Articles | Volume 2-oae2023
https://doi.org/10.5194/sp-2-oae2023-3-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-2-oae2023-3-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the technical aspects of ocean-alkalinity-enhancement approaches
Matthew D. Eisaman
CORRESPONDING AUTHOR
Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
Yale Center for Natural Carbon Capture, Yale University, New Haven, CT, USA
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Phil Renforth
CORRESPONDING AUTHOR
Research Centre for Carbon Solutions, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
Laura Bastianini
Research Centre for Carbon Solutions, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
James Campbell
Research Centre for Carbon Solutions, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
Andrew W. Dale
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
Spyros Foteinis
Research Centre for Carbon Solutions, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
Patricia Grasse
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, 04103 Leipzig, Germany
Olivia Hawrot
Research Centre for Carbon Solutions, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
Carolin R. Löscher
Danish Institute for Advanced Study (DIAS), Nordcee, University of Southern Denmark, Odense, Denmark
Greg H. Rau
Planetary Technologies, Inc., Dartmouth, NS, Canada
Institute of Marine Sciences, University of California, Santa Cruz, CA, USA
Jakob Rønning
Danish Institute for Advanced Study (DIAS), Nordcee, University of Southern Denmark, Odense, Denmark
Related authors
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024, https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement leverages the large surface area and carbon storage capacity of the oceans to store atmospheric CO2 as dissolved bicarbonate. We monitored CO2 uptake in seawater treated with NaOH to establish operational boundaries for carbon removal experiments. Results show that CO2 equilibration occurred on the order of weeks to months, was consistent with values expected from equilibration calculations, and was limited by mineral precipitation at high pH and CaCO3 saturation.
Kristin Jones, Lenaïg Hemery, Nicholas Ward, Peter Regier, Mallory Ringham, and Matthew Eisaman
EGUsphere, https://doi.org/10.5194/egusphere-2024-972, https://doi.org/10.5194/egusphere-2024-972, 2024
Short summary
Short summary
Ocean alkalinity enhancement is a marine carbon dioxide removal method that aims to mitigate the effects of climate change. This method causes localized increases in ocean pH, but the biological impacts of such changes are not well known. Our study investigated the response of two nearshore invertebrate species to increased pH and found the sea hare to be sensitive to pH changes, while the isopod was more resilient. Understanding interactions with biology is important as this field expands.
Isabell Schlangen, Elizabeth Leon-Palmero, Annabell Moser, Peihang Xu, Erik Laursen, and Carolin Regina Löscher
EGUsphere, https://doi.org/10.5194/egusphere-2024-3680, https://doi.org/10.5194/egusphere-2024-3680, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We explored nitrogen fixation in the Arctic Ocean, revealing its key role in supporting coastal productivity, especially near melting glaciers. By combining molecular data, rate measurements, and environmental analysis, we identified dominant microbes like symbiotic unicellular cyanobacteria and linked high nitrogen fixation to glacial melt. Our findings suggest that climate-driven changes may expand niches for these microbes, reshaping nitrogen cycles and Arctic productivity in the future.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024, https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement leverages the large surface area and carbon storage capacity of the oceans to store atmospheric CO2 as dissolved bicarbonate. We monitored CO2 uptake in seawater treated with NaOH to establish operational boundaries for carbon removal experiments. Results show that CO2 equilibration occurred on the order of weeks to months, was consistent with values expected from equilibration calculations, and was limited by mineral precipitation at high pH and CaCO3 saturation.
Jakob Rønning, Zarah J. Kofoed, Mats Jacobsen, and Carolin R. Löscher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2884, https://doi.org/10.5194/egusphere-2023-2884, 2024
Preprint archived
Short summary
Short summary
In our study, we assessed the impact of olivine on marine primary producers of ocean-based solutions. The experiments revealed no negative effects on carbon fixation rates. Additions of the alkaline minerals did not establish growth inhibition; instead, they showed slight growth increases with species-specific responses. Ni exposure from olivine did not inhibit growth. However, limitations include the absence of responses in natural settings.
