify a baroclinic model forced by a high-resolution dataset as being better able to capture the variability and peak values of the storm surge.
Caroline Jacoba van Calcar, Pippa L. Whitehouse, Roderik S. W. van de Wal, and Wouter van der Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2982, https://doi.org/10.5194/egusphere-2024-2982, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The bedrock response to a melting Antarctic ice sheet delays grounding line retreat by up to 130 years and reduces sea level rise by up to 23% compared to excluding this effect. Current ice sheet models often use computationally fast but simplified Earth models that do not capture this feedback well. We recommend parameters for simple Earth models that approximate bedrock uplift and ice sheet evolution from a complex ice sheet - Earth model to improve sea level projections of the next centuries.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Bart van den Hurk, Nadia Pinardi, Alexander Bisaro, Giulia Galluccio, José A. Jiménez, Kate Larkin, Angélique Melet, Lavinia Giulia Pomarico, Kristin Richter, Kanika Singh, Roderik van de Wal, and Gundula Winter
State Planet, 3-slre1, 1, https://doi.org/10.5194/sp-3-slre1-1-2024, https://doi.org/10.5194/sp-3-slre1-1-2024, 2024
Short summary
Short summary
The Summary for Policymakers compiles findings from “Sea Level Rise in Europe: 1st Assessment Report of the Knowledge Hub on Sea Level Rise”. It covers knowledge gaps, observations, projections, impacts, adaptation measures, decision-making principles, and governance challenges. It provides information for each European basin (Mediterranean, Black Sea, North Sea, Baltic Sea, Atlantic, and Arctic) and aims to assist policymakers in enhancing the preparedness of European coasts for sea level rise.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024, https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Short summary
We look at how compound flooding from the combination of river flooding and storm tides (storm surge and astronomical tide) may be changing over time due to climate change, with a case study of the Mekong River delta. We found that future compound flooding has the potential to flood the region more extensively and be longer lasting than compound floods today. This is useful to know because it means managers of deltas such as the Mekong can assess options for improving existing flood defences.
Jun Yu Puah, Ivan D. Haigh, David Lallemant, Kyle Morgan, Dongju Peng, Masashi Watanabe, and Adam D. Switzer
Ocean Sci., 20, 1229–1246, https://doi.org/10.5194/os-20-1229-2024, https://doi.org/10.5194/os-20-1229-2024, 2024
Short summary
Short summary
Coastal currents have wide implications for port activities, transport of sediments, and coral reef ecosystems; thus a deeper understanding of their characteristics is needed. We collected data on current velocities for a year using current meters at shallow waters in Singapore. The strength of the currents is primarily affected by tides and winds and generally increases during the monsoon seasons across various frequencies.
Fabrice Hernandez, Marcos Garcia Sotillo, and Angelique Melet
State Planet Discuss., https://doi.org/10.5194/sp-2024-39, https://doi.org/10.5194/sp-2024-39, 2024
Preprint under review for SP
Short summary
Short summary
An historical review over the last three decades on intercomparison projects of ocean numerical reanalysis or forecast is first proposed. From this, main issues and lessons learned are discussed in order to propose an overview of best practices and key considerations to facilitate intercomparison activities in operational oceanography.
Wei Chen and Joanna Staneva
State Planet, 4-osr8, 7, https://doi.org/10.5194/sp-4-osr8-7-2024, https://doi.org/10.5194/sp-4-osr8-7-2024, 2024
Short summary
Short summary
Marine heatwaves (MHWs), which are the unusually warm periods in the ocean, are becoming more frequent and lasting longer in the northwest European Shelf (NWES), particularly near the coast, from 1993 to 2023. However, thermal stratification is weakening, implying that the sea surface warming caused by MHWs is insufficient to counteract the overall stratification decline due to global warming. Moreover, the varying salinity has a notable impact on the trend of density stratification change.
Angelique Melet, Begoña Pérez Gómez, and Pascal Matte
State Planet Discuss., https://doi.org/10.5194/sp-2024-27, https://doi.org/10.5194/sp-2024-27, 2024
Revised manuscript under review for SP
Short summary
Short summary
Forecasting the sea level is crucial for supporting coastal management through early warning systems and for adopting adaptation strategies to climate changes impacts. We provide here an overview on models commonly used for sea level forecasting, that can be based on storm surge models or ocean circulation ones, integrated on structured or unstructured grids, including an outlook on new approaches based on ensemble methods.
Pascal Matte, John Wilkin, and Joanna Staneva
State Planet Discuss., https://doi.org/10.5194/sp-2024-9, https://doi.org/10.5194/sp-2024-9, 2024
Preprint under review for SP
Short summary
Short summary
Rivers, vital to the Earth's system, connect the ocean with the land, governing hydrological and biogeochemical contributions and influencing processes like upwelling and mixing. This paper reviews advancements in river modeling, focusing on estuaries, from coarse-resolution ocean forecasting to more precise coastal coupling approaches. It discusses river data sources and examines how river forcing is treated in global, regional and coastal operational systems.
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809, https://doi.org/10.5194/egusphere-2024-2809, 2024
Short summary
Short summary
Storm Daniel (2023) is one of the most catastrophic ones ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns a holistic analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes and attribution theory.
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Meike D. W. Scherrenberg, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-57, https://doi.org/10.5194/cp-2024-57, 2024
Revised manuscript under review for CP
Short summary
Short summary
Glacial cycle duration changed from 41.000 to 100.000 years during the Mid-Pleistocene Transition (MPT), but the cause is still under debate. We simulate the MPT with an ice-sheet model forced by prescribed CO2 and insolation, and simple ice-climate interactions. Before the MPT, glacial cycles follow insolation. After the MPT, low CO2 levels may compensate warming at insolation maxima, increasing the length of glacial cycles until the North American ice sheet becomes large and thereby unstable.
Joshua Green, Ivan Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
EGUsphere, https://doi.org/10.5194/egusphere-2024-2247, https://doi.org/10.5194/egusphere-2024-2247, 2024
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Meike D. W. Scherrenberg, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past, 20, 1761–1784, https://doi.org/10.5194/cp-20-1761-2024, https://doi.org/10.5194/cp-20-1761-2024, 2024
Short summary
Short summary
During Late Pleistocene glacial cycles, the Eurasian and North American ice sheets grew and melted, resulting in over 100 m of sea-level change. Studying the melting of past ice sheets can improve our understanding of how ice sheets might respond in the future. In this study, we find that melting increases due to proglacial lakes forming at the margins of the ice sheets, primarily due to the reduced basal friction of floating ice. Furthermore, bedrock uplift rates can strongly influence melting.
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024, https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Short summary
The shape of the coast, the intensity of waves, the height of the water levels, the presence of people or critical infrastructure, and the land use are important information to assess the vulnerability of the coast to coastal hazards. Here, we provide 80 indicators of this kind at consistent locations along the global ice-free coastline using open-access global datasets. These can be valuable for quick assessments of the vulnerability of the coast and at data-poor locations.
Kim de Wit, Kim M. Cohen, and Roderik S. W. Van de Wal
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-271, https://doi.org/10.5194/essd-2024-271, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In the Holocene, deltas and coastal plains developed due to relative sea level rise (RSLR). Past coastal and inland water levels are preserved in geological indicators, like basal peats. We present a data set of 712 Holocene water-level indicators from the Dutch coastal plain, relevant for studying RSLR and regional subsidence, compiled in HOLSEA workbook format. Our new, internally consistent, expanded documentation encourages multiple data uses and to report RSLR uncertainties transparently.
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024, https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Short summary
Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This study applies a new approach to estimating the likelihood of coastal flooding around the world. The method uses data from observations and computer models to create a detailed map of where these coastal floods might occur. The approach can predict flooding in areas for which there are few or no data available. The results can be used to help prepare for and prevent this type of flooding.
Daniel Francis James Gunning, Kerim Hestnes Nisancioglu, Emilie Capron, and Roderik van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-1384, https://doi.org/10.5194/egusphere-2024-1384, 2024
Short summary
Short summary
This work documents the first results from ZEMBA: an energy balance model of the climate system. The model is a computationally efficient tool designed to study the response of climate to changes in the Earth’s orbit. We demonstrate ZEMBA reproduces many features of the Earth’s climate for both the pre-industrial period and the Earth’s most recent cold extreme- the Last Glacial Maximum. We intend to develop ZEMBA further and investigate the glacial cycles of the last 2.5 million years.
Hung Nghia Nguyen, Quan Quan Le, Dung Viet Nguyen, Tan Hong Cao, Toan Quang To, Hai Do Dac, Melissa Wood, and Ivan D. Haigh
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-107, https://doi.org/10.5194/nhess-2024-107, 2024
Preprint under review for NHESS
Short summary
Short summary
The paper focuses on inundation process in a highest climate vulnerability area of the Mekong Delta, main drivers and future impacts, this is importance alert to decision makers and stakeholder for investment of infrastructure, adaptation approaches and mitigating impacts.
Marc Igigabel, Marissa Yates, Michalis Vousdoukas, and Youssef Diab
Nat. Hazards Earth Syst. Sci., 24, 1951–1974, https://doi.org/10.5194/nhess-24-1951-2024, https://doi.org/10.5194/nhess-24-1951-2024, 2024
Short summary
Short summary
Changes in sea levels alone do not determine the evolution of coastal hazards. Coastal hazard changes should be assessed using additional factors describing geomorphological configurations, metocean event types (storms, cyclones, long swells, and tsunamis), and the marine environment (e.g., coral reef state and sea ice extent). The assessment completed here, at regional scale including the coasts of mainland and overseas France, highlights significant differences in hazard changes.
Constantijn J. Berends, Victor Azizi, Jorge Bernales, and Roderik S. W. van de Wal
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-5, https://doi.org/10.5194/gmd-2024-5, 2024
Revised manuscript under review for GMD
Short summary
Short summary
Ice-sheet models are computer programs that can simulate how the Greenland and Antarctic ice sheets will evolve in the future. The accuracy of these models depends on their resolution: how small the details are that the model can resolve. We have created a model with a variable resolution, which can resolve a lot of detail in areas where lots of changes happen in the ice, and less detail in areas where the ice does not move so much. This makes the model both accurate and fast.
Lennert B. Stap, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past, 20, 257–266, https://doi.org/10.5194/cp-20-257-2024, https://doi.org/10.5194/cp-20-257-2024, 2024
Short summary
Short summary
Analysing simulations of Antarctic Ice Sheet variability during the early and mid-Miocene (23 to 14 Myr ago), we find that the ice sheet area adapts faster and more strongly than volume to climate change on quasi-orbital timescales. Considering the recent discovery that ice area, rather than volume, influences deep-ocean temperatures, this implies that the Miocene Antarctic Ice Sheet affects deep-ocean temperatures more than its volume suggests.
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary
Short summary
This paper presents the parallel PCR-GLOBWB global-scale groundwater model at 30 arcsec resolution (~1 km at the Equator). Named GLOBGM v1.0, this model is a follow-up of the 5 arcmin (~10 km) model, aiming for a higher-resolution simulation of worldwide fresh groundwater reserves under climate change and excessive pumping. For a long transient simulation using a parallel prototype of MODFLOW 6, we show that our implementation is efficient for a relatively low number of processor cores.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Luca Arpaia, Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 16, 6899–6919, https://doi.org/10.5194/gmd-16-6899-2023, https://doi.org/10.5194/gmd-16-6899-2023, 2023
Short summary
Short summary
We propose a discrete multilayer shallow water model based on z-layers which, thanks to the insertion and removal of surface layers, can deal with an arbitrarily large tidal oscillation independently of the vertical resolution. The algorithm is based on a two-step procedure used in numerical simulations with moving boundaries (grid movement followed by a grid topology change, that is, the insertion/removal of surface layers), which avoids the appearance of very thin surface layers.
Carolina B. Gramcianinov, Joanna Staneva, Celia R. G. Souza, Priscila Linhares, Ricardo de Camargo, and Pedro L. da Silva Dias
State Planet, 1-osr7, 12, https://doi.org/10.5194/sp-1-osr7-12-2023, https://doi.org/10.5194/sp-1-osr7-12-2023, 2023
Short summary
Short summary
We analyse extreme wave event trends in the south-western South Atlantic in the last 29 years using wave products and coastal hazard records. The results show important regional changes associated with increased mean sea wave height, wave period, and wave power. We also find a rise in the number of coastal hazards related to waves affecting the state of São Paulo, Brazil, which partially agrees with the increase in extreme waves in the adjacent ocean sector but is also driven by local factors.
Caroline J. van Calcar, Roderik S. W. van de Wal, Bas Blank, Bas de Boer, and Wouter van der Wal
Geosci. Model Dev., 16, 5473–5492, https://doi.org/10.5194/gmd-16-5473-2023, https://doi.org/10.5194/gmd-16-5473-2023, 2023
Short summary
Short summary
The waxing and waning of the Antarctic ice sheet caused the Earth’s surface to deform, which is stabilizing the ice sheet and mainly determined by the spatially variable viscosity of the mantle. Including this feedback in model simulations led to significant differences in ice sheet extent and ice thickness over the last glacial cycle. The results underline and quantify the importance of including this local feedback effect in ice sheet models when simulating the Antarctic ice sheet evolution.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Erwin Lambert, André Jüling, Roderik S. W. van de Wal, and Paul R. Holland
The Cryosphere, 17, 3203–3228, https://doi.org/10.5194/tc-17-3203-2023, https://doi.org/10.5194/tc-17-3203-2023, 2023
Short summary
Short summary
A major uncertainty in the study of sea level rise is the melting of the Antarctic ice sheet by the ocean. Here, we have developed a new model, named LADDIE, that simulates this ocean-driven melting of the floating parts of the Antarctic ice sheet. This model simulates fine-scale patterns of melting and freezing and requires significantly fewer computational resources than state-of-the-art ocean models. LADDIE can be used as a new tool to force high-resolution ice sheet models.
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
Alisée A. Chaigneau, Stéphane Law-Chune, Angélique Melet, Aurore Voldoire, Guillaume Reffray, and Lotfi Aouf
Ocean Sci., 19, 1123–1143, https://doi.org/10.5194/os-19-1123-2023, https://doi.org/10.5194/os-19-1123-2023, 2023
Short summary
Short summary
Wind waves and swells are major drivers of coastal environment changes and can drive coastal marine hazards such as coastal flooding. In this paper, by using numerical modeling along the European Atlantic coastline, we assess how present and future wave characteristics are impacted by sea level changes. For example, at the end of the century under the SSP5-8.5 climate change scenario, extreme significant wave heights are higher by up to +40 % due to the effect of tides and mean sea level rise.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Roberto Ingrosso, Piero Lionello, Mario Marcello Miglietta, and Gianfausto Salvadori
Nat. Hazards Earth Syst. Sci., 23, 2443–2448, https://doi.org/10.5194/nhess-23-2443-2023, https://doi.org/10.5194/nhess-23-2443-2023, 2023
Short summary
Short summary
Tornadoes represent disruptive and dangerous weather events. The prediction of these small-scale phenomena depends on the resolution of present weather forecast and climatic projections. This work discusses the occurrence of tornadoes in terms of atmospheric variables and provides analytical expressions for their conditional probability. These formulas represent a tool for tornado alert systems and for estimating the future evolution of tornado frequency and intensity in climate projections.
Iris Keizer, Dewi Le Bars, Cees de Valk, André Jüling, Roderik van de Wal, and Sybren Drijfhout
Ocean Sci., 19, 991–1007, https://doi.org/10.5194/os-19-991-2023, https://doi.org/10.5194/os-19-991-2023, 2023
Short summary
Short summary
Using tide gauge observations, we show that the acceleration of sea-level rise (SLR) along the coast of the Netherlands started in the 1960s but was masked by wind field and nodal-tide variations. This finding aligns with global SLR observations and expectations based on a physical understanding of SLR related to global warming.
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023, https://doi.org/10.5194/nhess-23-2273-2023, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by Medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
Marco Bajo, Christian Ferrarin, Georg Umgiesser, Andrea Bonometto, and Elisa Coraci
Ocean Sci., 19, 559–579, https://doi.org/10.5194/os-19-559-2023, https://doi.org/10.5194/os-19-559-2023, 2023
Short summary
Short summary
This work uses a hydrodynamic model which assimilates in situ data to reproduce tides, surges, and seiches in the Mediterranean basin. Furthermore, we study the periods of the barotropic modes of the Mediterranean and Adriatic basins. This research aims to improve the forecasting and reanalysis for operational warning and climatological studies. It aims also to reach a better knowledge of these sea level components in this area.
Manuel Aghito, Loris Calgaro, Knut-Frode Dagestad, Christian Ferrarin, Antonio Marcomini, Øyvind Breivik, and Lars Robert Hole
Geosci. Model Dev., 16, 2477–2494, https://doi.org/10.5194/gmd-16-2477-2023, https://doi.org/10.5194/gmd-16-2477-2023, 2023
Short summary
Short summary
The newly developed ChemicalDrift model can simulate the transport and fate of chemicals in the ocean and in coastal regions. The model combines ocean physics, including transport due to currents, turbulence due to surface winds and the sinking of particles to the sea floor, with ocean chemistry, such as the partitioning, the degradation and the evaporation of chemicals. The model will be utilized for risk assessment of ocean and sea-floor contamination from pollutants emitted from shipping.
Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams
Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, https://doi.org/10.5194/nhess-23-1465-2023, 2023
Short summary
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Constantijn J. Berends, Roderik S. W. van de Wal, Tim van den Akker, and William H. Lipscomb
The Cryosphere, 17, 1585–1600, https://doi.org/10.5194/tc-17-1585-2023, https://doi.org/10.5194/tc-17-1585-2023, 2023
Short summary
Short summary
The rate at which the Antarctic ice sheet will melt because of anthropogenic climate change is uncertain. Part of this uncertainty stems from processes occurring beneath the ice, such as the way the ice slides over the underlying bedrock.
Inversion methodsattempt to use observations of the ice-sheet surface to calculate how these sliding processes work. We show that such methods cannot fully solve this problem, so a substantial uncertainty still remains in projections of sea-level rise.
Meike D. W. Scherrenberg, Constantijn J. Berends, Lennert B. Stap, and Roderik S. W. van de Wal
Clim. Past, 19, 399–418, https://doi.org/10.5194/cp-19-399-2023, https://doi.org/10.5194/cp-19-399-2023, 2023
Short summary
Short summary
Ice sheets have a large effect on climate and vice versa. Here we use an ice sheet computer model to simulate the last glacial cycle and compare two methods, one that implicitly includes these feedbacks and one that does not. We found that when including simple climate feedbacks, the North American ice sheet develops from two domes instead of many small domes. Each ice sheet melts slower when including feedbacks. We attribute this difference mostly to air temperature–ice sheet interactions.
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023, https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary
Short summary
Knowledge of what causes maximum water levels is often key in coastal management. Processes, such as storm surge and atmospheric forcing, alter the predicted tide. Whilst most of these processes are modeled in present-day ocean forecasting, there is still a need for a better understanding of situations where modeled and observed water levels deviate from each other. Here, we will use machine learning to detect such anomalies within a network of sea-level observations in the North Sea.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci., 22, 3897–3915, https://doi.org/10.5194/nhess-22-3897-2022, https://doi.org/10.5194/nhess-22-3897-2022, 2022
Short summary
Short summary
Sandy dunes protect the hinterland from coastal flooding during storms. Thus, models that can efficiently predict dune erosion are critical for coastal zone management and early warning systems. Here we develop such a model for the Dutch coast based on machine learning techniques, allowing for dune erosion estimations in a matter of seconds relative to available computationally expensive models. Validation of the model against benchmark data and observations shows good agreement.