Kristin Jones, Lenaïg Hemery, Nicholas Ward, Peter Regier, Mallory Ringham, and Matthew Eisaman
EGUsphere, https://doi.org/10.5194/egusphere-2024-972, https://doi.org/10.5194/egusphere-2024-972, 2024
Short summary
Short summary
Ocean alkalinity enhancement is a marine carbon dioxide removal method that aims to mitigate the effects of climate change. This method causes localized increases in ocean pH, but the biological impacts of such changes are not well known. Our study investigated the response of two nearshore invertebrate species to increased pH and found the sea hare to be sensitive to pH changes, while the isopod was more resilient. Understanding interactions with biology is important as this field expands.
Ulf Riebesell, Daniela Basso, Sonja Geilert, Andrew W. Dale, and Matthias Kreuzburg
State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023
Short summary
Short summary
Mesocosm experiments represent a highly valuable tool in determining the safe operating space of ocean alkalinity enhancement (OAE) applications. By combining realism and biological complexity with controllability and replication, they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Short summary
CO2 can be stored in the ocean via increasing alkalinity of ocean water. Alkalinity can be created via dissolution of alkaline materials, like limestone or soda. Presented research studies boundaries for increasing alkalinity in seawater. The best way to increase alkalinity was found using an equilibrated solution, for example as produced from reactors. Adding particles for dissolution into seawater on the other hand produces the risk of losing alkalinity and degassing of CO2 to the atmosphere.
Christian Furbo Reeder, Ina Stoltenberg, Jamileh Javidpour, and Carolin Regina Löscher
Ocean Sci., 18, 401–417, https://doi.org/10.5194/os-18-401-2022, https://doi.org/10.5194/os-18-401-2022, 2022
Short summary
Short summary
The Baltic Sea is predicted to freshen in the future. To explore the effect of decreasing salinity on N2 fixers, we followed the natural salinity gradient in the Baltic Sea from the Kiel Fjord to the Gotland Basin and identified an N2 fixer community dominated by Nodularia and UCYN-A. A salinity threshold was identified at a salinity of 10, with Nodularia dominating at low and UCYN-A dominating at higher salinity, suggesting a future expansion of Nodularia N2 fixers and a retraction of UCYN-A.
Carolin R. Löscher
Biogeosciences, 18, 4953–4963, https://doi.org/10.5194/bg-18-4953-2021, https://doi.org/10.5194/bg-18-4953-2021, 2021
Short summary
Short summary
The Bay of Bengal (BoB) is classically seen as an ocean region with low primary production, which has been predicted to decrease even further. Here, the importance of such a trend is used to explore what could happen to the BoB's low-oxygen core waters if primary production decreases. Lower biological production leads to less oxygen loss in deeper waters by respiration; thus it could be that oxygen will not further decrease and the BoB will not become anoxic, different to other low-oxygen areas.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Jan Lüdke, Marcus Dengler, Stefan Sommer, David Clemens, Sören Thomsen, Gerd Krahmann, Andrew W. Dale, Eric P. Achterberg, and Martin Visbeck
Ocean Sci., 16, 1347–1366, https://doi.org/10.5194/os-16-1347-2020, https://doi.org/10.5194/os-16-1347-2020, 2020
Short summary
Short summary
We analyse the intraseasonal variability of the alongshore circulation off Peru in early 2017, this circulation is very important for the supply of nutrients to the upwelling regime. The causes of this variability and its impact on the biogeochemistry are investigated. The poleward flow is strengthened during the observed time period, likely by a downwelling coastal trapped wave. The stronger current causes an increase in nitrate and reduces the deficit of fixed nitrogen relative to phosphorus.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Anna Plass, Christian Schlosser, Stefan Sommer, Andrew W. Dale, Eric P. Achterberg, and Florian Scholz
Biogeosciences, 17, 3685–3704, https://doi.org/10.5194/bg-17-3685-2020, https://doi.org/10.5194/bg-17-3685-2020, 2020
Short summary
Short summary
We compare the cycling of Fe and Cd in sulfidic sediments of the Peruvian oxygen minimum zone. Due to the contrasting solubility of their sulfide minerals, the sedimentary Fe release and Cd burial fluxes covary with spatial and temporal distributions of H2S. Depending on the solubility of their sulfide minerals, sedimentary trace metal fluxes will respond differently to ocean deoxygenation/expansion of H2S concentrations, which may change trace metal stoichiometry of upwelling water masses.
Claudia Frey, Hermann W. Bange, Eric P. Achterberg, Amal Jayakumar, Carolin R. Löscher, Damian L. Arévalo-Martínez, Elizabeth León-Palmero, Mingshuang Sun, Xin Sun, Ruifang C. Xie, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, https://doi.org/10.5194/bg-17-2263-2020, 2020
Short summary
Short summary
The production of N2O via nitrification and denitrification associated with low-O2 waters is a major source of oceanic N2O. We investigated the regulation and dynamics of these processes with respect to O2 and organic matter inputs. The transcription of the key nitrification gene amoA rapidly responded to changes in O2 and strongly correlated with N2O production rates. N2O production by denitrification was clearly stimulated by organic carbon, implying that its supply controls N2O production.
Sonja Geilert, Patricia Grasse, Kristin Doering, Klaus Wallmann, Claudia Ehlert, Florian Scholz, Martin Frank, Mark Schmidt, and Christian Hensen
Biogeosciences, 17, 1745–1763, https://doi.org/10.5194/bg-17-1745-2020, https://doi.org/10.5194/bg-17-1745-2020, 2020
Short summary
Short summary
Marine silicate weathering is a key process of the marine silica cycle; however, its controlling processes are not well understood. In the Guaymas Basin, silicate weathering has been studied under markedly differing ambient conditions. Environmental settings like redox conditions or terrigenous input of reactive silicates appear to be major factors controlling marine silicate weathering. These factors need to be taken into account in future oceanic mass balances of Si and in modeling studies.
Carolin R. Löscher, Wiebke Mohr, Hermann W. Bange, and Donald E. Canfield
Biogeosciences, 17, 851–864, https://doi.org/10.5194/bg-17-851-2020, https://doi.org/10.5194/bg-17-851-2020, 2020
Short summary
Short summary
Oxygen minimum zones (OMZs) are ocean areas severely depleted in oxygen as a result of physical, chemical, and biological processes. Biologically, organic material is produced in the sea surface and exported to deeper waters, where it respires. In the Bay of Bengal (BoB), an OMZ is present, but there are traces of oxygen left. Our study now suggests that this is because one key process, nitrogen fixation, is absent in the BoB, thus preventing primary production and consecutive respiration.
Tronje P. Kemena, Angela Landolfi, Andreas Oschlies, Klaus Wallmann, and Andrew W. Dale
Earth Syst. Dynam., 10, 539–553, https://doi.org/10.5194/esd-10-539-2019, https://doi.org/10.5194/esd-10-539-2019, 2019
Short summary
Short summary
Oceanic deoxygenation is driven by climate change in several areas of the global ocean. Measurements indicate that ocean volumes with very low oxygen levels expand, with consequences for marine organisms and fishery. We found climate-change-driven phosphorus (P) input in the ocean is hereby an important driver for deoxygenation on longer timescales with effects in the next millennia.
Sonja Geilert, Christian Hensen, Mark Schmidt, Volker Liebetrau, Florian Scholz, Mechthild Doll, Longhui Deng, Annika Fiskal, Mark A. Lever, Chih-Chieh Su, Stefan Schloemer, Sudipta Sarkar, Volker Thiel, and Christian Berndt
Biogeosciences, 15, 5715–5731, https://doi.org/10.5194/bg-15-5715-2018, https://doi.org/10.5194/bg-15-5715-2018, 2018
Short summary
Short summary
Abrupt climate changes in Earth’s history might have been triggered by magmatic intrusions into organic-rich sediments, which can potentially release large amounts of greenhouse gases. In the Guaymas Basin, vigorous hydrothermal venting at the ridge axis and off-axis inactive vents show that magmatic intrusions are an effective way to release carbon but must be considered as very short-lived processes in a geological sense. These results need to be taken into account in future climate models.
Konstantin Stolpovsky, Andrew W. Dale, and Klaus Wallmann
Biogeosciences, 15, 3391–3407, https://doi.org/10.5194/bg-15-3391-2018, https://doi.org/10.5194/bg-15-3391-2018, 2018
Short summary
Short summary
The paper describes a new way to parameterize G-type models in marine sediments using data about reactivity of organic carbon sinking to the seafloor.