Constantijn J. Berends, Heiko Goelzer, Thomas J. Reerink, Lennert B. Stap, and Roderik S. W. van de Wal
Geosci. Model Dev., 15, 5667–5688, https://doi.org/10.5194/gmd-15-5667-2022, https://doi.org/10.5194/gmd-15-5667-2022, 2022
Short summary
Short summary
The rate at which marine ice sheets such as the West Antarctic ice sheet will retreat in a warming climate and ocean is still uncertain. Numerical ice-sheet models, which solve the physical equations that describe the way glaciers and ice sheets deform and flow, have been substantially improved in recent years. Here we present the results of several years of work on IMAU-ICE, an ice-sheet model of intermediate complexity, which can be used to study ice sheets of both the past and the future.
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022, https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary
Short summary
Flooding has serious impacts on the old town of Venice. This paper presents a framework combining a flood model with a flood-impact model to support improving protection against future floods in Venice despite the recently built MOSE barrier. Applying the framework to seven plausible flood scenarios, it was found that individual protection has a significant damage-mediating effect if the MOSE barrier does not operate as anticipated. Contingency planning thus remains important in Venice.
Wei Chen, Joanna Staneva, Sebastian Grayek, Johannes Schulz-Stellenfleth, and Jens Greinert
Nat. Hazards Earth Syst. Sci., 22, 1683–1698, https://doi.org/10.5194/nhess-22-1683-2022, https://doi.org/10.5194/nhess-22-1683-2022, 2022
Short summary
Short summary
This study links the occurrence and persistence of density stratification in the southern North Sea to the increased number of extreme marine heat waves. The study further identified the role of the cold spells at the early stage of a year to the intensity of thermal stratification in summer. In a broader context, the research will have fundamental significance for further discussion of the secondary effects of heat wave events, such as in ecosystems, fisheries, and sediment dynamics.
Lennert B. Stap, Constantijn J. Berends, Meike D. W. Scherrenberg, Roderik S. W. van de Wal, and Edward G. W. Gasson
The Cryosphere, 16, 1315–1332, https://doi.org/10.5194/tc-16-1315-2022, https://doi.org/10.5194/tc-16-1315-2022, 2022
Short summary
Short summary
To gain understanding of how the Antarctic ice sheet responded to CO2 changes during past warm climate conditions, we simulate its variability during the Miocene. We include feedbacks between the ice sheet and atmosphere in our model and force the model using time-varying climate conditions. We find that these feedbacks reduce the amplitude of ice volume variations. Erosion-induced changes in the bedrock below the ice sheet that manifested during the Miocene also have a damping effect.
Alisée A. Chaigneau, Guillaume Reffray, Aurore Voldoire, and Angélique Melet
Geosci. Model Dev., 15, 2035–2062, https://doi.org/10.5194/gmd-15-2035-2022, https://doi.org/10.5194/gmd-15-2035-2022, 2022
Short summary
Short summary
Climate-change-induced sea level rise is a major threat for coastal and low-lying regions. Projections of coastal sea level changes are thus of great interest for coastal risk assessment and have significantly developed in recent years. In this paper, the objective is to provide high-resolution (6 km) projections of sea level changes in the northeastern Atlantic region bordering western Europe. For that purpose, a regional model is used to refine existing coarse global projections.
Ahmed A. Nasr, Thomas Wahl, Md Mamunur Rashid, Paula Camus, and Ivan D. Haigh
Hydrol. Earth Syst. Sci., 25, 6203–6222, https://doi.org/10.5194/hess-25-6203-2021, https://doi.org/10.5194/hess-25-6203-2021, 2021
Short summary
Short summary
We analyse dependences between different flooding drivers around the USA coastline, where the Gulf of Mexico and the southeastern and southwestern coasts are regions of high dependence between flooding drivers. Dependence is higher during the tropical season in the Gulf and at some locations on the East Coast but higher during the extratropical season on the West Coast. The analysis gives new insights on locations, driver combinations, and the time of the year when compound flooding is likely.
Julia Rulent, Lucy M. Bricheno, J. A. Mattias Green, Ivan D. Haigh, and Huw Lewis
Nat. Hazards Earth Syst. Sci., 21, 3339–3351, https://doi.org/10.5194/nhess-21-3339-2021, https://doi.org/10.5194/nhess-21-3339-2021, 2021
Short summary
Short summary
High coastal total water levels (TWLs) can lead to flooding and hazardous conditions for coastal communities and environment. In this research we are using numerical models to study the interactions between the three main components of the TWL (waves, tides, and surges) on UK and Irish coasts during winter 2013/14. The main finding of this research is that extreme waves and surges can indeed happen together, even at high tide, but they often occurred simultaneously 2–3 h before high tide.
Samuel Tiéfolo Diabaté, Didier Swingedouw, Joël Jean-Marie Hirschi, Aurélie Duchez, Philip J. Leadbitter, Ivan D. Haigh, and Gerard D. McCarthy
Ocean Sci., 17, 1449–1471, https://doi.org/10.5194/os-17-1449-2021, https://doi.org/10.5194/os-17-1449-2021, 2021
Short summary
Short summary
The Gulf Stream and the Kuroshio are major currents of the North Atlantic and North Pacific, respectively. They transport warm water northward and are key components of the Earth climate system. For this study, we looked at how they affect the sea level of the coasts of Japan, the USA and Canada. We found that the inshore sea level
co-varies with the north-to-south shifts of the Gulf Stream and Kuroshio. In the paper, we discuss the physical mechanisms that could explain the agreement.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Piero Lionello, Robert J. Nicholls, Georg Umgiesser, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, https://doi.org/10.5194/nhess-21-2633-2021, 2021
Short summary
Short summary
Venice is an iconic place, and a paradigm of huge historical and cultural value is at risk. The threat posed by floods has dramatically increased in recent decades and is expected to continue to grow – and even accelerate – through this century. There is a need to better understand the future evolution of the relative sea level and its extremes and to develop adaptive planning strategies appropriate for present uncertainty, which might not be substantially reduced in the near future.
Rémi Thiéblemont, Gonéri Le Cozannet, Jérémy Rohmer, Alexandra Toimil, Moisés Álvarez-Cuesta, and Iñigo J. Losada
Nat. Hazards Earth Syst. Sci., 21, 2257–2276, https://doi.org/10.5194/nhess-21-2257-2021, https://doi.org/10.5194/nhess-21-2257-2021, 2021
Short summary
Short summary
Sea level rise and its acceleration are projected to aggravate coastal erosion over the 21st century. Resulting shoreline projections are deeply uncertain, however, which constitutes a major challenge for coastal planning and management. Our work presents a new extra-probabilistic framework to develop future shoreline projections and shows that deep uncertainties could be drastically reduced by better constraining sea level projections and improving coastal impact models.
Jan L. Gunnink, Hung Van Pham, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 3297–3319, https://doi.org/10.5194/essd-13-3297-2021, https://doi.org/10.5194/essd-13-3297-2021, 2021
Short summary
Short summary
In the Mekong Delta (Vietnam) groundwater is important for domestic, agricultural and industrial use. Increased pumping of groundwater has caused land subsidence and increased the risk of salinization, thereby endangering the livelihood of the population in the delta. We made a model of the salinity of the groundwater by integrating different sources of information and determined fresh groundwater volumes. The resulting model can be used by researchers and policymakers.
Paula Camus, Ivan D. Haigh, Ahmed A. Nasr, Thomas Wahl, Stephen E. Darby, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, https://doi.org/10.5194/nhess-21-2021-2021, 2021
Short summary
Short summary
In coastal regions, floods can arise through concurrent drivers, such as precipitation, river discharge, storm surge, and waves, which exacerbate the impact. In this study, we identify hotspots of compound flooding along the southern coast of the North Atlantic Ocean and the northern coast of the Mediterranean Sea. This regional assessment can be considered a screening tool for coastal management that provides information about which areas are more predisposed to experience compound flooding.
Yasser Hamdi, Ivan D. Haigh, Sylvie Parey, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 21, 1461–1465, https://doi.org/10.5194/nhess-21-1461-2021, https://doi.org/10.5194/nhess-21-1461-2021, 2021
Constantijn J. Berends, Heiko Goelzer, and Roderik S. W. van de Wal
Geosci. Model Dev., 14, 2443–2470, https://doi.org/10.5194/gmd-14-2443-2021, https://doi.org/10.5194/gmd-14-2443-2021, 2021
Short summary
Short summary
The largest uncertainty in projections of sea-level rise comes from ice-sheet retreat. To better understand how these ice sheets respond to the changing climate, ice-sheet models are used, which must be able to reproduce both their present and past evolution. We have created a model that is fast enough to simulate an ice sheet at a high resolution over the course of an entire 120 000-year glacial cycle. This allows us to study processes that cannot be captured by lower-resolution models.
Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 14, 645–659, https://doi.org/10.5194/gmd-14-645-2021, https://doi.org/10.5194/gmd-14-645-2021, 2021
Short summary
Short summary
The problem of the optimization of ocean monitoring networks is tackled through the implementation of data assimilation techniques in a numerical model. The methodology has been applied to the tide gauge network in the Lagoon of Venice (Italy). The data assimilation methods allow identifying the minimum number of stations and their distribution that correctly represent the lagoon's dynamics. The methodology is easily exportable to other environments and can be extended to other variables.
Constantijn J. Berends, Bas de Boer, and Roderik S. W. van de Wal
Clim. Past, 17, 361–377, https://doi.org/10.5194/cp-17-361-2021, https://doi.org/10.5194/cp-17-361-2021, 2021
Short summary
Short summary
For the past 2.6 million years, the Earth has experienced glacial cycles, where vast ice sheets periodically grew to cover large parts of North America and Eurasia. In the earlier part of this period, this happened every 40 000 years. This value changed 1.2 million years ago to 100 000 years: the Mid-Pleistocene Transition. We investigate this interesting period using an ice-sheet model, studying the interactions between ice sheets and the global climate.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Sophie Nowicki, Heiko Goelzer, Hélène Seroussi, Anthony J. Payne, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Patrick Alexander, Xylar S. Asay-Davis, Alice Barthel, Thomas J. Bracegirdle, Richard Cullather, Denis Felikson, Xavier Fettweis, Jonathan M. Gregory, Tore Hattermann, Nicolas C. Jourdain, Peter Kuipers Munneke, Eric Larour, Christopher M. Little, Mathieu Morlighem, Isabel Nias, Andrew Shepherd, Erika Simon, Donald Slater, Robin S. Smith, Fiammetta Straneo, Luke D. Trusel, Michiel R. van den Broeke, and Roderik van de Wal
The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, https://doi.org/10.5194/tc-14-2331-2020, 2020
Short summary
Short summary
This paper describes the experimental protocol for ice sheet models taking part in the Ice Sheet Model Intercomparion Project for CMIP6 (ISMIP6) and presents an overview of the atmospheric and oceanic datasets to be used for the simulations. The ISMIP6 framework allows for exploring the uncertainty in 21st century sea level change from the Greenland and Antarctic ice sheets.
Emanuele Bevacqua, Michalis I. Vousdoukas, Theodore G. Shepherd, and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, https://doi.org/10.5194/nhess-20-1765-2020, 2020
Short summary
Short summary
Coastal compound flooding (CF), caused by interacting storm surges and high water runoff, is typically studied based on concurring storm surge extremes with either precipitation or river discharge extremes. Globally, these two approaches show similar CF spatial patterns, especially where the CF potential is the highest. Deviations between the two approaches increase with the catchment size. The precipitation-based analysis allows for considering
local-rainfall-driven CF and CF in small rivers.
Heiko Goelzer, Brice P. Y. Noël, Tamsin L. Edwards, Xavier Fettweis, Jonathan M. Gregory, William H. Lipscomb, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-2020, https://doi.org/10.5194/tc-14-1747-2020, 2020
Short summary
Short summary
Future sea-level change projections with process-based ice sheet models are typically driven with surface mass balance forcing derived from climate models. In this work we address the problems arising from a mismatch of the modelled ice sheet geometry with the one used by the climate model. The proposed remapping method reproduces the original forcing data closely when applied to the original geometry and produces a physically meaningful forcing when applied to different modelled geometries.
Scott A. Stephens, Robert G. Bell, and Ivan D. Haigh
Nat. Hazards Earth Syst. Sci., 20, 783–796, https://doi.org/10.5194/nhess-20-783-2020, https://doi.org/10.5194/nhess-20-783-2020, 2020
Short summary
Short summary
Extreme sea levels in New Zealand occur in nearby places and at similar times, which means that flooding impacts and losses may be linked in space and time. The most extreme sea levels depend on storms coinciding with very high tides because storm surges are relatively small in New Zealand. The type of storm weather system influences where the extreme sea levels occur, and the annual timing is influenced by the low-amplitude (~10 cm) annual sea-level cycle.
Heiko Goelzer, Violaine Coulon, Frank Pattyn, Bas de Boer, and Roderik van de Wal
The Cryosphere, 14, 833–840, https://doi.org/10.5194/tc-14-833-2020, https://doi.org/10.5194/tc-14-833-2020, 2020
Short summary
Short summary
In our ice-sheet modelling experience and from exchange with colleagues in different groups, we found that it is not always clear how to calculate the sea-level contribution from a marine ice-sheet model. This goes hand in hand with a lack of documentation and transparency in the published literature on how the sea-level contribution is estimated in different models. With this brief communication, we hope to stimulate awareness and discussion in the community to improve on this situation.
Anaïs Couasnon, Dirk Eilander, Sanne Muis, Ted I. E. Veldkamp, Ivan D. Haigh, Thomas Wahl, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, https://doi.org/10.5194/nhess-20-489-2020, 2020
Short summary
Short summary
When a high river discharge coincides with a high storm surge level, this can exarcebate flood level, depth, and duration, resulting in a so-called compound flood event. These events are not currently included in global flood models. In this research, we analyse the timing and correlation between modelled discharge and storm surge level time series in deltas and estuaries. Our results provide a first indication of regions along the global coastline with a high compound flooding potential.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Christian Ferrarin, Andrea Valentini, Martin Vodopivec, Dijana Klaric, Giovanni Massaro, Marco Bajo, Francesca De Pascalis, Amedeo Fadini, Michol Ghezzo, Stefano Menegon, Lidia Bressan, Silvia Unguendoli, Anja Fettich, Jure Jerman, Matjaz̆ Ličer, Lidija Fustar, Alvise Papa, and Enrico Carraro
Nat. Hazards Earth Syst. Sci., 20, 73–93, https://doi.org/10.5194/nhess-20-73-2020, https://doi.org/10.5194/nhess-20-73-2020, 2020
Short summary
Short summary
Here we present a shared and interoperable system to allow a better exchange of and elaboration on information related to sea storms among countries. The proposed integrated web system (IWS) is a combination of a common data system for sharing ocean observations and forecasts, a multi-model ensemble system, a geoportal, and interactive geo-visualization tools. This study describes the application of the developed system to the exceptional storm event of 29 October 2018.
Joeri van Engelen, Jarno Verkaik, Jude King, Eman R. Nofal, Marc F. P. Bierkens, and Gualbert H. P. Oude Essink
Hydrol. Earth Syst. Sci., 23, 5175–5198, https://doi.org/10.5194/hess-23-5175-2019, https://doi.org/10.5194/hess-23-5175-2019, 2019
Short summary
Short summary
The Nile Delta is an important agricultural area with a fast-growing population, relying increasingly on groundwater. However, saline groundwater extends far land-inward, rendering groundwater close to the coastal zone useless for consumption or agriculture. It normally is assumed that this is caused by mixing due to velocity differences, but here we show that it might also be caused by the coastline being located more land-inward 8000 years ago.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Sandra Gaytan-Aguilar, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 11, 1515–1529, https://doi.org/10.5194/essd-11-1515-2019, https://doi.org/10.5194/essd-11-1515-2019, 2019
Short summary
Short summary
This dataset provides the spatial distribution of nearshore slopes at a resolution of 1 km along the global coastline. The calculation was based on available global topo-bathymetric datasets and ocean wave reanalysis. The calculated slopes show skill in capturing the spatial variability of the nearshore slopes when compared against local observations. The importance of this variability is presented with a global coastal retreat assessment for an arbitrary sea level rise scenario.
Constantijn J. Berends, Bas de Boer, Aisling M. Dolan, Daniel J. Hill, and Roderik S. W. van de Wal
Clim. Past, 15, 1603–1619, https://doi.org/10.5194/cp-15-1603-2019, https://doi.org/10.5194/cp-15-1603-2019, 2019
Short summary
Short summary
The Late Pliocene, 3.65–2.75 million years ago, is the most recent period in Earth's history that was warmer than the present. This makes it interesting for climatological research, because it provides a possible analogue for the near future. We used a coupled ice-sheet–climate model to simulate the behaviour of these systems during this period. We show that the warmest moment saw a sea-level rise of 8–14 m, with a CO2 concentration of 320–400 ppmv.
Piero Lionello, Dario Conte, and Marco Reale
Nat. Hazards Earth Syst. Sci., 19, 1541–1564, https://doi.org/10.5194/nhess-19-1541-2019, https://doi.org/10.5194/nhess-19-1541-2019, 2019
Short summary
Short summary
Large positive and negative sea level anomalies on the coast of the Mediterranean Sea are produced by cyclones moving along the Mediterranean storm track, which are mostly generated in the western Mediterranean. The wind around the cyclone center is the main cause of sea level anomalies when a shallow water fetch is present. The inverse barometer effect produces a positive anomaly near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea.
Alistair Hendry, Ivan D. Haigh, Robert J. Nicholls, Hugo Winter, Robert Neal, Thomas Wahl, Amélie Joly-Laugel, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019, https://doi.org/10.5194/hess-23-3117-2019, 2019
Short summary
Short summary
Flooding can arise from multiple sources, including waves, extreme sea levels, rivers, and severe rainfall. When two or more sources combine, the consequences can be greatly multiplied. We find the potential for the joint occurrence of extreme sea levels and river discharge to be greater on the western coast of the UK compared to the eastern coast. This is due to the weather conditions generating each flood source around the UK. These results will help increase our flood forecasting ability.
Johannes Pein, Annika Eisele, Richard Hofmeister, Tina Sanders, Ute Daewel, Emil V. Stanev, Justus van Beusekom, Joanna Staneva, and Corinna Schrum
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-265, https://doi.org/10.5194/bg-2019-265, 2019
Revised manuscript not accepted
Short summary
Short summary
The Elbe estuary is subject to vigorous tidal forcing from the sea side and considerable biological inputs from the land side. Our 3D numerical coupled physical-biogeochemical integrates these forcing signals and provides highly realistic hindcasts of the associated dynamics. Model simulations show that the freshwater part of Elbe estuary is inhabited by plankton. According to simulations these organism play a key role in converting organic inputs into nitrate, the major inorganic nutrient.
Huw W. Lewis, Juan Manuel Castillo Sanchez, John Siddorn, Robert R. King, Marina Tonani, Andrew Saulter, Peter Sykes, Anne-Christine Pequignet, Graham P. Weedon, Tamzin Palmer, Joanna Staneva, and Lucy Bricheno
Ocean Sci., 15, 669–690, https://doi.org/10.5194/os-15-669-2019, https://doi.org/10.5194/os-15-669-2019, 2019
Short summary
Short summary
Forecasts of ocean temperature, salinity, currents, and sea height can be improved by linking state-of-the-art ocean and wave models, so that they can interact to better represent the real world. We test this approach in an ocean model of north-west Europe which can simulate small-scale details of the ocean state. The intention is to implement the system described in this study for operational use so that improved information can be provided to users of ocean forecast data.