Johanna Maltby, Lea Steinle, Carolin R. Löscher, Hermann W. Bange, Martin A. Fischer, Mark Schmidt, and Tina Treude
Biogeosciences, 15, 137–157, https://doi.org/10.5194/bg-15-137-2018, https://doi.org/10.5194/bg-15-137-2018, 2018
Short summary
Short summary
The activity and environmental controls of methanogenesis (MG) within the sulfate-reducing zone (0–30 cm below the seafloor) were investigated in organic-rich sediments of the seasonally hypoxic Eckernförde Bay, SW Baltic Sea. MG activity was mostly linked to non-competitive substrates. The major controls identified were organic matter availability, C / N, temperature, and O2 in the water column, revealing higher rates in warm, stratified, hypoxic seasons compared to colder, oxygenated seasons.
Johannes Karstensen, Florian Schütte, Alice Pietri, Gerd Krahmann, Björn Fiedler, Damian Grundle, Helena Hauss, Arne Körtzinger, Carolin R. Löscher, Pierre Testor, Nuno Vieira, and Martin Visbeck
Biogeosciences, 14, 2167–2181, https://doi.org/10.5194/bg-14-2167-2017, https://doi.org/10.5194/bg-14-2167-2017, 2017
Short summary
Short summary
High-resolution observational data from underwater gliders and ships are used to investigate drivers and pathways of nutrient upwelling in high-productive whirling ecosystems (eddies). The data suggest that the upwelling is created by the interaction of wind-induced internal waves with the local rotation of the eddy. Because of differences in nutrient and oxygen pathways, a low-oxygen core is established at shallow depth in the high-productive eddies.
Björn Fiedler, Damian S. Grundle, Florian Schütte, Johannes Karstensen, Carolin R. Löscher, Helena Hauss, Hannes Wagner, Alexandra Loginova, Rainer Kiko, Péricles Silva, Toste Tanhua, and Arne Körtzinger
Biogeosciences, 13, 5633–5647, https://doi.org/10.5194/bg-13-5633-2016, https://doi.org/10.5194/bg-13-5633-2016, 2016
Short summary
Short summary
Oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered recently. This study examines biogeochemical structure and magnitudes of related processes within these isolated water masses. We found very low oxygen concentrations and strongly enhanced acidity at near-surface depth. Oxygen utilization and downward carbon export were found to exceed known values for this ocean region.
Jessica Gier, Stefan Sommer, Carolin R. Löscher, Andrew W. Dale, Ruth A. Schmitz, and Tina Treude
Biogeosciences, 13, 4065–4080, https://doi.org/10.5194/bg-13-4065-2016, https://doi.org/10.5194/bg-13-4065-2016, 2016
Short summary
Short summary
Benthic nitrogen fixation and sulfate reduction were investigated in the Peruvian oxygen minimum zone. The data suggest a coupling of both activities to a large extent, but that also sulfide and organic matter availability are controlling the benthic diazotrophy in this area. The molecular analysis confirms the presence of heterotrophic diazotrophs. This work improves our understanding of N cycling in OMZ sediments and the understanding of N sources in the marine environment.
Carolin R. Löscher, Hermann W. Bange, Ruth A. Schmitz, Cameron M. Callbeck, Anja Engel, Helena Hauss, Torsten Kanzow, Rainer Kiko, Gaute Lavik, Alexandra Loginova, Frank Melzner, Judith Meyer, Sven C. Neulinger, Markus Pahlow, Ulf Riebesell, Harald Schunck, Sören Thomsen, and Hannes Wagner
Biogeosciences, 13, 3585–3606, https://doi.org/10.5194/bg-13-3585-2016, https://doi.org/10.5194/bg-13-3585-2016, 2016
Short summary
Short summary
The ocean loses oxygen due to climate change. Addressing this issue in tropical ocean regions (off Peru and Mauritania), we aimed to understand the effects of oxygen depletion on various aspects of marine biogeochemistry, including primary production and export production, the nitrogen cycle, greenhouse gas production, organic matter fluxes and remineralization, and the role of zooplankton and viruses.
Pei-Chuan Chuang, Megan B. Young, Andrew W. Dale, Laurence G. Miller, Jorge A. Herrera-Silveira, and Adina Paytan
Biogeosciences, 13, 2981–3001, https://doi.org/10.5194/bg-13-2981-2016, https://doi.org/10.5194/bg-13-2981-2016, 2016
Short summary
Short summary
A transport-reaction model was used to simulate porewater methane and sulfate concentrations. Model results and sediment slurry incubation experiments show high methane production rates supported by non-competitive substrates and ample dissolved and labile organic matter as well as methane from deeper sediment through bubbles dissolution and diffusion. The shallow methane production and accumulation depths in these sediments promote high methane fluxes to the water column and atmosphere.
Carolin R. Löscher, Annie Bourbonnais, Julien Dekaezemacker, Chawalit N. Charoenpong, Mark A. Altabet, Hermann W. Bange, Rena Czeschel, Chris Hoffmann, and Ruth Schmitz
Biogeosciences, 13, 2889–2899, https://doi.org/10.5194/bg-13-2889-2016, https://doi.org/10.5194/bg-13-2889-2016, 2016
Short summary
Short summary
The ocean is full of eddies and they play a key role for ocean biogeochemistry. In order to understand dinitrogen (N2) fixation, one major control of oceanic primary production, we investigated three eddies in the eastern tropical South Pacific off Peru. We conducted the first detailed survey and found increased N2 fixation in the oxygen-depleted cores of anticyclonic mode water eddies. Taken together, we could – for the first time – show that eddies play an important role in N2 fixation off Peru.
Helena Hauss, Svenja Christiansen, Florian Schütte, Rainer Kiko, Miryam Edvam Lima, Elizandro Rodrigues, Johannes Karstensen, Carolin R. Löscher, Arne Körtzinger, and Björn Fiedler
Biogeosciences, 13, 1977–1989, https://doi.org/10.5194/bg-13-1977-2016, https://doi.org/10.5194/bg-13-1977-2016, 2016
Short summary
Short summary
In a low-oxygen eddy in the tropical Atlantic, total zooplankton biomass was increased. Larger plankton avoided the oxygen minimum zone (OMZ, < 20 µmol O2 kg−1). We identified four strategies by different plankton groups: (i) shallow OMZ avoidance and compression at surface, (ii) migration to shallow OMZ core during daytime, migration to surface at nighttime, (iii) residing in shallow OMZ day and night and (iv) migration through the shallow OMZ from oxygenated depths to surface and back.
Ulrike Lomnitz, Stefan Sommer, Andrew W. Dale, Carolin R. Löscher, Anna Noffke, Klaus Wallmann, and Christian Hensen
Biogeosciences, 13, 1367–1386, https://doi.org/10.5194/bg-13-1367-2016, https://doi.org/10.5194/bg-13-1367-2016, 2016
Short summary
Short summary
The study presents a P budget including the P input from the water column, the P burial in the sediments, as well as the P release from the sediments. We found that the P input could not maintain the P release rates. Consideration of other P sources, e.g., terrigenous P and P released from the dissolution of Fe oxyhydroxides, showed that none of these can account for the missing P. Thus, it is likely that abundant sulfide-oxidizing bacteria release the missing P during our measurement period.
Damian L. Arévalo-Martínez, Annette Kock, Carolin R. Löscher, Ruth A. Schmitz, Lothar Stramma, and Hermann W. Bange
Biogeosciences, 13, 1105–1118, https://doi.org/10.5194/bg-13-1105-2016, https://doi.org/10.5194/bg-13-1105-2016, 2016
Short summary
Short summary
We present the first measurements of N2O across three mesoscale eddies in the eastern tropical South Pacific. Eddie's vertical structure, offshore transport, properties during its formation and near-surface primary production determined the N2O distribution. Substantial depletion of N2O within the core of anticyclonic eddies suggests that although these are transient features, N-loss processes within their centres can lead to an enhanced N2O sink which is not accounted for in marine N2O budgets.
A. Kock, D. L. Arévalo-Martínez, C. R. Löscher, and H. W. Bange
Biogeosciences, 13, 827–840, https://doi.org/10.5194/bg-13-827-2016, https://doi.org/10.5194/bg-13-827-2016, 2016
Short summary
Short summary
We measured the nitrous oxide (N2O) distribution in the water column in the oxygen minimum zone off Peru, an area with extremely high N2O emissions. Our data show very variable and often very high N2O concentrations in the water column at the coast, which lead to high N2O emissions when these waters are brought to the surface. The very high N2O production off Peru may be caused by high nutrient turnover rates together with rapid changes in the oxygen concentrations.