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Johannes Schulz-Stellenfleth and Joanna Staneva
Ocean Sci., 15, 249–268, https://doi.org/10.5194/os-15-249-2019, https://doi.org/10.5194/os-15-249-2019, 2019
Short summary
Short summary
Errors of observations and numerical model data are analysed with a focus on heterogeneous coastal areas. An extension of the triple collocation method is proposed, which takes into account gradients in the collocation of datasets separated by distances which may not be acceptable for a nearest-neigbour approximation, but still be feasible for linear or higher order interpolations. The technique is applied to wave height data from in situ stations, models, and the Sentinel-3A altimeter.
Sophie Bastin, Philippe Drobinski, Marjolaine Chiriaco, Olivier Bock, Romain Roehrig, Clemente Gallardo, Dario Conte, Marta Domínguez Alonso, Laurent Li, Piero Lionello, and Ana C. Parracho
Atmos. Chem. Phys., 19, 1471–1490, https://doi.org/10.5194/acp-19-1471-2019, https://doi.org/10.5194/acp-19-1471-2019, 2019
Short summary
Short summary
This paper uses colocated observations of temperature, precipitation and humidity to investigate the triggering of precipitation. It shows that there is a critical value of humidity above which precipitation picks up. This critical value depends on T and varies spatially. It also analyses how this dependency is reproduced in regional climate simulations over Europe. Models with too little and too light precipitation have both lower critical value of humidity and higher probability to exceed it.
Ilaria Isola, Giovanni Zanchetta, Russell N. Drysdale, Eleonora Regattieri, Monica Bini, Petra Bajo, John C. Hellstrom, Ilaria Baneschi, Piero Lionello, Jon Woodhead, and Alan Greig
Clim. Past, 15, 135–151, https://doi.org/10.5194/cp-15-135-2019, https://doi.org/10.5194/cp-15-135-2019, 2019
Short summary
Short summary
To understand the natural variability in the climate system, the hydrological aspect (dry and wet conditions) is particularly important for its impact on our societies. The reconstruction of past precipitation regimes can provide a useful tool for forecasting future climate changes. We use multi-proxy time series (oxygen and carbon isotopes, trace elements) from a speleothem to investigate circulation pattern variations and seasonality effects during the dry 4.2 ka event in central Italy.
Anne Wiese, Joanna Staneva, Johannes Schulz-Stellenfleth, Arno Behrens, Luciana Fenoglio-Marc, and Jean-Raymond Bidlot
Ocean Sci., 14, 1503–1521, https://doi.org/10.5194/os-14-1503-2018, https://doi.org/10.5194/os-14-1503-2018, 2018
Short summary
Short summary
The increase of data quality of wind and wave measurements provided by the new Sentinel-3A satellite in coastal areas is demonstrated compared to measurements of older satellites with in situ data and spectral wave model simulations. Furthermore, the sensitivity of the wave model to wind forcing is evaluated using data with different temporal and spatial resolution, where an hourly temporal resolution is necessary to represent the peak of extreme events better.
Constantijn J. Berends, Bas de Boer, and Roderik S. W. van de Wal
Geosci. Model Dev., 11, 4657–4675, https://doi.org/10.5194/gmd-11-4657-2018, https://doi.org/10.5194/gmd-11-4657-2018, 2018
Short summary
Short summary
We have devised a novel way to couple a climate model to an ice-sheet model. Usually, climate models are too slow to simulate more than a few centuries, whereas our new model set-up can simulate a full 120 000-year ice age in about 12 h. This makes it possible to look at the interactions between global climate and ice sheets on long timescales, something which is relevant for both research into past climate and future projections.
Eef C. H. van Dongen, Nina Kirchner, Martin B. van Gijzen, Roderik S. W. van de Wal, Thomas Zwinger, Gong Cheng, Per Lötstedt, and Lina von Sydow
Geosci. Model Dev., 11, 4563–4576, https://doi.org/10.5194/gmd-11-4563-2018, https://doi.org/10.5194/gmd-11-4563-2018, 2018
Short summary
Short summary
Ice flow forced by gravity is governed by the full Stokes (FS) equations, which are computationally expensive to solve. Therefore, approximations to the FS equations are used, especially when modeling an ice sheet on long time spans. Here, we report a combination of an approximation with the FS equations that allows simulating the dynamics of ice sheets over long time spans without introducing artifacts caused by application of approximations in parts of the domain where they are not valid.
Daniel Zamrsky, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 10, 1591–1603, https://doi.org/10.5194/essd-10-1591-2018, https://doi.org/10.5194/essd-10-1591-2018, 2018
Short summary
Short summary
An increasing number of coastal areas worldwide are facing a threat of groundwater quality degradation by saltwater intrusion. Groundwater flow models help to get a better idea of the volumes of fresh groundwater reserves in these areas. Our research provides information on aquifer thickness, which is one of the most important parameters for such models. However, we found that geological complexity of coastal aquifer systems is at least equally as important a factor for accurate predictions.
Michalis I. Vousdoukas, Dimitrios Bouziotas, Alessio Giardino, Laurens M. Bouwer, Lorenzo Mentaschi, Evangelos Voukouvalas, and Luc Feyen
Nat. Hazards Earth Syst. Sci., 18, 2127–2142, https://doi.org/10.5194/nhess-18-2127-2018, https://doi.org/10.5194/nhess-18-2127-2018, 2018
Short summary
Short summary
We examine sources of epistemic uncertainty in coastal flood risk models. We find that uncertainty from sea level estimations can be higher than that related to greenhouse gas emissions or climate prediction errors. Of comparable importance is information on coastal protection levels and the topography. In the absence of large datasets with sufficient resolution and accuracy, the last two factors are the main bottlenecks in terms of estimating coastal flood risks at large scales.
Sarah L. Bradley, Thomas J. Reerink, Roderik S. W. van de Wal, and Michiel M. Helsen
Clim. Past, 14, 619–635, https://doi.org/10.5194/cp-14-619-2018, https://doi.org/10.5194/cp-14-619-2018, 2018
Heiko Goelzer, Sophie Nowicki, Tamsin Edwards, Matthew Beckley, Ayako Abe-Ouchi, Andy Aschwanden, Reinhard Calov, Olivier Gagliardini, Fabien Gillet-Chaulet, Nicholas R. Golledge, Jonathan Gregory, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Joseph H. Kennedy, Eric Larour, William H. Lipscomb, Sébastien Le clec'h, Victoria Lee, Mathieu Morlighem, Frank Pattyn, Antony J. Payne, Christian Rodehacke, Martin Rückamp, Fuyuki Saito, Nicole Schlegel, Helene Seroussi, Andrew Shepherd, Sainan Sun, Roderik van de Wal, and Florian A. Ziemen
The Cryosphere, 12, 1433–1460, https://doi.org/10.5194/tc-12-1433-2018, https://doi.org/10.5194/tc-12-1433-2018, 2018
Short summary
Short summary
We have compared a wide spectrum of different initialisation techniques used in the ice sheet modelling community to define the modelled present-day Greenland ice sheet state as a starting point for physically based future-sea-level-change projections. Compared to earlier community-wide comparisons, we find better agreement across different models, which implies overall improvement of our understanding of what is needed to produce such initial states.
Dominik Paprotny, Michalis I. Vousdoukas, Oswaldo Morales-Nápoles, Sebastiaan N. Jonkman, and Luc Feyen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-132, https://doi.org/10.5194/hess-2018-132, 2018
Preprint withdrawn
Brice Noël, Willem Jan van de Berg, J. Melchior van Wessem, Erik van Meijgaard, Dirk van As, Jan T. M. Lenaerts, Stef Lhermitte, Peter Kuipers Munneke, C. J. P. Paul Smeets, Lambertus H. van Ulft, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, https://doi.org/10.5194/tc-12-811-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional climate model RACMO2.3p2 at 11 km resolution (1958–2016) over the Greenland ice sheet (GrIS). The model successfully reproduces the present-day climate and surface mass balance, i.e. snowfall minus meltwater run-off, of the GrIS compared to in situ observations. Since run-off from marginal narrow glaciers is poorly resolved at 11 km, further statistical downscaling to 1 km resolution is required for mass balance studies.
Sebastian Huizer, Max Radermacher, Sierd de Vries, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 22, 1065–1080, https://doi.org/10.5194/hess-22-1065-2018, https://doi.org/10.5194/hess-22-1065-2018, 2018
Short summary
Short summary
For a large beach nourishment called the Sand Engine we have examined the impact of groundwater recharge, tides, storm surges, and geomorphological changes on the growth of the fresh groundwater resources between 2011 and 2016. With detailed model simulations of these coastal processes we were able to get a good match with field measurements, and demonstrated the importance of wave runup and coastal erosion in studies on fresh groundwater in such dynamic coastal environments.
Werner M. J. Lazeroms, Adrian Jenkins, G. Hilmar Gudmundsson, and Roderik S. W. van de Wal
The Cryosphere, 12, 49–70, https://doi.org/10.5194/tc-12-49-2018, https://doi.org/10.5194/tc-12-49-2018, 2018
Short summary
Short summary
Basal melting of ice shelves is a major factor in the decline of the Antarctic Ice Sheet, which can contribute significantly to sea-level rise. Here, we investigate a new basal melt model based on the dynamics of meltwater plumes. For the first time, this model is applied to all Antarctic ice shelves. The model results in a realistic melt-rate pattern given suitable data for the topography and ocean temperature, making it a promising tool for future simulations of the Antarctic Ice Sheet.
Renske C. de Winter, Thomas J. Reerink, Aimée B. A. Slangen, Hylke de Vries, Tamsin Edwards, and Roderik S. W. van de Wal
Nat. Hazards Earth Syst. Sci., 17, 2125–2141, https://doi.org/10.5194/nhess-17-2125-2017, https://doi.org/10.5194/nhess-17-2125-2017, 2017
Short summary
Short summary
This paper provides a full range of possible future sea levels on a regional scale, since it includes extreme, but possible, contributions to sea level change from dynamical mass loss from the Greenland and Antarctica ice sheets. In contrast to the symmetric distribution used in the IPCC report, it is found that an asymmetric distribution toward high sea level change values locally can increase the mean sea level by 1.8 m this century.
Pietro Teatini, Giovanni Isotton, Stefano Nardean, Massimiliano Ferronato, Annamaria Mazzia, Cristina Da Lio, Luca Zaggia, Debora Bellafiore, Massimo Zecchin, Luca Baradello, Francisco Cellone, Fabiana Corami, Andrea Gambaro, Giovanni Libralato, Elisa Morabito, Annamaria Volpi Ghirardini, Riccardo Broglia, Stefano Zaghi, and Luigi Tosi
Hydrol. Earth Syst. Sci., 21, 5627–5646, https://doi.org/10.5194/hess-21-5627-2017, https://doi.org/10.5194/hess-21-5627-2017, 2017
Short summary
Short summary
We investigate the effects of digging a navigable canal on the hydrogeological system underlying a coastal lagoon. The research has been promoted by the Venice Water Authority, which is investigating different possibilities to avoid the passage of large cruise ships through the historic center of Venice, Italy. Numerical simulations supported by a proper hydrogeological characterization show that the exchange of water and contaminants from the subsurface and surface systems will be significant.
Lennert B. Stap, Roderik S. W. van de Wal, Bas de Boer, Richard Bintanja, and Lucas J. Lourens
Clim. Past, 13, 1243–1257, https://doi.org/10.5194/cp-13-1243-2017, https://doi.org/10.5194/cp-13-1243-2017, 2017
Short summary
Short summary
We show the results of transient simulations with a coupled climate–ice sheet model over the past 38 million years. The CO2 forcing of the model is inversely obtained from a benthic δ18O stack. These simulations enable us to study the influence of ice sheet variability on climate change on long timescales. We find that ice sheet–climate interaction strongly enhances Earth system sensitivity and polar amplification.
Michiel M. Helsen, Roderik S. W. van de Wal, Thomas J. Reerink, Richard Bintanja, Marianne S. Madsen, Shuting Yang, Qiang Li, and Qiong Zhang
The Cryosphere, 11, 1949–1965, https://doi.org/10.5194/tc-11-1949-2017, https://doi.org/10.5194/tc-11-1949-2017, 2017
Short summary
Short summary
Ice sheets reflect most incoming solar radiation back into space due to their high reflectivity (albedo). The albedo of ice sheets changes as a function of, for example, liquid water content and ageing of snow. In this study we have improved the description of albedo over the Greenland ice sheet in a global climate model. This is an important step, which also improves estimates of the annual ice mass gain or loss over the ice sheet using this global climate model.
Burkard Baschek, Friedhelm Schroeder, Holger Brix, Rolf Riethmüller, Thomas H. Badewien, Gisbert Breitbach, Bernd Brügge, Franciscus Colijn, Roland Doerffer, Christiane Eschenbach, Jana Friedrich, Philipp Fischer, Stefan Garthe, Jochen Horstmann, Hajo Krasemann, Katja Metfies, Lucas Merckelbach, Nino Ohle, Wilhelm Petersen, Daniel Pröfrock, Rüdiger Röttgers, Michael Schlüter, Jan Schulz, Johannes Schulz-Stellenfleth, Emil Stanev, Joanna Staneva, Christian Winter, Kai Wirtz, Jochen Wollschläger, Oliver Zielinski, and Friedwart Ziemer
Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, https://doi.org/10.5194/os-13-379-2017, 2017
Short summary
Short summary
The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the heavily used German Bight in the North Sea. The automated observing and modelling system is designed to monitor real-time conditions, to provide short-term forecasts and data products, and to assess the impact of anthropogenically induced change.
Robert Marsh, Ivan D. Haigh, Stuart A. Cunningham, Mark E. Inall, Marie Porter, and Ben I. Moat
Ocean Sci., 13, 315–335, https://doi.org/10.5194/os-13-315-2017, https://doi.org/10.5194/os-13-315-2017, 2017
Short summary
Short summary
To the west of Britain and Ireland, a strong ocean current follows the steep slope that separates the deep Atlantic and the continental shelf. This “Slope Current” exerts an Atlantic influence on the North Sea and its ecosystems. Using a combination of computer modelling and archived data, we find that the Slope Current weakened over 1988–2007, reducing Atlantic influence on the North Sea, due to a combination of warming of the subpolar North Atlantic and weakening winds to the west of Scotland.
Kathrin Wahle, Joanna Staneva, Wolfgang Koch, Luciana Fenoglio-Marc, Ha T. M. Ho-Hagemann, and Emil V. Stanev
Ocean Sci., 13, 289–301, https://doi.org/10.5194/os-13-289-2017, https://doi.org/10.5194/os-13-289-2017, 2017
Short summary
Short summary
Reduction of wave forecasting errors is a challenge, especially in dynamically complicated coastal ocean areas such as the southern part of the North Sea area. We study the effects of coupling between an atmospheric and two nested-grid wind wave models. Comparisons with data from in situ and satellite altimeter observations indicate that two-way coupling improves the simulation of wind and wave parameters of the model and justifies its implementation for both operational and climate simulation.
Markella Prokopiou, Patricia Martinerie, Célia J. Sapart, Emmanuel Witrant, Guillaume Monteil, Kentaro Ishijima, Sophie Bernard, Jan Kaiser, Ingeborg Levin, Thomas Blunier, David Etheridge, Ed Dlugokencky, Roderik S. W. van de Wal, and Thomas Röckmann
Atmos. Chem. Phys., 17, 4539–4564, https://doi.org/10.5194/acp-17-4539-2017, https://doi.org/10.5194/acp-17-4539-2017, 2017
Short summary
Short summary
Nitrous oxide is the third most important anthropogenic greenhouse gas with an increasing mole fraction. To understand its natural and anthropogenic sources
we employ isotope measurements. Results show that while the N2O mole fraction increases, its heavy isotope content decreases. The isotopic changes observed underline the dominance of agricultural emissions especially at the early part of the record, whereas in the later decades the contribution from other anthropogenic sources increases.
Isavela N. Monioudi, Adonis F. Velegrakis, Antonis E. Chatzipavlis, Anastasios Rigos, Theophanis Karambas, Michalis I. Vousdoukas, Thomas Hasiotis, Nikoletta Koukourouvli, Pascal Peduzzi, Eva Manoutsoglou, Serafim E. Poulos, and Michael B. Collins
Nat. Hazards Earth Syst. Sci., 17, 449–466, https://doi.org/10.5194/nhess-17-449-2017, https://doi.org/10.5194/nhess-17-449-2017, 2017
Short summary
Short summary
This work constitutes the first comprehensive attempt to record the spatial characteristics of the Aegean island beaches (Greece) and assess the long-term and episodic sea level rise (SLR) impacts under different scenarios. Results suggest that Aegean beaches may be particularly vulnerable to SLRs, where severe impacts which could be devastating are projected by 2100. Appropriate coastal "setback zone" policies should be adopted, as they form a significant environmental and economic resource.
Constantijn J. Berends and Roderik S. W. van de Wal
Geosci. Model Dev., 9, 4451–4460, https://doi.org/10.5194/gmd-9-4451-2016, https://doi.org/10.5194/gmd-9-4451-2016, 2016
Short summary
Short summary
This paper describes several improvements to the so-called "flood-fill algorithm" – a computer program widely known for its use in the "paint bucket" tool in several drawing programs such as MS Paint. However, it can also be used to determine the extent and depth of lakes in a topography map, which is useful in hydrology and climatology. In such cases, the default algorithm can be too slow to be of much use. Our improvements can make it up to 100 times faster, making it much more feasible.
Thomas J. Reerink, Willem Jan van de Berg, and Roderik S. W. van de Wal
Geosci. Model Dev., 9, 4111–4132, https://doi.org/10.5194/gmd-9-4111-2016, https://doi.org/10.5194/gmd-9-4111-2016, 2016
Short summary
Short summary
Ice sheets are part of the climate system and interact with the atmosphere and the ocean. OBLIMAP is a powerful tool to map climate fields between GCMs and ISMs (ice sheet models), which run on grids that differ in curvature, resolution and extent. OBLIMAP uses optimal aligned oblique projections, which minimize area distortions. OBLIMAP 2.0 allows for high-frequency embedded coupling and masked mapping. A fast search strategy realizes a huge performance gain and enables high-resolution mapping.
Joanna Staneva, Kathrin Wahle, Wolfgang Koch, Arno Behrens, Luciana Fenoglio-Marc, and Emil V. Stanev
Nat. Hazards Earth Syst. Sci., 16, 2373–2389, https://doi.org/10.5194/nhess-16-2373-2016, https://doi.org/10.5194/nhess-16-2373-2016, 2016
Short summary
Short summary
This study addresses the impact of wind, waves, tidal forcing and baroclinicity on the sea level of the German Bight during extreme storm events. The role of wave-induced processes, tides and baroclinicity is quantified, and the results are compared with in situ measurements and satellite data. Considering a wave-dependent approach and baroclinicity, the surge is significantly enhanced in the coastal areas and the model results are closer to observations, especially during the extreme storm.
Emil V. Stanev, Johannes Schulz-Stellenfleth, Joanna Staneva, Sebastian Grayek, Sebastian Grashorn, Arno Behrens, Wolfgang Koch, and Johannes Pein
Ocean Sci., 12, 1105–1136, https://doi.org/10.5194/os-12-1105-2016, https://doi.org/10.5194/os-12-1105-2016, 2016
Short summary
Short summary
This paper describes coastal ocean forecasting practices exemplified for the North Sea and Baltic Sea. It identifies new challenges, most of which are associated with the nonlinear behavior of coastal oceans. It describes the assimilation of remote sensing, in situ and HF radar data, prediction of wind waves and storm surges, as well as applications to search and rescue operations. Seamless applications to coastal and estuarine modeling are also presented.
Lorenzo Mentaschi, Michalis Vousdoukas, Evangelos Voukouvalas, Ludovica Sartini, Luc Feyen, Giovanni Besio, and Lorenzo Alfieri
Hydrol. Earth Syst. Sci., 20, 3527–3547, https://doi.org/10.5194/hess-20-3527-2016, https://doi.org/10.5194/hess-20-3527-2016, 2016
Short summary
Short summary
The climate is subject to variations which must be considered
studying the intensity and frequency of extreme events.
We introduce in this paper a new methodology
for the study of variable extremes, which consists in detecting
the pattern of variability of a time series, and applying these patterns
to the analysis of the extreme events.
This technique comes with advantages with respect to the previous ones
in terms of accuracy, simplicity, and robustness.
Michalis I. Vousdoukas, Evangelos Voukouvalas, Lorenzo Mentaschi, Francesco Dottori, Alessio Giardino, Dimitrios Bouziotas, Alessandra Bianchi, Peter Salamon, and Luc Feyen
Nat. Hazards Earth Syst. Sci., 16, 1841–1853, https://doi.org/10.5194/nhess-16-1841-2016, https://doi.org/10.5194/nhess-16-1841-2016, 2016
Short summary
Short summary
Coastal flooding has severe socioeconomic impacts that are projected to increase under the changing climate. The present contribution reports on efforts towards a new methodology for mapping coastal flood hazard at European scale, combining the contribution of waves, improved inundation modeling and an open, physics-based framework which can be constantly upgraded whenever new and more accurate data become available.
Sebastian Huizer, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 20, 3149–3166, https://doi.org/10.5194/hess-20-3149-2016, https://doi.org/10.5194/hess-20-3149-2016, 2016
Short summary
Short summary
The anticipation of sea-level rise has led to an innovative project called the Sand Engine, where a large volume of sand was placed on the Dutch coast. The intention is that the sand is redistributed by wind, current and tide, reinforcing coastal defence structures. Model simulations show that this large sand replenishment can result in a substantial growth of fresh groundwater resources. Thus, sand replenishments could combine coastal protection with an increase of fresh groundwater resources.
Joanna Staneva, Kathrin Wahle, Heinz Günther, and Emil Stanev
Ocean Sci., 12, 797–806, https://doi.org/10.5194/os-12-797-2016, https://doi.org/10.5194/os-12-797-2016, 2016
Short summary
Short summary
This study addresses the impact of coupling between wind wave and circulation models on the quality of coastal ocean predicting systems. This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales. The improved skill of the coupled forecasts compared to the non-coupled ones, in particular during extreme events, justifies the further enhancements of coastal operational systems by including wind wave models.
Peter Köhler, Lennert B. Stap, Anna S. von der Heydt, Bas de Boer, and Roderik S. W. van de Wal
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-23, https://doi.org/10.5194/cp-2016-23, 2016
Revised manuscript not accepted
Short summary
Short summary
Evidence indicate that specific equilibrium climate sensitivity, the global annual mean surface temperature change as a response to a change in radiative forcing, is state dependent. We here show that the interpretation of data in the state-dependent case is not straightforward. We analyse the differences of a point-wise approach and one based on a piece-wise linear analysis, combine both, compare with potential model results and apply the theoretical concepts to data of the last 800 kyr.
Georg Umgiesser, Petras Zemlys, Ali Erturk, Arturas Razinkova-Baziukas, Jovita Mėžinė, and Christian Ferrarin
Ocean Sci., 12, 391–402, https://doi.org/10.5194/os-12-391-2016, https://doi.org/10.5194/os-12-391-2016, 2016
Short summary
Short summary
The paper explores the importance of physical forcing on the exchange mechanisms and the renewal time in the Curonian Lagoon over 10 years. The influence of ice cover on the exchange rates has been explored. Finally, the influence of water level fluctuations and river discharge has been studied. It has been found that ice cover is surprisingly not very important for changes in renewal time. The single most important factor is river discharge.
O. Q. Gutiérrez, F. Filipponi, A. Taramelli, E. Valentini, P. Camus, and F. J. Méndez
Ocean Sci., 12, 39–49, https://doi.org/10.5194/os-12-39-2016, https://doi.org/10.5194/os-12-39-2016, 2016
Short summary
Short summary
High-resolution wave hindcast has been performed for the N Adriatic Sea using a hybrid methodology, combining a regional wave hindcast database, wind reanalysis, satellite SAR wind fields and data mining techniques. Comparison with in situ instrumental data indicates the good quality of the downscaled waves; moreover, a good correlation was found on the downscaled waves forced with different wind fields. Results demonstrate how SAR wind fields can be successfully up-taken in wave downscaling.
W. J. McKiver, G. Sannino, F. Braga, and D. Bellafiore
Ocean Sci., 12, 51–69, https://doi.org/10.5194/os-12-51-2016, https://doi.org/10.5194/os-12-51-2016, 2016
Short summary
Short summary
First modeling work comparing SHYFEM and MITgcm performance in the north Adriatic Sea; the treatment of heat/mass fluxes at the surface affects the models skill to reproduce coastal processes; high resolution is needed close to the coast, while lower resolution in the offshore is adequate to capture the dense water event; correct river discharges and temperature are vital for the reproduction of estuarine dynamics; non-hydrostatic processes do not influence the dense water formation.
P. Köhler, B. de Boer, A. S. von der Heydt, L. B. Stap, and R. S. W. van de Wal
Clim. Past, 11, 1801–1823, https://doi.org/10.5194/cp-11-1801-2015, https://doi.org/10.5194/cp-11-1801-2015, 2015
Short summary
Short summary
We find that the specific equilibrium climate sensitivity due to radiative forcing of CO2 and land ice albedo has been state-dependent for the last 2.1Myr (most of the Pleistocene). Its value is ~45% larger during intermediate glaciated climates and interglacial periods than during Pleistocene full glacial conditions. The state dependency is mainly caused by a latitudinal dependency in ice sheet area changes. Due to uncertainties in CO2, firm conclusions for the Pliocene are not yet possible.
V. E. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. M. Falcieri, A. Coluccelli, A. Russo, and S. Carniel
Ocean Sci., 11, 909–920, https://doi.org/10.5194/os-11-909-2015, https://doi.org/10.5194/os-11-909-2015, 2015
Short summary
Short summary
Sea surface temperature and turbidity, derived from satellite imagery, were used to characterize river plumes in the northern Adriatic Sea during a significant flood event in November 2014. Circulation patterns and sea surface salinity, from an operational coupled ocean-wave model, supported the interpretation of the plumes' interaction with the receiving waters and among them.
M. P. Wadey, J. M. Brown, I. D. Haigh, T. Dolphin, and P. Wisse
Nat. Hazards Earth Syst. Sci., 15, 2209–2225, https://doi.org/10.5194/nhess-15-2209-2015, https://doi.org/10.5194/nhess-15-2209-2015, 2015
B. Noël, W. J. van de Berg, E. van Meijgaard, P. Kuipers Munneke, R. S. W. van de Wal, and M. R. van den Broeke
The Cryosphere, 9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015, https://doi.org/10.5194/tc-9-1831-2015, 2015
Short summary
Short summary
We compare Greenland Ice Sheet surface mass balance (SMB) from the updated polar version of the regional climate model RACMO2.3 and the previous version 2.1. RACMO2.3 has an adjusted rainfall-to-snowfall conversion favouring summer snowfall over rainfall. Enhanced summer snowfall reduce melt rates in the ablation zone by covering dark ice with highly reflective fresh snow. This improves the modelled SMB-elevation gradient and surface energy balance compared to observations in west Greenland.
L. G. van der Wel, H. A. Been, R. S. W. van de Wal, C. J. P. P. Smeets, and H. A. J. Meijer
The Cryosphere, 9, 1089–1103, https://doi.org/10.5194/tc-9-1089-2015, https://doi.org/10.5194/tc-9-1089-2015, 2015
Short summary
Short summary
We performed 2H isotope diffusion measurements in the upper 3 metres of firn at Summit, Greenland, by following over a 4-year period isotope-enriched snow that we deposited.
We found that the diffusion process was much less rapid than in the most commonly used model. We discuss several aspects of the diffusion process that are still poorly constrained and might lead to this discrepancy. Quantitative knowledge of diffusion is necessary for use of the diffusion process itself as a climate proxy.
B. de Boer, A. M. Dolan, J. Bernales, E. Gasson, H. Goelzer, N. R. Golledge, J. Sutter, P. Huybrechts, G. Lohmann, I. Rogozhina, A. Abe-Ouchi, F. Saito, and R. S. W. van de Wal
The Cryosphere, 9, 881–903, https://doi.org/10.5194/tc-9-881-2015, https://doi.org/10.5194/tc-9-881-2015, 2015
Short summary
Short summary
We present results from simulations of the Antarctic ice sheet by means of an intercomparison project with six ice-sheet models. Our results demonstrate the difficulty of all models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line. Improved grounding-line physics could be essential for a correct representation of the migration of the grounding line of the Antarctic ice sheet during the Pliocene.
R. S. W. van de Wal, C. J. P. P. Smeets, W. Boot, M. Stoffelen, R. van Kampen, S. H. Doyle, F. Wilhelms, M. R. van den Broeke, C. H. Reijmer, J. Oerlemans, and A. Hubbard
The Cryosphere, 9, 603–611, https://doi.org/10.5194/tc-9-603-2015, https://doi.org/10.5194/tc-9-603-2015, 2015
Short summary
Short summary
This paper addresses the feedback between ice flow and melt rates. Using 20 years of data covering the whole ablation area, we show that there is not a strong positive correlation between annual ice velocities and melt rates. Rapid variations around the equilibrium line indicate the possibility of rapid variations high on the ice sheet.
S. J. Koenig, A. M. Dolan, B. de Boer, E. J. Stone, D. J. Hill, R. M. DeConto, A. Abe-Ouchi, D. J. Lunt, D. Pollard, A. Quiquet, F. Saito, J. Savage, and R. van de Wal
Clim. Past, 11, 369–381, https://doi.org/10.5194/cp-11-369-2015, https://doi.org/10.5194/cp-11-369-2015, 2015
Short summary
Short summary
The paper assess the Greenland Ice Sheet’s sensitivity to a warm period in the past, a time when atmospheric CO2 concentrations were comparable to current levels. We quantify ice sheet volume and locations in Greenland and find that the ice sheets are less sensitive to differences in ice sheet model configurations than to changes in imposed climate forcing. We conclude that Pliocene ice was most likely to be limited to highest elevations in eastern and southern Greenland.
M. P. Wadey, I. D. Haigh, and J. M. Brown
Ocean Sci., 10, 1031–1045, https://doi.org/10.5194/os-10-1031-2014, https://doi.org/10.5194/os-10-1031-2014, 2014
P. M. Alexander, M. Tedesco, X. Fettweis, R. S. W. van de Wal, C. J. P. P. Smeets, and M. R. van den Broeke
The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, https://doi.org/10.5194/tc-8-2293-2014, 2014
L. B. Stap, R. S. W. van de Wal, B. de Boer, R. Bintanja, and L. J. Lourens
Clim. Past, 10, 2135–2152, https://doi.org/10.5194/cp-10-2135-2014, https://doi.org/10.5194/cp-10-2135-2014, 2014
J. R. Delsman, K. R. M. Hu-a-ng, P. C. Vos, P. G. B. de Louw, G. H. P. Oude Essink, P. J. Stuyfzand, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 3891–3905, https://doi.org/10.5194/hess-18-3891-2014, https://doi.org/10.5194/hess-18-3891-2014, 2014
B. de Boer, P. Stocchi, and R. S. W. van de Wal
Geosci. Model Dev., 7, 2141–2156, https://doi.org/10.5194/gmd-7-2141-2014, https://doi.org/10.5194/gmd-7-2141-2014, 2014
A. B. A. Slangen, R. S. W. van de Wal, Y. Wada, and L. L. A. Vermeersen
Earth Syst. Dynam., 5, 243–255, https://doi.org/10.5194/esd-5-243-2014, https://doi.org/10.5194/esd-5-243-2014, 2014
M. M. Helsen, W. J. van de Berg, R. S. W. van de Wal, M. R. van den Broeke, and J. Oerlemans
Clim. Past, 9, 1773–1788, https://doi.org/10.5194/cp-9-1773-2013, https://doi.org/10.5194/cp-9-1773-2013, 2013
M. Reale and P. Lionello
Nat. Hazards Earth Syst. Sci., 13, 1707–1722, https://doi.org/10.5194/nhess-13-1707-2013, https://doi.org/10.5194/nhess-13-1707-2013, 2013
P. Zemlys, C. Ferrarin, G. Umgiesser, S. Gulbinskas, and D. Bellafiore
Ocean Sci., 9, 573–584, https://doi.org/10.5194/os-9-573-2013, https://doi.org/10.5194/os-9-573-2013, 2013
A. Sanna, P. Lionello, and S. Gualdi
Nat. Hazards Earth Syst. Sci., 13, 1567–1577, https://doi.org/10.5194/nhess-13-1567-2013, https://doi.org/10.5194/nhess-13-1567-2013, 2013
C. Ferrarin, M. Ghezzo, G. Umgiesser, D. Tagliapietra, E. Camatti, L. Zaggia, and A. Sarretta
Hydrol. Earth Syst. Sci., 17, 1733–1748, https://doi.org/10.5194/hess-17-1733-2013, https://doi.org/10.5194/hess-17-1733-2013, 2013
R. Mel, A. Sterl, and P. Lionello
Nat. Hazards Earth Syst. Sci., 13, 1135–1142, https://doi.org/10.5194/nhess-13-1135-2013, https://doi.org/10.5194/nhess-13-1135-2013, 2013
M. M. Helsen, R. S. W. van de Wal, M. R. van den Broeke, W. J. van de Berg, and J. Oerlemans
The Cryosphere, 6, 255–272, https://doi.org/10.5194/tc-6-255-2012, https://doi.org/10.5194/tc-6-255-2012, 2012
R. S. W. van de Wal, B. de Boer, L. J. Lourens, P. Köhler, and R. Bintanja
Clim. Past, 7, 1459–1469, https://doi.org/10.5194/cp-7-1459-2011, https://doi.org/10.5194/cp-7-1459-2011, 2011
A. B. A. Slangen and R. S. W. van de Wal
The Cryosphere, 5, 673–686, https://doi.org/10.5194/tc-5-673-2011, https://doi.org/10.5194/tc-5-673-2011, 2011
D. Liebrand, L. J. Lourens, D. A. Hodell, B. de Boer, R. S. W. van de Wal, and H. Pälike
Clim. Past, 7, 869–880, https://doi.org/10.5194/cp-7-869-2011, https://doi.org/10.5194/cp-7-869-2011, 2011
I. G. M. Wientjes, R. S. W. Van de Wal, G. J. Reichart, A. Sluijs, and J. Oerlemans
The Cryosphere, 5, 589–601, https://doi.org/10.5194/tc-5-589-2011, https://doi.org/10.5194/tc-5-589-2011, 2011
M. R. van den Broeke, C. J. P. P. Smeets, and R. S. W. van de Wal
The Cryosphere, 5, 377–390, https://doi.org/10.5194/tc-5-377-2011, https://doi.org/10.5194/tc-5-377-2011, 2011
M. A. G. den Ouden, C. H. Reijmer, V. Pohjola, R. S. W. van de Wal, J. Oerlemans, and W. Boot
The Cryosphere, 4, 593–604, https://doi.org/10.5194/tc-4-593-2010, https://doi.org/10.5194/tc-4-593-2010, 2010
T. J. Reerink, M. A. Kliphuis, and R. S. W. van de Wal
Geosci. Model Dev., 3, 13–41, https://doi.org/10.5194/gmd-3-13-2010, https://doi.org/10.5194/gmd-3-13-2010, 2010
M. van den Broeke, P. Smeets, J. Ettema, C. van der Veen, R. van de Wal, and J. Oerlemans
The Cryosphere, 2, 179–189, https://doi.org/10.5194/tc-2-179-2008, https://doi.org/10.5194/tc-2-179-2008, 2008
J. Oerlemans, M. Dyurgerov, and R. S. W. van de Wal
The Cryosphere, 1, 59–65, https://doi.org/10.5194/tc-1-59-2007, https://doi.org/10.5194/tc-1-59-2007, 2007
J. O. Sewall, R. S. W. van de Wal, K. van der Zwan, C. van Oosterhout, H. A. Dijkstra, and C. R. Scotese
Clim. Past, 3, 647–657, https://doi.org/10.5194/cp-3-647-2007, https://doi.org/10.5194/cp-3-647-2007, 2007
Cited articles
Aarnes, O., Reistad, M., Breivik, O., Bitner-Gregersen, E., Eide, L. I., Gramstad, O., Magnusson, A. K., Natvig, B., and Vanem, E.: Projected changes in significant wave height towards the end of the 21st century – Northeast Atlantic, J. Geophys. Res.-Oceans, 122, 3394–3403, 2017.
Abadie, L. M., Jackson, L. P., Sainz de Murieta, E., Jevrejeva, S., and Galarraga, I.: Comparing urban coastal flood risk in 136 cities under two alternative sea-level projections: RCP 8.5 and an expert opinion-based high-end scenario, Ocean Coast. Manage., 193, 105249, https://doi.org/10.1016/j.ocecoaman.2020.105249, 2020.
Ali, E., Cramer, W., Carnicer, J., Georgopoulou, E., Hilmi, N., Le Cozannet, G., and Lionello, P.: Cross-Chapter Paper 4: Mediterranean Region, in: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, C. D., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegria, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge, UK and New York, NY, USA, 2233–2272, https://doi.org/10.1017/9781009325844.021, 2022.
Alvarez-Cuesta, M., Toimil, A., and Losada, I. J.: Modelling long-term shoreline evolution in highly anthropized coastal areas. Part 2: Assessing the response to climate change, Coast. Eng., 168, 103961, https://doi.org/10.1016/j.coastaleng.2021.103961, 2021.
Andreadis, K. M., Wing, O. E. J., Colven, E., Gleason, C. J., Bates, P. D., and Brown, C. M.: Urbanizing the floodplain: global changes of imperviousness in flood-prone areas, Environ. Res. Lett., 17, 104024, https://doi.org/10.1088/1748-9326/ac9197, 2022.
Anthony, E. J., Almar, R., Besset, M., Reyns, J., Laibi, R., Ranasinghe, R., Abessolo Ondoa, G., and Vacchi, M.: Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, Part 2: Sources and patterns of sediment supply, sediment cells, and recent shoreline change, Cont. Shelf Res., 173, 93–103, https://doi.org/10.1016/j.csr.2018.12.006, 2019.
Armanuos, A. M., Al-Ansari, N., and Yaseen, Z. M.: Underground Barrier Wall Evaluation for Controlling Saltwater Intrusion in Sloping Unconfined Coastal Aquifers, Water, 12, 2403, https://doi.org/10.3390/w12092403, 2020.
Arns, A., Dangendorf, S., Jensen, J., Talke, S., Bender, J., and Pattiaratchi, C.: Sea-level rise induced amplification of coastal protection design heights, Sci. Rep., 7, 40171, https://doi.org/10.1038/srep40171, 2017.
Arns, A., Wahl, T., Wolff, C., Vafeidis, A. T., Haigh, I. D., Woodworth, P., Niehüser, S., and Jensen, J.: Non-linear interaction modulates global extreme sea levels, coastal flood exposure, and impacts, Nat. Commun., 11, 1918, https://doi.org/10.1038/s41467-020-15752-5, 2020.