J. Meyer, C. R. Löscher, S. C. Neulinger, A. F. Reichel, A. Loginova, C. Borchard, R. A. Schmitz, H. Hauss, R. Kiko, and U. Riebesell
Biogeosciences, 13, 781–794, https://doi.org/10.5194/bg-13-781-2016, https://doi.org/10.5194/bg-13-781-2016, 2016
J. Maltby, S. Sommer, A. W. Dale, and T. Treude
Biogeosciences, 13, 283–299, https://doi.org/10.5194/bg-13-283-2016, https://doi.org/10.5194/bg-13-283-2016, 2016
Short summary
Short summary
The concurrence of methanogenesis and sulfate reduction was investigated in surface sediments (0–25cm b.s.f.) traversing the Peruvian margin. Surface methanogenesis was mainly based on non-competitive substrates to avoid competition with sulfate reducers. Accordingly, surface methanogenesis was mainly controlled by the availability of labile organic matter. The high relevance of surface methanogenesis especially on the shelf indicates its underestimated role within benthic methane budgeting.
C. R. Löscher, M. A. Fischer, S. C. Neulinger, B. Fiedler, M. Philippi, F. Schütte, A. Singh, H. Hauss, J. Karstensen, A. Körtzinger, S. Künzel, and R. A. Schmitz
Biogeosciences, 12, 7467–7482, https://doi.org/10.5194/bg-12-7467-2015, https://doi.org/10.5194/bg-12-7467-2015, 2015
Short summary
Short summary
The waters of the tropical Atlantic Open Ocean usually contain comparably high concentrations of oxygen. Now, it became clear that there are watermasses related to eddies that are nearly anoxic. We surveyed one of those eddies and found a biosphere that largely differed from the usual biosphere present in this area with a specific community responsible for primary production and for degradation processes. Further, we found the very first indication for active nitrogen loss in the open Atlantic.
P. Steeb, S. Krause, P. Linke, C. Hensen, A. W. Dale, M. Nuzzo, and T. Treude
Biogeosciences, 12, 6687–6706, https://doi.org/10.5194/bg-12-6687-2015, https://doi.org/10.5194/bg-12-6687-2015, 2015
Short summary
Short summary
We combined field, laboratory (sediment-flow-through system) and numerical modeling work to investigate cold seep sediments at Quespos Slide, offshore of Costa Rica. The results demonstrated the efficiency of the benthic methane filter and provided an estimate for its response time (ca. 170 days) to changes in fluid fluxes.
A. W. Dale, S. Sommer, U. Lomnitz, I. Montes, T. Treude, V. Liebetrau, J. Gier, C. Hensen, M. Dengler, K. Stolpovsky, L. D. Bryant, and K. Wallmann
Biogeosciences, 12, 1537–1559, https://doi.org/10.5194/bg-12-1537-2015, https://doi.org/10.5194/bg-12-1537-2015, 2015
C. Ehlert, P. Grasse, D. Gutiérrez, R. Salvatteci, and M. Frank
Clim. Past, 11, 187–202, https://doi.org/10.5194/cp-11-187-2015, https://doi.org/10.5194/cp-11-187-2015, 2015
J. Friedrich, F. Janssen, D. Aleynik, H. W. Bange, N. Boltacheva, M. N. Çagatay, A. W. Dale, G. Etiope, Z. Erdem, M. Geraga, A. Gilli, M. T. Gomoiu, P. O. J. Hall, D. Hansson, Y. He, M. Holtappels, M. K. Kirf, M. Kononets, S. Konovalov, A. Lichtschlag, D. M. Livingstone, G. Marinaro, S. Mazlumyan, S. Naeher, R. P. North, G. Papatheodorou, O. Pfannkuche, R. Prien, G. Rehder, C. J. Schubert, T. Soltwedel, S. Sommer, H. Stahl, E. V. Stanev, A. Teaca, A. Tengberg, C. Waldmann, B. Wehrli, and F. Wenzhöfer
Biogeosciences, 11, 1215–1259, https://doi.org/10.5194/bg-11-1215-2014, https://doi.org/10.5194/bg-11-1215-2014, 2014
S. Krause, P. Steeb, C. Hensen, V. Liebetrau, A. W. Dale, M. Nuzzo, and T. Treude
Biogeosciences, 11, 507–523, https://doi.org/10.5194/bg-11-507-2014, https://doi.org/10.5194/bg-11-507-2014, 2014
V. J. Bertics, C. R. Löscher, I. Salonen, A. W. Dale, J. Gier, R. A. Schmitz, and T. Treude
Biogeosciences, 10, 1243–1258, https://doi.org/10.5194/bg-10-1243-2013, https://doi.org/10.5194/bg-10-1243-2013, 2013
A. W. Dale, V. J. Bertics, T. Treude, S. Sommer, and K. Wallmann
Biogeosciences, 10, 629–651, https://doi.org/10.5194/bg-10-629-2013, https://doi.org/10.5194/bg-10-629-2013, 2013
Cited articles
Anderson, R. F., Rowe, G. T., Kemp, P. F., Trumbores, S., and Biscaye, P. E.: Carbon budget for the mid-slope depocenter of the Middle Atlantic Bight, Deep-Sea Res. Pt. II, 41, 669–703, https://doi.org/10.1016/0967-0645(94)90040-X, 1994.
Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S., and Renforth, P.: CO2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems, Front. Clim., 1, 7, https://doi.org/10.3389/fclim.2019.00007, 2019.
Bange, H. W.: New Directions: The importance of oceanic nitrous oxide emissions, Atmos. Environ., 40, 198–199, https://doi.org/10.1016/j.atmosenv.2005.09.030, 2006a.
Bange, H. W.: Nitrous oxide and methane in European coastal waters, Estuarine, Coastal and Shelf Science, 70, 361–374, https://doi.org/10.1016/j.ecss.2006.05.042, 2006b.
Beerling, D. J.: Enhanced rock weathering: biological climate change mitigation with co-benefits for food security?, Biol. Lett., 13, 20170149, https://doi.org/10.1098/rsbl.2017.0149, 2017.
Bischoff, J. L., Fitzpatrick, J. A., and Rosenbauer, R. J.: The Solubility and Stabilization of Ikaite (CaCO3 ⚫ 6H 2O) from 0∘ to 25 ∘C: Environmental and Paleoclimatic Implications for Thinolite Tufa, J. Geol., 101, 21–33, https://doi.org/10.1086/648194, 1993.
Boch, R., Dietzel, M., Reichl, P., Leis, A., Baldermann, A., Mittermayr, F., and Pölt, P.: Rapid ikaite (CaCO3⚫6H2O) crystallization in a man-made river bed: Hydrogeochemical monitoring of a rarely documented mineral formation, Appl. Geochem., 63, 366–379, https://doi.org/10.1016/j.apgeochem.2015.10.003, 2015.
Bots, P., Benning, L. G., Rodriguez-Blanco, J.-D., Roncal-Herrero, T., and Shaw, S.: Mechanistic Insights into the Crystallization of Amorphous Calcium Carbonate (ACC), Cryst. Growth Des., 12, 3806–3814, https://doi.org/10.1021/cg300676b, 2012.
Boyd, P. W., Watson, A. J., Law, C. S., Abraham, E. R., Trull, T., Murdoch, R., Bakker, D. C. E., Bowie, A. R., Buesseler, K. O., Chang, H., Charette, M., Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J., Harvey, M., Jameson, G., LaRoche, J., Liddicoat, M., Ling, R., Maldonado, M. T., McKay, R. M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi, K., Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A., and Zeldis, J.: A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature, 407, 695–702, https://doi.org/10.1038/35037500, 2000.
Brečević, L., Nielsen, A. E., Oskarsson, Å., Hewitt, G. M., Kutney, J. P., Li, K., Milanova, R. K., Nakata, H., Nasiri, A., and Okada, Y.: Solubility of calcium carbonate hexahydrate, Acta Chem. Scand., 47, 668–673, https://doi.org/10.3891/acta.chem.scand.47-0668, 1993.
Brooks, R., Clark, L. M., and Thurston, E. F.: Calcium carbonate and its hydrates, Philos. T. Roy. Soc. A, 243, 145–167, 1950.
Brooks, R., Clark, L. M., Thurston, E. F., and Freeth, F. A.: Calcium carbonate and its hydrates, Philos. T. Roy. Soc. A, 243, 145–167, https://doi.org/10.1098/rsta.1950.0016, 1997.
Bruckman, V. J. and Wriessnig, K.: Improved soil carbonate determination by FT-IR and X-ray analysis, Environ. Chem. Lett., 11, 65–70, https://doi.org/10.1007/s10311-012-0380-4, 2013.
Cadée, G. C.: Sediment reworking by arenicola marina on tidal flats in the Dutch Wadden Sea, J. Sea Res., 10, 440–460, https://doi.org/10.1016/0077-7579(76)90020-X, 1976.