Athanasiou, P., van Dongeren, A., Giardino, A., Vousdoukas, M. I., Ranasinghe, R., and Kwadijk, J.: Uncertainties in projections of sandy beach erosion due to sea level rise: an analysis at the European scale, Sci. Rep., 10, 11895, https://doi.org/10.1038/s41598-020-68576-0, 2020.
Barnard, P. L., Short, A. D., Harley, M. D., Splinter, K. D., Vitousek, S., Turner, I. L., Allan, J., Banno, M., Bryan, K. R., Doria, A., Hansen, J. E., Kato, S., Kuriyama, Y., Randall-Goodwin, E., Ruggiero, P., Walker, I. J., and Heathfield, D. K.: Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation, Nat. Geosci., 8, 801–807, https://doi.org/10.1038/ngeo2539, 2015.
Barnard, P. L., Erikson, L. H., Foxgrover, A. C., Hart, J. A. F., Limber, P., O'Neill, A. C., van Ormondt, M., Vitousek, S., Wood, N., Hayden, M. K., and Jones, J. M.: Dynamic flood modeling essential to assess the coastal impacts of climate change, Sci. Rep., 9, 4309, https://doi.org/10.1038/s41598-019-40742-z, 2019.
Bednar-Friedl, Biesbroek, R., Schmidt, D. N., Alexander, P., Børsheim, K. Y., Carnicer, J., Georgopoulou, E., Haasnoot, M., Le Cozannet, G., Lionello, P., Lipka, O., Möllmann, C., Muccione, V., Mustonen, T., Piepenburg, D., and Whitmarsh, L.: Chapter 13 – Europe, in: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, https://doi.org/10.1017/9781009325844.015, 2022.
Befus, K. M., Barnard, P. L., Hoover, D. J., Finzi Hart, J. A., and Voss, C. I.: Increasing threat of coastal groundwater hazards from sea-level rise in California, Nat. Clim. Chang., 10, 946–952, https://doi.org/10.1038/s41558-020-0874-1, 2020.
Bellafiore, D., Ferrarin, C., Maicu, F., Manfè, G., Lorenzetti, G., Umgiesser, G., Zaggia, L., and Levinson, A. V.: Saltwater Intrusion in a Mediterranean Delta Under a Changing Climate, J. Geophys. Res.-Oceans, 126, e2020JC016437, https://doi.org/10.1029/2020JC016437, 2021.
Benetazzo, A., Davison, S., Barbariol, F., Mercogliano, P., Favaretto, C., and Sclavo, M.: Correction of ERA5 Wind for Regional Climate Projections of Sea Waves, Water, 14, 1590, https://doi.org/10.3390/w14101590, 2022.
Bermúdez, M., Cea, L., and Sopelana, J.: Quantifying the role of individual flood drivers and their correlations in flooding of coastal river reaches, Stoch. Env. Res. Risk A., 33, 1851–1861, https://doi.org/10.1007/s00477-019-01733-8, 2019.
Bermúdez, M., Farfán, J. F., Willems, P., and Cea, L.: Assessing the Effects of Climate Change on Compound Flooding in Coastal River Areas, Water Resour. Res., 57, e2020WR029321, https://doi.org/10.1029/2020WR029321, 2021.
Bertels, D. and Willems, P.: Climate change impact on salinization of drinking water inlets along the Campine Canals, Belgium, Journal of Hydrology: Regional Studies, 42, 101129, https://doi.org/10.1016/j.ejrh.2022.101129, 2022.
Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., and Vrac, M.: Multivariate statistical modelling of compound events via pair-copula constructions: analysis of floods in Ravenna (Italy), Hydrol. Earth Syst. Sci., 21, 2701–2723, https://doi.org/10.5194/hess-21-2701-2017, 2017.
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Science Advances, 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019.
Bevacqua, E., Vousdoukas, M. I., Shepherd, T. G., and Vrac, M.: Brief communication: The role of using precipitation or river discharge data when assessing global coastal compound flooding, Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, 2020a.
Bevacqua, E., Vousdoukas, M. I., Zappa, G., Hodges, K., Shepherd, T. G., Maraun, D., Mentaschi, L., and Feyen, L.: More meteorological events that drive compound coastal flooding are projected under climate change, Communications Earth & Environment, 1, 47, https://doi.org/10.1038/s43247-020-00044-z, 2020b.
Bevacqua, E., De Michele, C., Manning, C., Couasnon, A., Ribeiro, A. F. S., Ramos, A. M., Vignotto, E., Bastos, A., Blesić, S., Durante, F., Hillier, J., Oliveira, S. C., Pinto, J. G., Ragno, E., Rivoire, P., Saunders, K., Wiel, K., Wu, W., Zhang, T., and Zscheischler, J.: Guidelines for Studying Diverse Types of Compound Weather and Climate Events, Earths Future, 9, e2021EF002340, https://doi.org/10.1029/2021EF002340, 2021.
Bilskie, M. V., Hagen, S. C., Medeiros, S. C., and Passeri, D. L.: Dynamics of sea level rise and coastal flooding on a changing landscape, Geophys. Res. Lett., 41, 927–934, https://doi.org/10.1002/2013GL058759, 2014.
Bisaro, A., Galluccio, G., Fiorini Beckhauser, E., Biddau, F., David, R., d'Hont, F., Góngora Zurro, A., Le Cozannet, G., McEvoy, S., Pérez Gómez, B., Romagnoli, C., Sini, E., and Slinger, J.: Sea Level Rise in Europe: Governance context and challenges, in: Sea Level Rise in Europe: 1st Assessment Report of the Knowledge Hub on Sea Level Rise (SLRE1), edited by: van den Hurk, B., Pinardi, N., Kiefer, T., Larkin, K., Manderscheid, P., and Richter, K., Copernicus Publications, State Planet, 3-slre1, 7, https://doi.org/10.5194/sp-3-slre1-7-2024, 2024.
Bonaldo, D., Bellafiore, D., Ferrarin, C., Ferretti, R., Ricchi, A., Sangelantoni, L., and Vitelletti, M. L.: The summer 2022 drought: a taste of future climate for the Po valley (Italy)?, Reg. Environ. Change, 23, 1, https://doi.org/10.1007/s10113-022-02004-z, 2023.
Bonte, M. and Zwolsman, J. J. G.: Climate change induced salinisation of artificial lakes in the Netherlands and consequences for drinking water production, Water Res., 44, 4411–4424, https://doi.org/10.1016/j.watres.2010.06.004, 2010.
Bosserelle, C., Gallop, S. L., Haigh, I. D., and Pattiaratchi, C. B.: The Influence of Reef Topography on Storm-Driven Sand Flux, J. Mar. Sci. Eng., 9, 272, https://doi.org/10.3390/jmse9030272, 2021.
Boucharel, J., David, M., Almar, R., and Melet, A.: Contrasted influence of climate modes teleconnections to the interannual variability of coastal sea level components–implications for statistical forecasts, Clim. Dynam., 61, 4011–4023, https://doi.org/10.1007/s00382-023-06771-1, 2023.
Bove, G., Becker, A., Sweeney, B., Vousdoukas, M., and Kulp, S.: A method for regional estimation of climate change exposure of coastal infrastructure: Case of USVI and the influence of digital elevation models on assessments, Sci. Total Environ., 710, 136162, https://doi.org/10.1016/j.scitotenv.2019.136162, 2020.
Brand, E., Ramaekers, G., and Lodder, Q.: Dutch experience with sand nourishments for dynamic coastline conservation – An operational overview, Ocean Coast. Manage., 217, 106008, https://doi.org/10.1016/j.ocecoaman.2021.106008, 2022.
Breili, K., Simpson, M. J. R., Klokkervold, E., and Roaldsdotter Ravndal, O.: High-accuracy coastal flood mapping for Norway using lidar data, Nat. Hazards Earth Syst. Sci., 20, 673–694, https://doi.org/10.5194/nhess-20-673-2020, 2020.
Bruun, P.: Sea-level rise as a cause of shore erosion, Journal of the Waterways and Harbors division, 88, 117–130, 1962.
Calafat, F. M. and Marcos, M.: Probabilistic reanalysis of storm surge extremes in Europe, P. Natl. Acad. Sci. USA, 117, 1877–1883, https://doi.org/10.1073/pnas.1913049117, 2020.
Calafat, F. M., Wahl, T., Tadesse, M. G., and Sparrow, S. N.: Trends in Europe storm surge extremes match the rate of sea-level rise, Nature, 603, 841–845, https://doi.org/10.1038/s41586-022-04426-5, 2022.
Campbell, D. and Keddy, P.: The Roles of Competition and Facilitation in Producing Zonation Along an Experimental Flooding Gradient: a Tale of Two Tails with Ten Freshwater Marsh Plants, Wetlands, 42, 5, https://doi.org/10.1007/s13157-021-01524-4, 2022.
Camus, P., Haigh, I. D., Nasr, A. A., Wahl, T., Darby, S. E., and Nicholls, R. J.: Regional analysis of multivariate compound coastal flooding potential around Europe and environs: sensitivity analysis and spatial patterns, Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, 2021.
Camus, P., Haigh, I. D., Wahl, T., Nasr, A. A., Méndez, F. J., Darby, S. E., and Nicholls, R. J.: Daily synoptic conditions associated with occurrences of compound events in estuaries along North Atlantic coastlines, Int. J. Climatol., 42, 5694–5713, https://doi.org/10.1002/joc.7556, 2022.
Cantelon, J. A., Guimond, J. A., Robinson, C. E., Michael, H. A., and Kurylyk, B. L.: Vertical Saltwater Intrusion in Coastal Aquifers Driven by Episodic Flooding: A Review, Water Resour. Res., 58, e2022WR032614, https://doi.org/10.1029/2022WR032614, 2022.
Carbognin, L. and Tosi, L.: Interaction between Climate Changes, Eustacy and Land Subsidence in the North Adriatic Region, Italy, Mar. Ecol., 23, 38–50, https://doi.org/10.1111/j.1439-0485.2002.tb00006.x, 2002.
Cardona, O. D., Van Aalst, M. K., Birkmann, J., Fordham, M., Mc Gregor, G., Rosa, P., Pulwarty, R. S., Schipper, E. L. F., Sinh, B. T., Décamps, H., Keim, M., Davis, I., Ebi, K. L., Lavell, A., Mechler, R., Murray, V., Pelling, M., Pohl, J., Smith, A. O., and Thomalla, F.: Determinants of risk: Exposure and vulnerability, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, 65–108, https://doi.org/10.1017/CBO9781139177245.005, 2012.
Cazenave, A. and Le Cozannet, G.: Sea level rise and its coastal impacts, Earths Future, 2, 15–34, 2014.
Chaigneau, A. A., Law-Chune, S., Melet, A., Voldoire, A., Reffray, G., and Aouf, L.: Impact of sea level changes on future wave conditions along the coasts of western Europe, Ocean Sci., 19, 1123–1143, https://doi.org/10.5194/os-19-1123-2023, 2023.
Chang, S. W., Clement, T. P., Simpson, M. J., and Lee, K.-K.: Does sea-level rise have an impact on saltwater intrusion?, Adv. Water Resour., 34, 1283–1291, https://doi.org/10.1016/j.advwatres.2011.06.006, 2011.
Chapapría, V. E., Peris, J. S., and González-Escrivá, J. A.: Coastal Monitoring Using Unmanned Aerial Vehicles (UAVs) for the Management of the Spanish Mediterranean Coast: The Case of Almenara-Sagunto, Int. J. Env. Res. Pub. He., 19, 5457, https://doi.org/10.3390/ijerph19095457, 2022.
Chesnaux, R.: Closed-form analytical solutions for assessing the consequences of sea-level rise on groundwater resources in sloping coastal aquifers, Hydrogeol. J., 23, 1399–1413, https://doi.org/10.1007/s10040-015-1276-8, 2015.
Chesnaux, R., Marion, D., Boumaiza, L., Richard, S., and Walter, J.: An analytical methodology to estimate the changes in fresh groundwater resources with sea-level rise and coastal erosion in strip-island unconfined aquifers: illustration with Savary Island, Canada, Hydrogeol. J., 29, 1355–1364, https://doi.org/10.1007/s10040-020-02300-0, 2021.
Coco, G., Senechal, N., Rejas, A., Bryan, K. R., Capo, S., Parisot, J. P., Brown, J. A., and MacMahan, J. H. M.: Beach response to a sequence of extreme storms, Geomorphology, 204, 493–501, https://doi.org/10.1016/j.geomorph.2013.08.028, 2014.
Cooley, S., Schoeman, D., Bopp, L., Boyd, P., Donner, S., Ghebrehiwet, D. Y., Ito, S.-I., Kiessling, W., Martinetto, P., Ojea, E., Racault, M.-F., Rost, B., and Skern-Mauritzen, M.: Oceans and Coastal Ecosystems and Their Services, in: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 379–550, https://doi.org/10.1017/9781009325844.005, 2022.
Cooper, H. H. J., Kohout, F. A., Henry, H. R., and Glover, R. E.: Sea Water in Coastal Aquifers, US Department of the interior, Geological Survey water supply paper 1613-C, Washington, 1964.
Core Writing Team, Lee, H., and Romero, J. (Eds.): IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, P. J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale, Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, 2020.
Custodio, E.: Aquifer overexploitation: what does it mean?, Hydrogeol. J., 10, 254–277, https://doi.org/10.1007/s10040-002-0188-6, 2002.
Custodio, E. and Bruggeman, G. A.: Groundwater problems in coastal areas: a contribution to the International Hydrological Programme, Unesco, Paris, 596 pp., ISBN 978-92-3-102415-3, 1987.
D'Anna, M., Castelle, B., Idier, D., Rohmer, J., Le Cozannet, G., Thieblemont, R., and Bricheno, L.: Uncertainties in Shoreline Projections to 2100 at Truc Vert Beach (France): Role of Sea-Level Rise and Equilibrium Model Assumptions, J. Geophys. Res.-Earth, 126, e2021JF006160, https://doi.org/10.1029/2021JF006160, 2021.
D'Anna, M., Idier, D., Castelle, B., Rohmer, J., Cagigal, L., and Mendez, F. J.: Effects of stochastic wave forcing on probabilistic equilibrium shoreline response across the 21st century including sea-level rise, Coast. Eng., 175, 104149, https://doi.org/10.1016/j.coastaleng.2022.104149, 2022.
Davenport, J. and Davenport, J. L.: The impact of tourism and personal leisure transport on coastal environments: A review, Estuar. Coast. Shelf S., 67, 280–292, https://doi.org/10.1016/j.ecss.2005.11.026, 2006.
Dawson, D., Shaw, J., and Roland Gehrels, W.: Sea-level rise impacts on transport infrastructure: The notorious case of the coastal railway line at Dawlish, England, J. Transp. Geogr., 51, 97–109, https://doi.org/10.1016/j.jtrangeo.2015.11.009, 2016.
Dawson, R. J., Dickson, M. E., Nicholls, R. J., Hall, J. W., Walkden, M. J. A., Stansby, P. K., Mokrech, M., Richards, J., Zhou, J., Milligan, J., Jordan, A., Pearson, S., Rees, J., Bates, P. D., Koukoulas, S., and Watkinson, A. R.: Integrated analysis of risks of coastal flooding and cliff erosion under scenarios of long term change, Climatic Change, 95, 249–288, https://doi.org/10.1007/s10584-008-9532-8, 2009.
de Louw, P. G. B., Eeman, S., Siemon, B., Voortman, B. R., Gunnink, J., van Baaren, E. S., and Oude Essink, G. H. P.: Shallow rainwater lenses in deltaic areas with saline seepage, Hydrol. Earth Syst. Sci., 15, 3659–3678, https://doi.org/10.5194/hess-15-3659-2011, 2011.
Delsman, J. R.: Saline groundwater – surface water interaction in coastal lowlands, IOS Press BV, Amsterdam, 185 pp., https://doi.org/10.3233/978-1-61499-518-0-i, 2015.
Delsman, J. R., Van Baaren, E. S., Siemon, B., Dabekaussen, W., Karaoulis, M. C., Pauw, P. S., Vermaas, T., Bootsma, H., De Louw, P. G. B., Gunnink, J. L., Dubelaar, C. W., Menkovic, A., Steuer, A., Meyer, U., Revil, A., and Oude Essink, G. H. P.: Large-scale, probabilistic salinity mapping using airborne electromagnetics for groundwater management in Zeeland, the Netherlands, Environ. Res. Lett., 13, 084011, https://doi.org/10.1088/1748-9326/aad19e, 2018.
Delsman, J. R., Mulder, T., Romero Verastegui, B., Bootsma, H., Zitman, P., Huizer, S., and Oude Essink, G. H. P.: Reproducible construction of a high-resolution national variable-density groundwater salinity model for the Netherlands, Environ. Model. Softw., 164, 105683, https://doi.org/10.1016/j.envsoft.2023.105683, 2023.
de Santiago, I., Camus, P., González, M., Liria, P., Epelde, I., Chust, G., del Campo, A., and Uriarte, A.: Impact of climate change on beach erosion in the Basque Coast (NE Spain), Coast. Eng., 167, 103916, https://doi.org/10.1016/j.coastaleng.2021.103916, 2021.
Didier, D., Bernatchez, P., Boucher-Brossard, G., Lambert, A., Fraser, C., Barnett, R., and Van-Wierts, S.: Coastal Flood Assessment Based on Field Debris Measurements and Wave Runup Empirical Model, J. Mar. Sci. Eng., 3, 560–590, https://doi.org/10.3390/jmse3030560, 2015.
Dierberg, F. E. and Kiattisimkul, W.: Issues, impacts, and implications of shrimp aquaculture in Thailand, Environ. Manage., 20, 649–666, https://doi.org/10.1007/BF01204137, 1996.
Dillon, P., Stuyfzand, P., Grischek, T., Lluria, M., Pyne, R. D. G., Jain, R. C., Bear, J., Schwarz, J., Wang, W., Fernandez, E., Stefan, C., Pettenati, M., Van Der Gun, J., Sprenger, C., Massmann, G., Scanlon, B. R., Xanke, J., Jokela, P., Zheng, Y., Rossetto, R., Shamrukh, M., Pavelic, P., Murray, E., Ross, A., Bonilla Valverde, J. P., Palma Nava, A., Ansems, N., Posavec, K., Ha, K., Martin, R., and Sapiano, M.: Sixty years of global progress in managed aquifer recharge, Hydrogeol. J., 27, 1–30, https://doi.org/10.1007/s10040-018-1841-z, 2019.
Dodet, G., Melet, A., Ardhuin, F., Bertin, X., Idier, D., and Almar, R.: The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes, Surv. Geophys., 40, 1563–1601, https://doi.org/10.1007/s10712-019-09557-5, 2019.
Dodman, D., Hayward, B., Pelling, M., Castan Broto, V., Chow, W., Chu, E., Dawson, R., Khirfan, L., McPhearson, T., Prakash, A., Zheng, Y., and Ziervogel, G.: Cities, Settlements, and Key Infrastructure, in: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, C. D., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegria, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2233–2272, https://doi.org/10.1017/9781009325844.021, 2022.
Donovan, B., Horsburgh, K., Ball, T., and Westbrook, G.: Impacts of climate change on coastal flooding, MCCIP Sci. Rev., 2013, 211–218, https://doi.org/10.14465/2013.ARC22.211-218, 2013.
Duque, C., Meyer, R., and Sonnenborg, T. O.: Saltwater intrusion in Denmark, Boletín Geológico Y Minero, 133, 29–46, https://doi.org/10.21701/bolgeomin/133.1/002, 2022.
Eijgenraam, C., Kind, J., Bak, C., Brekelmans, R., den Hertog, D., Duits, M., Roos, K., Vermeer, P., and Kuijken, W.: Economically Efficient Standards to Protect the Netherlands Against Flooding, Interfaces, 44, 7–21, https://doi.org/10.1287/inte.2013.0721, 2014.
Eilander, D., Couasnon, A., Ikeuchi, H., Muis, S., Yamazaki, D., Winsemius, H. C., and Ward, P. J.: The effect of surge on riverine flood hazard and impact in deltas globally, Environ. Res. Lett., 15, 104007, https://doi.org/10.1088/1748-9326/ab8ca6, 2020.
Environment Agency: Thames Estuary 2100: 10-Year Review – Technical Monitoring Report, Environment Agency, https://www.gov.uk/government/publications/thames-estuary-2100-te2100-monitoring-reviews/thames-estuary-2100-10-year-monitoring-review-2021#conclusion (last access: 14 July 2024), 2021.
European Commission: Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities – Final report of the Horizon 2020 expert group on “Nature-based solutions and re-naturing cities”, European Commission, https://doi.org/10.2777/479582, 2015.
EUROSION: Living with coastal erosion in Europe: Sediment and Space for Sustainability. PART II: Maps and Statistics. Final Report of the Project “Coastal erosion – Evaluation of the need for action”, Directorate General Environment, European Commission, 2004.
Feagin, R. A., Furman, M., Salgado, K., Martinez, M. L., Innocenti, R. A., Eubanks, K., Figlus, J., Huff, T. P., Sigren, J., and Silva, R.: The role of beach and sand dune vegetation in mediating wave run up erosion, Estuar. Coast. Shelf S., 219, 97–106, https://doi.org/10.1016/j.ecss.2019.01.018, 2019.
Ferguson, G. and Gleeson, T.: Vulnerability of coastal aquifers to groundwater use and climate change, Nat. Clim. Change, 2, 342–345, https://doi.org/10.1038/nclimate1413, 2012.
Ferrarin, C., Tomasin, A., Bajo, M., Petrizzo, A., and Umgiesser, G.: Tidal changes in a heavily modified coastal wetland, Cont. Shelf Res., 101, 22–33, https://doi.org/10.1016/j.csr.2015.04.002, 2015.
Ferrarin, C., Lionello, P., Orlić, M., Raicich, F., and Salvadori, G.: Venice as a paradigm of coastal flooding under multiple compound drivers, Sci. Rep., 12, 5754, https://doi.org/10.1038/s41598-022-09652-5, 2022.
Ferreira, Ó., Kupfer, S., and Costas, S.: Implications of sea-level rise for overwash enhancement at South Portugal, Nat. Hazards, 109, 2221–2239, https://doi.org/10.1007/s11069-021-04917-0, 2021.
Gallop, S. L., Bosserelle, C., Pattiaratchi, C., and Eliot, I.: Rock topography causes spatial variation in the wave, current and beach response to sea breeze activity, Mar. Geol., 290, 29–40, https://doi.org/10.1016/j.margeo.2011.10.002, 2011.
Galluccio, G., Hinkel, J., Fiorini Beckhauser, E., Bisaro, A., Biancardi Aleu, R., Campostrini, P., Casas, M. F., Espin, O., and Vafeidis, A. T.: Sea Level Rise in Europe: Adaptation measures and decision-making principles, in: Sea Level Rise in Europe: 1st Assessment Report of the Knowledge Hub on Sea Level Rise (SLRE1), edited by: van den Hurk, B., Pinardi, N., Kiefer, T., Larkin, K., Manderscheid, P., and Richter, K., Copernicus Publications, State Planet, 3-slre1, 6, https://doi.org/10.5194/sp-3-slre1-6-2024, 2024.
Ganguli, P. and Merz, B.: Extreme Coastal Water Levels Exacerbate Fluvial Flood Hazards in Northwestern Europe, Sci. Rep., 9, 13165, https://doi.org/10.1038/s41598-019-49822-6, 2019a.
Ganguli, P. and Merz, B.: Trends in Compound Flooding in Northwestern Europe During 1901–2014, Geophys. Res. Lett., 46, 10810–10820, https://doi.org/10.1029/2019GL084220, 2019b.
Ganguli, P., Paprotny, D., Hasan, M., Güntner, A., and Merz, B.: Projected Changes in Compound Flood Hazard From Riverine and Coastal Floods in Northwestern Europe, Earths Future, 8, e2020EF001752, https://doi.org/10.1029/2020EF001752, 2020.
Gharagozlou, A., Dietrich, J. C., Karanci, A., Luettich, R. A., and Overton, M. F.: Storm-driven erosion and inundation of barrier islands from dune-to region-scales, Coast. Eng., 158, 103674, https://doi.org/10.1016/j.coastaleng.2020.103674, 2020.
Glavovic, B. C., Dawson, R., Chow, W., Garschagen, M., Haasnoot, M., Singh, C., and Thomas, A.: Cross-Chapter Paper 2: Cities and Settlements by the Sea, in: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2163–2194, https://doi.org/10.1017/9781009325844.019, 2022.
Global Commission on Adaptation: Adapt Now: A Global Call for Leadership on Climate Resilience, World Resources Institute, Washington, DC, https://openknowledge.worldbank.org/handle/10986/32362 (last access: 14 July 2024), 2019.
Granger, C. W. J.: Estimating the probability of flooding on a tidal river, in: Essays in econometrics: Collected Papers of Clive W. J. Granger Volume 1, Spectral Analysis, Seasonality, Nonlinearity, Methodology, and Forecasting, Cambridge University Press, USA, 355–365, https://doi.org/10.1017/CBO9780511753961, 2001.
Grases, A., Gracia, V., García-León, M., Lin-Ye, J., and Sierra, J. P.: Coastal Flooding and Erosion under a Changing Climate: Implications at a Low-Lying Coast (Ebro Delta), Water, 12, 346, https://doi.org/10.3390/w12020346, 2020.
Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., and Aureli, A.: Beneath the surface of global change: Impacts of climate change on groundwater, J. Hydrol., 405, 532–560, https://doi.org/10.1016/j.jhydrol.2011.05.002, 2011.
Grilli, A., Spaulding, M. L., Oakley, B. A., and Damon, C.: Mapping the coastal risk for the next century, including sea level rise and changes in the coastline: application to Charlestown RI, USA, Nat. Hazards, 88, 389–414, https://doi.org/10.1007/s11069-017-2871-x, 2017.
Haasnoot, M., Kwadijk, J., Alphen, J. van, Bars, D. L., Diermanse, F., Spek, A. van der, Essink, G. O., Delsman, J., and Mens, M.: Adaptation to uncertain sea-level rise; how uncertainty in Antarctic mass-loss impacts the coastal adaptation strategy of the Netherlands, Environ. Res. Lett., 15, 034007, https://doi.org/10.1088/1748-9326/ab666c, 2020.
Haigh, I. D., Eliot, M., and Pattiaratchi, C.: Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels, J. Geophys. Res., 116, C06025, https://doi.org/10.1029/2010JC006645, 2011.
Haigh, I. D., Wadey, M. P., Gallop, S. L., Loehr, H., Nicholls, R. J., Horsburgh, K., Brown, J. M., and Bradshaw, E.: A user-friendly database of coastal flooding in the United Kingdom from 1915–2014, Scientific Data, 2, 150021, https://doi.org/10.1038/sdata.2015.21, 2015.
Haigh, I. D., Ozsoy, O., Wadey, M. P., Nicholls, R. J., Gallop, S. L., Wahl, T., and Brown, J. M.: An improved database of coastal flooding in the United Kingdom from 1915 to 2016, Scientific Data, 4, 170100, https://doi.org/10.1038/sdata.2017.100, 2017.
Haigh, I. D., Pickering, M. D., Green, J. A. M., Arbic, B. K., Arns, A., Dangendorf, S., Hill, D. F., Horsburgh, K., Howard, T., Idier, D., Jay, D. A., Jänicke, L., Lee, S. B., Müller, M., Schindelegger, M., Talke, S. A., Wilmes, S., and Woodworth, P. L.: The Tides They Are A-Changin': A Comprehensive Review of Past and Future Nonastronomical Changes in Tides, Their Driving Mechanisms, and Future Implications, Rev. Geophys., 58, e2018RG000636, https://doi.org/10.1029/2018RG000636, 2020.
Haigh, I. D., Nicholls, R. J., Penning-Rowsell, E. C., and Sayers, P.: Climate change impacts on coastal flooding relevant to the UK and Ireland, MCCIP Rolling Evidence Updates, MCCIP Science Review, 18 pp., https://doi.org/10.14465/2022.REU02.CFL, 2022.
Hall, A. E., Herbert, R. J. H., Britton, J. R., Boyd, I. M., and George, N. C.: Shelving the Coast With Vertipools: Retrofitting Artificial Rock Pools on Coastal Structures as Mitigation for Coastal Squeeze, Front. Mar. Sci., 6, 456, https://doi.org/10.3389/fmars.2019.00456, 2019.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806, 2013.
Hansen, J. E. and Barnard, P. L.: Sub-weekly to interannual variability of a high-energy shoreline, Coast. Eng., 57, 959–972, https://doi.org/10.1016/j.coastaleng.2010.05.011, 2010.
Harley, M. D., Turner, I. L., Short, A. D., and Ranasinghe, R.: Assessment and integration of conventional, RTK-GPS and image-derived beach survey methods for daily to decadal coastal monitoring, Coast. Eng., 58, 194–205, https://doi.org/10.1016/j.coastaleng.2010.09.006, 2011.
He, F. J. and MacGregor, G. A.: Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials, Lancet, 378, 380–382, https://doi.org/10.1016/S0140-6736(11)61174-4, 2011.
Heinrich, P., Hagemann, S., Weisse, R., and Gaslikova, L.: Changes in compound flood event frequency in northern and central Europe under climate change, Front. Clim., 5, 1227613, https://doi.org/10.3389/fclim.2023.1227613, 2023a.
Heinrich, P., Hagemann, S., Weisse, R., Schrum, C., Daewel, U., and Gaslikova, L.: Compound flood events: analysing the joint occurrence of extreme river discharge events and storm surges in northern and central Europe, Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, 2023b.
Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal, R., Wahl, T., Joly-Laugel, A., and Darby, S. E.: Assessing the characteristics and drivers of compound flooding events around the UK coast, Hydrol. Earth Syst. Sci., 23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019, 2019.
Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., Hopfensperger, K. N., Lamers, L. P. M., and Gell, P.: A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands, Ecosphere, 6, 1–43, https://doi.org/10.1890/ES14-00534.1, 2015.
Herrera-García, G., Ezquerro, P., Tomás, R., Béjar-Pizarro, M., López-Vinielles, J., Rossi, M., Mateos, R. M., Carreón-Freyre, D., Lambert, J., Teatini, P., Cabral-Cano, E., Erkens, G., Galloway, D., Hung, W.-C., Kakar, N., Sneed, M., Tosi, L., Wang, H., and Ye, S.: Mapping the global threat of land subsidence, Science, 371, 34–36, https://doi.org/10.1126/science.abb8549, 2021.
Hewitt, C., Mason, S., and Walland, D.: The Global Framework for Climate Services, Nat. Clim. Change, 2, 831–832, https://doi.org/10.1038/nclimate1745, 2012.
Hinkel, J., Nicholls, R. J., Tol, R. S. J., Wang, Z. B., Hamilton, J. M., Boot, G., Vafeidis, A. T., McFadden, L., Ganopolski, A., and Klein, R. J. T.: A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA, Global Planet. Change, 111, 150–158, https://doi.org/10.1016/j.gloplacha.2013.09.002, 2013.
Hinkel, J., Feyen, L., Hemer, M., Le Cozannet, G., Lincke, D., Marcos, M., Mentaschi, L., Merkens, J. L., de Moel, H., Muis, S., Nicholls, R. J., Vafeidis, A. T., van de Wal, R. S. W., Vousdoukas, M. I., Wahl, T., Ward, P. J., and Wolff, C.: Uncertainty and Bias in Global to Regional Scale Assessments of Current and Future Coastal Flood Risk, Earths Future, 9, e2020EF001882, https://doi.org/10.1029/2020EF001882, 2021.
Holman, R. A. and Stanley, J.: The history and technical capabilities of Argus, Coast. Eng., 54, 477–491, https://doi.org/10.1016/j.coastaleng.2007.01.003, 2007.
Horner-Devine, A. R., Hetland, R. D., and MacDonald, D. G.: Mixing and Transport in Coastal River Plumes, Annu. Rev. Fluid Mech., 47, 569–594, https://doi.org/10.1146/annurev-fluid-010313-141408, 2015.
Horsburgh, K. J. and Wilson, C.: Tide-surge interaction and its role in the distribution of surge residuals in the North Sea, J. Geophys. Res., 112, 2006JC004033, https://doi.org/10.1029/2006JC004033, 2007.
Hou, Y., Yang, J., Russoniello, C. J., Zheng, T., Wu, M., and Yu, X.: Impacts of Coastal Shrimp Ponds on Saltwater Intrusion and Submarine Groundwater Discharge, Water Resour. Res., 58, e2021WR031866, https://doi.org/10.1029/2021WR031866, 2022.
Hugo, G.: Future demographic change and its interactions with migration and climate change, Global Environ. Chang., 21, S21–S33, https://doi.org/10.1016/j.gloenvcha.2011.09.008, 2011.
Huizer, S., Oude Essink, G. H. P., and Bierkens, M. F. P.: Fresh groundwater resources in a large sand replenishment, Hydrol. Earth Syst. Sci., 20, 3149–3166, https://doi.org/10.5194/hess-20-3149-2016, 2016.
Hurrell, J. W.: Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation, Science, 269, 676–679, https://doi.org/10.1126/science.269.5224.676, 1995.
Idier, D., Paris, F., Cozannet, G. L., Boulahya, F., and Dumas, F.: Sea-level rise impacts on the tides of the European Shelf, Cont. Shelf Res., 137, 56–71, https://doi.org/10.1016/j.csr.2017.01.007, 2017.
Idier, D., Bertin, X., Thompson, P., and Pickering, M. D.: Interactions Between Mean Sea Level, Tide, Surge, Waves and Flooding: Mechanisms and Contributions to Sea Level Variations at the Coast, Surv. Geophys., 40, 1603–1630, https://doi.org/10.1007/s10712-019-09549-5, 2019.
InCom WG: Saltwater intrusion mitigation in inland waterways, PIANC Report, 198, PIANC, Brussels, 133 pp., ISBN 978-2-87223-014-3, 2021.
Irazoqui Apecechea, M., Melet, A., and Armaroli, C.: Towards a pan-European coastal flood awareness system: Skill of extreme sea-level forecasts from the Copernicus Marine Service, Front. Mar. Sci., 9, 1091844, https://doi.org/10.3389/fmars.2022.1091844, 2023.
Jackson, L. and Devadason, C. A.: Climate Change, Flooding and Mental Health, The Rockefeller Foundation, New York, USA, 2019.
Jiménez, J. A., Osorio, A., Marino-Tapia, I., Davidson, M., Medina, R., Kroon, A., Archetti, R., Ciavola, P., and Aarnikhof, S. G. J.: Beach recreation planning using video-derived coastal state indicators, Coast. Eng., 54, 507–521, https://doi.org/10.1016/j.coastaleng.2007.01.012, 2007.
Ketabchi, H. and Jahangir, M. S.: Influence of aquifer heterogeneity on sea level rise-induced seawater intrusion: A probabilistic approach, J. Contam. Hydrol., 236, 103753, https://doi.org/10.1016/j.jconhyd.2020.103753, 2021.
Ketabchi, H., Mahmoodzadeh, D., Ataie-Ashtiani, B., and Simmons, C. T.: Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration, J. Hydrol., 535, 235–255, https://doi.org/10.1016/j.jhydrol.2016.01.083, 2016.
Kew, S. F., Selten, F. M., Lenderink, G., and Hazeleger, W.: The simultaneous occurrence of surge and discharge extremes for the Rhine delta, Nat. Hazards Earth Syst. Sci., 13, 2017–2029, https://doi.org/10.5194/nhess-13-2017-2013, 2013.
Khanal, S., Ridder, N., de Vries, H., Terink, W., and van den Hurk, B.: Storm surge and extreme river discharge: a compound event analysis using ensemble impact modelling, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2018-103, 2018.
Komar, P. D.: Beach Processes and Sedimentation, 2nd edn., Prentice Hall, Upper Saddle River (New Jersey), 544 pp., ISBN 9780137549382, 1998.
Kothuis, B. and Kok, M. (Eds.): Integral design of multifunctional flood defenses: multidisciplinary approaches & examples, Delft University Publishers, Delft, the Netherlands, 2017.
Kroon, A., Larson, M., Möller, I., Yokoki, H., Rozynski, G., Cox, J., and Larroude, P.: Statistical analysis of coastal morphological data sets over seasonal to decadal time scales, Coast. Eng., 55, 581–600, https://doi.org/10.1016/j.coastaleng.2007.11.006, 2008.
Kulp, S. A. and Strauss, B. H.: CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network, Remote Sens. Environ., 206, 231–239, https://doi.org/10.1016/j.rse.2017.12.026, 2018.
Lansu, E. M., Reijers, V. C., Höfer, S., Luijendijk, A., Rietkerk, M., Wassen, M. J., Lammerts, E. J., and Van Der Heide, T.: A global analysis of how human infrastructure squeezes sandy coasts, Nat. Commun., 15, 432, https://doi.org/10.1038/s41467-023-44659-0, 2024.
Larson, M. and Kraus, N. C.: Temporal and spatial scales of beach profile change, Duck, North Carolina, Mar. Geol., 117, 75–94, https://doi.org/10.1016/0025-3227(94)90007-8, 1994.
Leaman, C. K., Harley, M. D., Splinter, K. D., Thran, M. C., Kinsela, M. A., and Turner, I. L.: A storm hazard matrix combining coastal flooding and beach erosion, Coast. Eng., 170, 104001, https://doi.org/10.1016/j.coastaleng.2021.104001, 2021.
Lee, J. J., Phillips, D. L., and Benson, V. W.: Soil erosion and climate change: Assessing potential impacts and adaptation practices, J. Soil Water Conserv., 54, 529–536, 1999.
Le Gal, M., Fernández-Montblanc, T., Montes Perez, J., Souto Ceccon, P. E., Duo, E., Gastal, V., Delbour, S., and Ciavola, P.: A flood map catalogue for integration into aEuropean flood awareness system (ECFAS), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9832, https://doi.org/10.5194/egusphere-egu22-9832, 2022.
Lentz, E. E., Thieler, E. R., Plant, N. G., Stippa, S. R., Horton, R. M., and Gesch, D. B.: Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood, Nat. Clim. Change, 6, 696–700, https://doi.org/10.1038/nclimate2957, 2016.
Lerczak, J. A., Geyer, W. R., and Chant, R. J.: Mechanisms Driving the Time-Dependent Salt Flux in a Partially Stratified Estuary, J. Phys. Oceanogr., 36, 2296–2311, https://doi.org/10.1175/JPO2959.1, 2006.
Lionello, P., Barriopedro, D., Ferrarin, C., Nicholls, R. J., Orlić, M., Raicich, F., Reale, M., Umgiesser, G., Vousdoukas, M., and Zanchettin, D.: Extreme floods of Venice: characteristics, dynamics, past and future evolution (review article), Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, 2021.
Liu, Q., Trinder, J., and Turner, I. L.: Automatic super-resolution shoreline change monitoring using Landsat archival data: a case study at Narrabeen–Collaroy Beach, Australia, J. Appl. Remote Sens., 11, 016036, https://doi.org/10.1117/1.JRS.11.016036, 2017.
Loáiciga, H. A.: Long-term climatic change and sustainable ground water resources management, Environ. Res. Lett., 4, 035004, https://doi.org/10.1088/1748-9326/4/3/035004, 2009.
López-Olmedilla, L., Almeida, L. P., de Figueiredo, S. A., Fontán-Bouzas, Á., Silva, P. A., and Alcántara-Carrió, J.: Effect of alongshore sediment supply gradients on projected shoreline position under sea-level rise (northwestern Portuguese coast), Estuar. Coast. Shelf S., 271, 107876, https://doi.org/10.1016/j.ecss.2022.107876, 2022.
Loureiro, C., Ferreira, Ó., and Cooper, J. A. G.: Geologically constrained morphological variability and boundary effects on embayed beaches, Mar. Geol., 329–331, 1–15, https://doi.org/10.1016/j.margeo.2012.09.010, 2012.
Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., and Aarninkhof, S.: The State of the World's Beaches, Sci. Rep., 8, 6641, https://doi.org/10.1038/s41598-018-24630-6, 2018.
Luque, P., Gómez-Pujol, L., Marcos, M., and Orfila, A.: Coastal Flooding in the Balearic Islands During the Twenty-First Century Caused by Sea-Level Rise and Extreme Events, Front. Mar. Sci., 8, 676452, https://doi.org/10.3389/fmars.2021.676452, 2021.
Maas, E. V. and Hoffman, G. J.: Crop Salt Tolerance – Current Assessment, J. Irrig. Drain. Div., 103, 115–134, https://doi.org/10.1061/JRCEA4.0001137, 1977.
Mabrouk, M., Jonoski, A., H. P. Oude Essink, G., and Uhlenbrook, S.: Impacts of Sea Level Rise and Groundwater Extraction Scenarios on Fresh Groundwater Resources in the Nile Delta Governorates, Egypt, Water, 10, 1690, https://doi.org/10.3390/w10111690, 2018.
Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M. E., García-Santos, G., Fernandes, R., and Berger, M.: Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land, Remote Sens. Environ., 120, 91–101, https://doi.org/10.1016/j.rse.2011.09.026, 2012.
Mantz, P. and Wakeling, H.: Forecasting flood levels for joint events of rainfall and tidal surge flooding using extreme value statistics, P. I. Civil Eng., 67, 31–50, https://doi.org/10.1680/iicep.1979.2315, 1979.
Marcos, M., Calafat, F. M., Berihuete, Á., and Dangendorf, S.: Long-term variations in global sea level extremes, J. Geophys. Res.-Oceans, 120, 8115–8134, https://doi.org/10.1002/2015JC011173, 2015.
Marcos, M., Wöppelmann, G., Matthews, A., Ponte, R. M., Birol, F., Ardhuin, F., Coco, G., Santamaría-Gómez, A., Ballu, V., Testut, L., Chambers, D., and Stopa, J. E.: Coastal Sea Level and Related Fields from Existing Observing Systems, Surv. Geophys., 40, 1293–1317, https://doi.org/10.1007/s10712-019-09513-3, 2019.
Maselli, V. and Trincardi, F.: Man made deltas, Sci. Rep., 3, 1926, https://doi.org/10.1038/srep01926, 2013.
Masselink, G., Brooks, S., Poate, T., Stokes, C., and Scott, T.: Coastal dune dynamics in embayed settings with sea-level rise – Examples from the exposed and macrotidal north coast of SW England, Mar. Geol., 450, 106853, https://doi.org/10.1016/j.margeo.2022.106853, 2022.
Masterson, J. P. and Garabedian, S. P.: Effects of Sea-Level Rise on Ground Water Flow in a Coastal Aquifer System, Ground Water, 45, 209–217, https://doi.org/10.1111/j.1745-6584.2006.00279.x, 2007.
Mastrocicco, M. and Colombani, N.: The Issue of Groundwater Salinization in Coastal Areas of the Mediterranean Region: A Review, Water, 13, 90, https://doi.org/10.3390/w13010090, 2021.
Mazas, F. and Hamm, L.: An event-based approach for extreme joint probabilities of waves and sea levels, Coast. Eng., 122, 44–59, https://doi.org/10.1016/j.coastaleng.2017.02.003, 2017.
Mazi, K., Koussis, A. D., and Destouni, G.: Intensively exploited Mediterranean aquifers: resilience to seawater intrusion and proximity to critical thresholds, Hydrol. Earth Syst. Sci., 18, 1663–1677, https://doi.org/10.5194/hess-18-1663-2014, 2014.
McCall, R. T., Van Thiel De Vries, J. S. M., Plant, N. G., Van Dongeren, A. R., Roelvink, J. A., Thompson, D. M., and Reniers, A. J. H. M.: Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island, Coast. Eng., 57, 668–683, https://doi.org/10.1016/j.coastaleng.2010.02.006, 2010.
McGranahan, G., Balk, D., and Anderson, B.: The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones, Environ. Urban., 19, 17–37, https://doi.org/10.1177/0956247807076960, 2007.
McMichael, C., Dasgupta, S., Ayeb-Karlsson, S., and Kelman, I.: A review of estimating population exposure to sea-level rise and the relevance for migration, Environ. Res. Lett., 15, 123005, https://doi.org/10.1088/1748-9326/abb398, 2020.
Mel, R. A., Carniello, L., and D'Alpaos, L.: How long the Mo.S.E. barriers will be effective in protecting all urban settlements within the Venice Lagoon? The wind setup constraint, Coast. Eng., 168, 103923, https://doi.org/10.1016/j.coastaleng.2021.103923, 2021.
Melet, A., Almar, R., Hemer, M., Le Cozannet, G., Meyssignac, B., and Ruggiero, P.: Contribution of Wave Setup to Projected Coastal Sea Level Changes, J. Geophys. Res.-Oceans, 125, e2020JC016078, https://doi.org/10.1029/2020JC016078, 2020.
Melet, A., Buontempo, C., Mattiuzzi, M., Salamon, P., Bahurel, P., Breyiannis, G., Burgess, S., Crosnier, L., Le Traon, P.-Y., Mentaschi, L., Nicolas, J., Solari, L., Vamborg, F., and Voukouvalas, E.: European Copernicus Services to Inform on Sea-Level Rise Adaptation: Current Status and Perspectives, Front. Mar. Sci., 8, 703425, https://doi.org/10.3389/fmars.2021.703425, 2021.
Melet, A., van de Wal, R., Amores, A., Arns, A., Chaigneau, A. A., Dinu, I., Haigh, I. D., Hermans, T. H. J., Lionello, P., Marcos, M., Meier, H. E. M., Meyssignac, B., Palmer, M. D., Reese, R., Simpson, M. J. R., and Slangen, A. B. A.: Sea Level Rise in Europe: Observations and projections, in: Sea Level Rise in Europe: 1st Assessment Report of the Knowledge Hub on Sea Level Rise (SLRE1), edited by: van den Hurk, B., Pinardi, N., Kiefer, T., Larkin, K., Manderscheid, P., and Richter, K., Copernicus Publications, State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024.
Meli, M. and Romagnoli, C.: Evidence and Implications of Hydrological and Climatic Change in the Reno and Lamone River Basins and Related Coastal Areas (Emilia-Romagna, Northern Italy) over the Last Century, Water, 14, 2650, https://doi.org/10.3390/w14172650, 2022.
Meli, M., Camargo, C. M. L., Olivieri, M., Slangen, A. B. A., and Romagnoli, C.: Sea-level trend variability in the Mediterranean during the 1993–2019 period, Front. Mar. Sci., 10, 1150488, https://doi.org/10.3389/fmars.2023.1150488, 2023.
Menéndez, M. and Woodworth, P. L.: Changes in extreme high water levels based on a quasi-global tide-gauge data set, J. Geophys. Res., 115, C10011, https://doi.org/10.1029/2009JC005997, 2010.
Menna, M., Gačić, M., Martellucci, R., Notarstefano, G., Fedele, G., Mauri, E., Gerin, R., and Poulain, P.-M.: Climatic, Decadal, and Interannual Variability in the Upper Layer of the Mediterranean Sea Using Remotely Sensed and In-Situ Data, Remote Sens., 14, 1322, https://doi.org/10.3390/rs14061322, 2022.
Mentaschi, L., Vousdoukas, M. I., Voukouvalas, E., Dosio, A., and Feyen, L.: Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns, Geophys. Res. Lett., 44, 2416–2426, https://doi.org/10.1002/2016GL072488, 2017.
Mentaschi, L., Vousdoukas, M. I., Pekel, J.-F., Voukouvalas, E., and Feyen, L.: Global long-term observations of coastal erosion and accretion, Sci. Rep., 8, 12876, https://doi.org/10.1038/s41598-018-30904-w, 2018.
Michael, H. A., Russoniello, C. J., and Byron, L. A.: Global assessment of vulnerability to sea-level rise in topography-limited and recharge-limited coastal groundwater systems, Water Resour. Res., 49, 2228–2240, https://doi.org/10.1002/wrcr.20213, 2013.
Milliman, J. D.: Blessed dams or damned dams?, Nature, 386, 325–327, https://doi.org/10.1038/386325a0, 1997.
Minderhoud, P. S. J., Erkens, G., Pham, V. H., Bui, V. T., Erban, L., Kooi, H., and Stouthamer, E.: Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam, Environ. Res. Lett., 12, 064006, https://doi.org/10.1088/1748-9326/aa7146, 2017.
Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F., and Matthew, R. A.: Compounding effects of sea level rise and fluvial flooding, P. Natl. Acad. Sci. USA, 114, 9785–9790, https://doi.org/10.1073/pnas.1620325114, 2017.
Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., Allaire, M., and Matthew, R. A.: What Is Nuisance Flooding? Defining and Monitoring an Emerging Challenge, Water Resour. Res., 54, 4218–4227, https://doi.org/10.1029/2018WR022828, 2018.
Monioudi, I. N., Velegrakis, A. F., Chatzipavlis, A. E., Rigos, A., Karambas, T., Vousdoukas, M. I., Hasiotis, T., Koukourouvli, N., Peduzzi, P., Manoutsoglou, E., Poulos, S. E., and Collins, M. B.: Assessment of island beach erosion due to sea level rise: the case of the Aegean archipelago (Eastern Mediterranean), Nat. Hazards Earth Syst. Sci., 17, 449–466, https://doi.org/10.5194/nhess-17-449-2017, 2017.
Mooyaart, L. F. and Jonkman, S. N.: Overview and Design Considerations of Storm Surge Barriers, J. Waterw. Port Coast., 143, 06017001, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000383, 2017.
Morim, J., Hemer, M., Wang, X. L., Cartwright, N., Trenham, C., Semedo, A., Young, I., Bricheno, L., Camus, P., Casas-Prat, M., Erikson, L., Mentaschi, L., Mori, N., Shimura, T., Timmermans, B., Aarnes, O., Breivik, O., Behrens, A., Dobrynin, M., Menendez, M., Staneva, J., Wehner, M., Wolf, J., Kamranzad, B., Webb, A., Stopa, J., and Andutta, F.: Robustness and uncertainties in global multivariate wind-wave climate projections, Nat. Clim. Change, 9, 711–718, https://doi.org/10.1038/s41558-019-0542-5, 2019.
Muis, S., Apecechea, M. I., Dullaart, J., de Lima Rego, J., Madsen, K. S., Su, J., Yan, K., and Verlaan, M.: A High-Resolution Global Dataset of Extreme Sea Levels, Tides, and Storm Surges, Including Future Projections, Front. Mar. Sci., 7, 263, https://doi.org/10.3389/fmars.2020.00263, 2020.
Murray, A. B., Lazarus, E., Ashton, A., Baas, A., Coco, G., Coulthard, T., Fonstad, M., Haff, P., McNamara, D., Paola, C., Pelletier, J., and Reinhardt, L.: Geomorphology, complexity, and the emerging science of the Earth's surface, Geomorphology, 103, 496–505, https://doi.org/10.1016/j.geomorph.2008.08.013, 2009.
Navoy, A. S.: Aquifer-estuary interaction and vulnerability of groundwater supplies to sea level rise-driven saltwater intrusion, Pennsylvania State University, United States of America, 225 pp., 1991.
Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding – A Global Assessment, PLOS ONE, 10, e0118571, https://doi.org/10.1371/journal.pone.0118571, 2015.
Nicholls, R., Wong, P., Burkett, V., Codignotto, J., Hay, J., McLean, R., and Woodroffe, S. R. C.: Coastal systems and low-lying areas, in: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E., Cambridge University Press, Cambridge, UK, 315–356, 2007.
Nicholls, R. J. and Cazenave, A.: Sea-Level Rise and Its Impact on Coastal Zones, Science, 328, 1517–1520, https://doi.org/10.1126/science.1185782, 2010.
Noble, R. M.: Coastal structures’ effects on shorelines, Coast. Eng., 1978, 2068–2085, https://doi.org/10.1061/9780872621909.127, 1978.
Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R. S. W., Magnan, A., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F. I., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/9781009157964.006, 2019.
Oude Essink, G. H. P.: Impact of sea level rise on groundwater flow regimes: a sensitivity analysis for the Netherlands, Delft University Press, Delft, 411 pp., ISBN 90-407-1330-8, 1996.
Oude Essink, G. H. P.: Salt Water Intrusion in a Three-dimensional Groundwater System in The Netherlands: A Numerical Study, Transport Porous Med., 43, 137–158, https://doi.org/10.1023/A:1010625913251, 2001.
Oude Essink, G. H. P., Van Baaren, E. S., and De Louw, P. G. B.: Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands, Water Resour. Res., 46, 2009WR008719, https://doi.org/10.1029/2009WR008719, 2010.
Paprotny, D., Morales-Nápoles, O., and Jonkman, S. N.: HANZE: a pan-European database of exposure to natural hazards and damaging historical floods since 1870, Earth Syst. Sci. Data, 10, 565–581, https://doi.org/10.5194/essd-10-565-2018, 2018.
Paprotny, D., Morales-Nápoles, O., Vousdoukas, M. I., Jonkman, S. N., and Nikulin, G.: Accuracy of pan-European coastal flood mapping, J. Flood Risk Manage., 12, e12459, https://doi.org/10.1111/jfr3.12459, 2019.
Paprotny, D., Vousdoukas, M. I., Morales-Nápoles, O., Jonkman, S. N., and Feyen, L.: Pan-European hydrodynamic models and their ability to identify compound floods, Nat. Hazards, 101, 933–957, https://doi.org/10.1007/s11069-020-03902-3, 2020.
Paprotny, D., Terefenko, P., Giza, A., Czapliński, P., and Vousdoukas, M. I.: Future losses of ecosystem services due to coastal erosion in Europe, Sci. Total Environ., 760, 144310, https://doi.org/10.1016/j.scitotenv.2020.144310, 2021.
Passeri, D. L., Hagen, S. C., Bilskie, M. V., and Medeiros, S. C.: On the significance of incorporating shoreline changes for evaluating coastal hydrodynamics under sea level rise scenarios, Nat. Hazards, 75, 1599–1617, https://doi.org/10.1007/s11069-014-1386-y, 2015a.
Passeri, D. L., Hagen, S. C., Medeiros, S. C., Bilskie, M. V., Alizad, K., and Wang, D.: The dynamic effects of sea level rise on low-gradient coastal landscapes: A review, Earths Future, 3, 159–181, https://doi.org/10.1002/2015EF000298, 2015b.
Passeri, D. L., Hagen, S. C., Plant, N. G., Bilskie, M. V., Medeiros, S. C., and Alizad, K.: Tidal hydrodynamics under future sea level rise and coastal morphology in the Northern Gulf of Mexico, Earths Future, 4, 159–176, https://doi.org/10.1002/2015EF000332, 2016.
Passeri, D. L., Bilskie, M. V., Plant, N. G., Long, J. W., and Hagen, S. C.: Dynamic modeling of barrier island response to hurricane storm surge under future sea level rise, Climatic Change, 149, 413–425, https://doi.org/10.1007/s10584-018-2245-8, 2018.
Pereira, H., Sousa, M. C., Vieira, L. R., Morgado, F., and Dias, J. M.: Modelling Salt Intrusion and Estuarine Plumes under Climate Change Scenarios in Two Transitional Ecosystems from the NW Atlantic Coast, Journal of Marine Science and Engineering, 10, 262, https://doi.org/10.3390/jmse10020262, 2022.
Petroliagkis, T. I., Bidlot, J., Voukouvalas, E., and Disperati, J.: Joint probabilities of storm surge, significant wave height and river discharge components of coastal flooding events: utilising statistical dependence methodologies & techniques, Publications Office of the European Union, LU, https://doi.org/10.2788/951583, 2016.
Pickering, M. D., Wells, N. C., Horsburgh, K. J., and Green, J. A. M.: The impact of future sea-level rise on the European Shelf tides, Cont. Shelf Res., 35, 1–15, https://doi.org/10.1016/j.csr.2011.11.011, 2012.
Pietro, L. S., O'Neal, M. A., and Puleo, J. A.: Developing Terrestrial-LIDAR-Based Digital Elevation Models for Monitoring Beach Nourishment Performance, J. Coastal Res., 246, 1555–1564, https://doi.org/10.2112/07-0904.1, 2008.
Pollard, J., Spencer, T., and Brooks, S.: The interactive relationship between coastal erosion and flood risk, Progress in Physical Geography: Earth and Environment, 43, 574–585, https://doi.org/10.1177/0309133318794498, 2019.
Pörtner, H.-O., Roberts, C. D., Poloczanska, E., Mintenbeck, K., Tignor, M., Alegria, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., and Okem, A. (Eds.): IPCC Summary for Policymakers, in: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 3–33, https://doi.org//10.1017/9781009157964.001, 2022.
Post, V. E. A., Oude Essink, G., Szymkiewicz, A., Bakker, M., Houben, G., Custodio, E., and Voss, C.: Celebrating 50 years of SWIMs (Salt Water Intrusion Meetings), Hydrogeol. J., 26, 1767–1770, https://doi.org/10.1007/s10040-018-1800-8, 2018.
Pugh, D. and Woodworth, P.: Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes, 1st edn., Cambridge University Press, https://doi.org/10.1017/CBO9781139235778, 2014.
Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., and Noble, A. D.: Economics of salt-induced land degradation and restoration, Nat. Resour. Forum, 38, 282–295, https://doi.org/10.1111/1477-8947.12054, 2014.
Qi, H., Cai, F., Lei, G., Cao, H., and Shi, F.: The response of three main beach types to tropical storms in South China, Mar. Geol., 275, 244–254, https://doi.org/10.1016/j.margeo.2010.06.005, 2010.
Rasmussen, P., Sonnenborg, T. O., Goncear, G., and Hinsby, K.: Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer, Hydrol. Earth Syst. Sci., 17, 421–443, https://doi.org/10.5194/hess-17-421-2013, 2013.
Reimann, L., Vafeidis, A. T., Brown, S., Hinkel, J., and Tol, R. S.: Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise, Nat. Commun., 9, 4161, https://doi.org/10.1038/s41467-018-06645-9, 2018.
Rodrigues, M., Fortunato, A. B., and Freire, P.: Saltwater Intrusion in the Upper Tagus Estuary during Droughts, Geosciences, 9, 400, https://doi.org/10.3390/geosciences9090400, 2019.
Roest, B., de Vries, S., de Schipper, M., and Aarninkhof, S.: Observed Changes of a Mega Feeder Nourishment in a Coastal Cell: Five Years of Sand Engine Morphodynamics, Journal of Marine Science and Engineering, 9, 37, https://doi.org/10.3390/jmse9010037, 2021.
Romagnoli, C., Bosman, A., Casalbore, D., Anzidei, M., Doumaz, F., Bonaventura, F., Meli, M., and Verdirame, C.: Coastal Erosion and Flooding Threaten Low-Lying Coastal Tracts at Lipari (Aeolian Islands, Italy), Remote Sens., 14, 2960, https://doi.org/10.3390/rs14132960, 2022.
Rueda, A., Camus, P., Tomás, A., Vitousek, S., and Méndez, F. J.: A multivariate extreme wave and storm surge climate emulator based on weather patterns, Ocean Model., 104, 242–251, https://doi.org/10.1016/j.ocemod.2016.06.008, 2016.
Ruocco, A. C., Nicholls, R. J., Haigh, I. D., and Wadey, M. P.: Reconstructing coastal flood occurrence combining sea level and media sources: a case study of the Solent, UK since 1935, Nat. Hazards, 59, 1773–1796, https://doi.org/10.1007/s11069-011-9868-7, 2011.
Russ, J., Zaveri, E., Damania, R., Desbureaux, S., Escurra, J., and Rodella, A.-S.: Salt of the Earth: Quantifying the Impact of Water Salinity on Global Agricultural Productivity, World Bank, Washington, DC, https://doi.org/10.1596/1813-9450-9144, 2020.
Sabour, S., Brown, S., Nicholls, R. J., Haigh, I. D., and Luijendijk, A. P.: Multi-decadal shoreline change in coastal natural world heritage sites – a global assessment, Environ. Res. Lett., 15, 104047, https://doi.org/10.1088/1748-9326/ab968f, 2020.
Sallenger, A. H. Jr.: Storm Impact Scale for Barrier Islands, J. Coastal Res., 16, 890–895, 2000.
Samuels, P. G. and Burt, N.: A new joint probability appraisal of flood risk, P. I. Civil Eng.-Water, 154, 109–115, https://doi.org/10.1680/wame.2002.154.2.109, 2002.
Santos, V. M., Casas-Prat, M., Poschlod, B., Ragno, E., van den Hurk, B., Hao, Z., Kalmár, T., Zhu, L., and Najafi, H.: Statistical modelling and climate variability of compound surge and precipitation events in a managed water system: a case study in the Netherlands, Hydrol. Earth Syst. Sci., 25, 3595–3615, https://doi.org/10.5194/hess-25-3595-2021, 2021.
Sanuy, M. and Jiménez, J. A.: Probabilistic characterisation of coastal storm-induced risks using Bayesian networks, Nat. Hazards Earth Syst. Sci., 21, 219–238, https://doi.org/10.5194/nhess-21-219-2021, 2021.
Sayers, P. B., Hall, J. W., and Meadowcroft, I. C.: Towards risk-based flood hazard management in the UK, P. I. Civil Eng.-Civ. Eng., 150, 36–42, https://doi.org/10.1680/cien.2002.150.5.36, 2002.
Sayers, P. B., Horritt, M. S., Penning-Rowsell, E., and McKenzie, A.: Climate Change Risk Assessment 2017: Projections of future flood risk in the UK. Research undertaken by Sayers and Partners on behalf of the Committee on Climate Change, Committee on Climate Change, London, https://www.theccc.org.uk/wp-content/uploads/2015/10/CCRA-Future-Flooding-Main-Report-Final-06Oct2015.pdf.pdf (last access: 14 July 2024), 2015.
Schmork, S. and Mercado, A.: Upconing of Fresh Water-Sea Water Interface Below Pumping Wells, Field Study, Water Resour. Res., 5, 1290–1311, https://doi.org/10.1029/WR005i006p01290, 1969.
Scussolini, P., Aerts, J. C. J. H., Jongman, B., Bouwer, L. M., Winsemius, H. C., de Moel, H., and Ward, P. J.: FLOPROS: an evolving global database of flood protection standards, Nat. Hazards Earth Syst. Sci., 16, 1049–1061, https://doi.org/10.5194/nhess-16-1049-2016, 2016.
Sherif, M. M. and Singh, V. P.: Effect of climate change on sea water intrusion in coastal aquifers, Hydrol. Process., 13, 1277–1287, https://doi.org/10.1002/(SICI)1099-1085(19990615)13:8<1277::AID-HYP765>3.0.CO;2-W, 1999.
Short, A. D. (Ed.): Handbook of beach and shoreface morphodynamics, John Wiley, New York, 379 pp., ISBN 0-471-965707, 1999.
Short, A. D. and Trembanis, A. C.: Decadal Scale Patterns in Beach Oscillation and Rotation Narrabeen Beach, Australia – Time Series, PCA and Wavelet Analysis, J. Coastal Res., 202, 523–532, https://doi.org/10.2112/1551-5036(2004)020[0523:DSPIBO]2.0.CO;2, 2004.
Siemon, B., Costabel, S., Voß, W., Meyer, U., Deus, N., Elbracht, J., Günther, T., and Wiederhold, H.: Airborne and ground geophysical mapping of coastal clays in Eastern Friesland, Germany, Geophysics, 80, WB21–WB34, https://doi.org/10.1190/geo2014-0102.1, 2015.
Sierra, J. P. and Casas-Prat, M.: Analysis of potential impacts on coastal areas due to changes in wave conditions, Climatic Change, 124, 861–876, https://doi.org/10.1007/s10584-014-1120-5, 2014.
Silva, R., Martínez, M. L., Van Tussenbroek, B. I., Guzmán-Rodríguez, L. O., Mendoza, E., and López-Portillo, J.: A Framework to Manage Coastal Squeeze, Sustainability, 12, 10610, https://doi.org/10.3390/su122410610, 2020.
Small, C. and Nicholls, R. J.: A global analysis of human settlement in coastal zones, J. Coastal Res., 19, 584–599, 2003.
Sprenger, C., Hartog, N., Hernández, M., Vilanova, E., Grützmacher, G., Scheibler, F., and Hannappel, S.: Inventory of managed aquifer recharge sites in Europe: historical development, current situation and perspectives, Hydrogeol. J., 25, 1909–1922, https://doi.org/10.1007/s10040-017-1554-8, 2017.
Stanghellini, G., Bidini, C., Romagnoli, C., Archetti, R., Ponti, M., Turicchia, E., Del Bianco, F., Mercorella, A., Polonia, A., Giorgetti, G., Gallerani, A., and Gasperini, L.: Repeated (4D) Marine Geophysical Surveys as a Tool for Studying the Coastal Environment and Ground-Truthing Remote-Sensing Observations and Modeling, Remote Sens., 14, 5901, https://doi.org/10.3390/rs14225901, 2022.
Stevens, A. J., Clarke, D., and Nicholls, R. J.: Trends in reported flooding in the UK: 1884–2013, Hydrolog. Sci. J., 61, 50–63, https://doi.org/10.1080/02626667.2014.950581, 2016.
Stofberg, S. F., Klimkowska, A., Paulissen, M. P. C. P., Witte, J.-P. M., and van der Zee, S. E. A. T. M.: Effects of salinity on growth of plant species from terrestrializing fens, Aquat. Bot., 121, 83–90, https://doi.org/10.1016/j.aquabot.2014.12.004, 2015.
Stringari, C. E. and Power, H.: Picoastal: A low-cost coastal video monitoring system, SoftwareX, 18, 101073, https://doi.org/10.1016/j.softx.2022.101073, 2022.
Stripling, S., Panzeri, M., Blanco, B., Rossington, K., Sayers, P., and Borthwick, A.: Regional-scale probabilistic shoreline evolution modelling for flood-risk assessment, Coast. Eng., 121, 129–144, https://doi.org/10.1016/j.coastaleng.2016.12.002, 2017.
Svensson, C. and Jones, D. A.: Dependence between extreme sea surge, river flow and precipitation in eastern Britain, Int. J. Climatol., 22, 1149–1168, https://doi.org/10.1002/joc.794, 2002.
Svensson, C. and Jones, D. A.: Dependence between sea surge, river flow and precipitation in south and west Britain, Hydrol. Earth Syst. Sci., 8, 973–992, https://doi.org/10.5194/hess-8-973-2004, 2004.
Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J.-F., Holman, I., and Treidel, H.: Ground water and climate change, Nat. Clim. Change, 3, 322–329, https://doi.org/10.1038/nclimate1744, 2013.
Thiéblemont, R., Le Cozannet, G., Toimil, A., Meyssignac, B., and Losada, I. J.: Likely and High-End Impacts of Regional Sea-Level Rise on the Shoreline Change of European Sandy Coasts Under a High Greenhouse Gas Emissions Scenario, Water, 11, 2607, https://doi.org/10.3390/w11122607, 2019.
Thompson, G. and Law, F. M.: An assessment of the fluvial tidal flooding problem of the River Ancholme, UK, in: Proceedings from the IUGG Interdisciplinary Symposium on Assessment of Natural Hazards, 15–27 August 1983, Hamburg, Germany, IUGG (International Union of Geodesy and Geophysics), ISBN 978-1-906698-01-0, 1983.
Thorne, C. R., Evans, E. P., and Penning-Rowsell, E. C. (Eds.): Future flooding and coastal erosion risks, Thomas Telford Publishing, https://doi.org/10.1680/ffacer.34495, 2007.
Toimil, A., Losada, I. J., Díaz-Simal, P., Izaguirre, C., and Camus, P.: Multi-sectoral, high-resolution assessment of climate change consequences of coastal flooding, Climatic Change, 145, 431–444, https://doi.org/10.1007/s10584-017-2104-z, 2017.
Toimil, A., Losada, I. J., Nicholls, R. J., Dalrymple, R. A., and Stive, M. J. F.: Addressing the challenges of climate change risks and adaptation in coastal areas: A review, Coast. Eng., 156, 103611, https://doi.org/10.1016/j.coastaleng.2019.103611, 2020.
Toimil, A., Camus, P., Losada, I. J., and Alvarez-Cuesta, M.: Visualising the Uncertainty Cascade in Multi-Ensemble Probabilistic Coastal Erosion Projections, Front. Mar. Sci., 8, 683535, https://doi.org/10.3389/fmars.2021.683535, 2021.
Toimil, A., Losada, I. J., Álvarez-Cuesta, M., and Le Cozannet, G.: Demonstrating the value of beaches for adaptation to future coastal flood risk, Nat. Commun., 14, 3474, https://doi.org/10.1038/s41467-023-39168-z, 2023a.
Toimil, A., Álvarez-Cuesta, M., and Losada, I. J.: Neglecting the effect of long- and short-term erosion can lead to spurious coastal flood risk projections and maladaptation, Coast. Eng., 179, 104248, https://doi.org/10.1016/j.coastaleng.2022.104248, 2023b.
Valle-Levinson, A.: Definition and classification of estuaries, in: Contemporary Issues in Estuarine Physics, edited by: Valle-Levinson, A., Cambridge University Press, 1–11, https://doi.org/10.1017/CBO9780511676567.002, 2010.
Vandenbohede, A., Luyten, K., and Lebbe, L.: Effects of Global Change on Heterogeneous Coastal Aquifers: A Case Study in Belgium, J. Coastal Res., 2, 160–170, https://doi.org/10.2112/05-0447.1, 2008.
Van Den Hurk, B., Van Meijgaard, E., De Valk, P., Van Heeringen, K.-J., and Gooijer, J.: Analysis of a compounding surge and precipitation event in the Netherlands, Environ. Res. Lett., 10, 035001, https://doi.org/10.1088/1748-9326/10/3/035001, 2015.
van Engelen, J., Essink, G. H. P. O., and Bierkens, M. F. P.: Sustainability of fresh groundwater resources in fifteen major deltas around the world, Environ. Res. Lett., 17, 125001, https://doi.org/10.1088/1748-9326/aca16c, 2022.
Van Ormondt, M., Nelson, T. R., Hapke, C. J., and Roelvink, D.: Morphodynamic modelling of the wilderness breach, Fire Island, New York. Part I: Model set-up and validation, Coast. Eng., 157, 103621, https://doi.org/10.1016/j.coastaleng.2019.103621, 2020.
Van Weert, F., Van der Gun, J., and Reckman, J. W. T. M.: Global overview of saline groundwater occurrence and genesis, International Groundwater Resources Assessment Centre, Utrecht, Report no. GP 2009-1, 104 pp., 2009.
Villatoro, M., Silva, R., Méndez, F. J., Zanuttigh, B., Pan, S., Trifonova, E., Losada, I. J., Izaguirre, C., Simmonds, D., Reeve, D. E., Mendoza, E., Martinelli, L., Formentin, S. M., Galiatsatou, P., and Eftimova, P.: An approach to assess flooding and erosion risk for open beaches in a changing climate, Coast. Eng., 87, 50–76, https://doi.org/10.1016/j.coastaleng.2013.11.009, 2014.
Vousdoukas, M. I., Velegrakis, A. F., and Plomaritis, T. A.: Beachrock occurrence, characteristics, formation mechanisms and impacts, Earth-Sci. Rev., 85, 23–46, https://doi.org/10.1016/j.earscirev.2007.07.002, 2007.
Vousdoukas, M. I., Velegrakis, A. F., and Karambas, T. V.: Morphology and sedimentology of a microtidal beach with beachrocks: Vatera, Lesbos, NE Mediterranean, Cont. Shelf Res., 29, 1937–1947, https://doi.org/10.1016/j.csr.2009.04.003, 2009.
Vousdoukas, M. I., Pennucci, G., Holman, R. A., and Conley, D. C.: A semi automatic technique for Rapid Environmental Assessment in the coastal zone using Small Unmanned Aerial Vehicles (SUAV), J. Coastal Res., SI64, 1755–1759, 2011.
Vousdoukas, M. I., Almeida, L. P. M., and Ferreira, Ó.: Beach erosion and recovery during consecutive storms at a steep-sloping, meso-tidal beach, Earth Surf. Proc. Land., 37, 583–593, https://doi.org/10.1002/esp.2264, 2012.
Vousdoukas, M. I., Kirupakaramoorthy, T., Oumeraci, H., de la Torre, M., Wübbold, F., Wagner, B., and Schimmels, S.: The role of combined laser scanning and video techniques in monitoring wave-by-wave swash zone processes, Coast. Eng., 83, 150–165, https://doi.org/10.1016/j.coastaleng.2013.10.013, 2014.
Vousdoukas, M. I., Voukouvalas, E., Annunziato, A., Giardino, A., and Feyen, L.: Projections of extreme storm surge levels along Europe, Clim. Dynam., 47, 3171–3190, https://doi.org/10.1007/s00382-016-3019-5, 2016.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., and Feyen, L.: Extreme sea levels on the rise along Europe's coasts, Earths Future, 5, 304–323, https://doi.org/10.1002/2016EF000505, 2017.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Bianchi, A., Dottori, F., and Feyen, L.: Climatic and socioeconomic controls of future coastal flood risk in Europe, Nat. Clim. Change, 8, 776–780, https://doi.org/10.1038/s41558-018-0260-4, 2018a.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P., and Feyen, L.: Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard, Nat. Commun., 9, 2360, https://doi.org/10.1038/s41467-018-04692-w, 2018b.
Vousdoukas, M. I., Ranasinghe, R., Mentaschi, L., Plomaritis, T. A., Athanasiou, P., Luijendijk, A., and Feyen, L.: Sandy coastlines under threat of erosion, Nat. Clim. Change, 10, 260–263, https://doi.org/10.1038/s41558-020-0697-0, 2020.
Vousdoukas, M. I., Clarke, J., Ranasinghe, R., Reimann, L., Khalaf, N., Duong, T. M., Ouweneel, B., Sabour, S., Iles, C. E., Trisos, C. H., Feyen, L., Mentaschi, L., and Simpson, N. P.: African heritage sites threatened as sea-level rise accelerates, Nat. Clim. Change, 12, 256–262, https://doi.org/10.1038/s41558-022-01280-1, 2022.
Wada, Y., Van Beek, L. P. H., Van Kempen, C. M., Reckman, J. W. T. M., Vasak, S., and Bierkens, M. F. P.: Global depletion of groundwater resources, Geophys. Res. Lett., 37, L20402, https://doi.org/10.1029/2010GL044571, 2010.
Wada, Y., Wisser, D., and Bierkens, M. F. P.: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources, Earth Syst. Dynam., 5, 15–40, https://doi.org/10.5194/esd-5-15-2014, 2014.
Wadey, M. P., Haigh, Ivan. D., Nicholls, R. J., Brown, J. M., Horsburgh, K., Carroll, B., Gallop, S. L., Mason, T., and Bradshaw, E.: A comparison of the 31 January–1 February 1953 and 5–6 December 2013 coastal flood events around the UK, Front. Mar. Sci., 2, 84, https://doi.org/10.3389/fmars.2015.00084, 2015.
Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing risk of compound flooding from storm surge and rainfall for major US cities, Nat. Clim. Change, 5, 1093–1097, https://doi.org/10.1038/nclimate2736, 2015.
Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry, A., Muis, S., Veldkamp, T. I. E., Winsemius, H. C., and Wahl, T.: Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries, Environ. Res. Lett., 13, 084012, https://doi.org/10.1088/1748-9326/aad400, 2018.
Werner, A. D. and Simmons, C. T.: Impact of Sea-Level Rise on Sea Water Intrusion in Coastal Aquifers, Ground Water, 47, 197–204, https://doi.org/10.1111/j.1745-6584.2008.00535.x, 2009.
Werner, B. T.: Complexity in Natural Landform Patterns, Science, 284, 102–104, https://doi.org/10.1126/science.284.5411.102, 1999.
White, C. J.: The use of joint probability analysis to predict flood frequency in estuaries and tidal rivers, PhD thesis, University of Southampton, 357 pp., 2007.
White, E. and Kaplan, D.: Restore or retreat? saltwater intrusion and water management in coastal wetlands, Ecosystem Health and Sustainability, 3, e01258, https://doi.org/10.1002/ehs2.1258, 2017.
Wicke, B., Smeets, E., Dornburg, V., Vashev, B., Gaiser, T., Turkenburg, W., and Faaij, A.: The global technical and economic potential of bioenergy from salt-affected soils, Energy Environ. Sci., 4, 2669–2681, https://doi.org/10.1039/C1EE01029H, 2011.
Wolff, C., Bonatz, H., and Vafeidis, A. T.: Setback zones can effectively reduce exposure to sea-level rise in Europe, Sci. Rep., 13, 5515, https://doi.org/10.1038/s41598-023-32059-9, 2023.
Wu, W., McInnes, K., O'Grady, J., Hoeke, R., Leonard, M., and Westra, S.: Mapping Dependence Between Extreme Rainfall and Storm Surge, J. Geophys. Res.-Oceans, 123, 2461–2474, https://doi.org/10.1002/2017JC013472, 2018.
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high-accuracy map of global terrain elevations: Accurate Global Terrain Elevation map, Geophys. Res. Lett., 44, 5844–5853, https://doi.org/10.1002/2017GL072874, 2017.
Zamrsky, D., Oude Essink, G. H. P., and Bierkens, M. F. P.: Global Impact of Sea Level Rise on Coastal Fresh Groundwater Resources, Earths Future, 12, e2023EF003581, https://doi.org/10.1029/2023EF003581, 2024.
Zscheischler, J., Westra, S., Van Den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., Van Den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, Nat. Rev. Earth Environ., 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Sea level rise has major impacts in Europe, which vary from place to place and in time,...
Report
Altmetrics
Final-revised paper
Preprint