Caldeira, K. and Rau, G. H.: Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: Geochemical implications, Geophys. Res. Lett., 27, 225–228, https://doi.org/10.1029/1999GL002364, 2000.
Campbell, J. S., Bastianini, L., Buckman, J., Bullock, L. A., Foteinis, S., Furey, V., Hamilton, J., Harrington, K., Hawrot, O. K., Holdship, P., Knapp, W. J., Maesano, C. N., Mayes, W. M., Pogge von Strandmann, P. A. E., Reershemius, T., Rosair, G. M., Sturgeon, F., Turvey, C., Wilson, S., and Renforth, P.: Measurements in Geochemical Carbon Dioxide Removal, 1st edn., Heriot-Watt University, https://doi.org/10.17861/2ge7-re08, 2023.
Caserini, S., Barreto, B., Lanfredi, C., Cappello, G., Ross Morrey, D., and Grosso, M.: Affordable CO2 negative emission throughhydrogen from biomass, ocean liming, and CO2storage, Mitig. Adapt. Strateg. Glob. Change, 24, 1231–1248, https://doi.org/10.1007/s11027-018-9835-7, 2019.
Caserini, S., Cappello, G., Righi, D., Raos, G., Campo, F., De Marco, S., Renforth, P., Varliero, S., and Grosso, M.: Buffered accelerated weathering of limestone for storing CO2: Chemical background, Int. J. Greenh. Gas Con., 112, 103517, https://doi.org/10.1016/j.ijggc.2021.103517, 2021a.
Caserini, S., Pagano, D., Campo, F., Abbà, A., De Marco, S., Righi, D., Renforth, P., and Grosso, M.: Potential of Maritime Transport for Ocean Liming and Atmospheric CO2 Removal, Front. Clim., 3, 575900, https://doi.org/10.3389/fclim.2021.575900, 2021b.
California Energy Commission (CEC): Issues and environmental impacts associated with once-through cooling at California’s coastal power plants, Report No. CEC-700-2005-013, Sacramento, CA, https://www.waterboards.ca.gov/rwqcb9/water_issues/programs/npdes/southbay_power_plant/docs/updates_022410/2005_Issues_OTC_Energy_Commission_Report_2005[2].pdf (last access: 17 November 2023), 2005.
Chou, W.-C., Gong, G.-C., Hsieh, P.-S., Chang, M.-H., Chen, H.-Y., Yang, C.-Y., and Syu, R.-W.: Potential impacts of effluent from accelerated weathering of limestone on seawater carbon chemistry: A case study for the Hoping power plant in northeastern Taiwan, Mar. Chem., 168, 27–36, https://doi.org/10.1016/j.marchem.2014.10.008, 2015.
Committee on A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration, Ocean Studies Board, Division on Earth and Life Studies, and National Academies of Sciences, Engineering, and Medicine: A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration, National Academies Press, Washington, D.C., https://doi.org/10.17226/26278, 2022.
Cooney, G.: Best Practices for Life Cycle Assessment (LCA) of Direct Air Capture with Storage (DACS), U.S. Department of Energy, Office of Fossil Energy and Carbon Management, https://www.energy.gov/fecm/best-practices-LCA-DACS (last access: 6 November 2023), 2022.
Cyronak, T., Albright, R., and Bach, L. T.: Field experiments in ocean alkalinity enhancement research, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 7, https://doi.org/10.5194/sp-2-oae2023-7-2023, 2023.
Dale, A. W., Sommer, S., Lomnitz, U., Montes, I., Treude, T., Liebetrau, V., Gier, J., Hensen, C., Dengler, M., Stolpovsky, K., Bryant, L. D., and Wallmann, K.: Organic carbon production, mineralisation and preservation on the Peruvian margin, Biogeosciences, 12, 1537–1559, https://doi.org/10.5194/bg-12-1537-2015, 2015.
Davies, P. J. and Bubela, B.: The transformation of nesquehonite into hydromagnesite, Chem. Geol., 12, 289–300, https://doi.org/10.1016/0009-2541(73)90006-5, 1973.
de Lannoy, C.-F., Eisaman, M. D., Jose, A., Karnitz, S. D., DeVaul, R. W., Hannun, K., and Rivest, J. L. B.: Indirect ocean capture of atmospheric CO2: Part I. Prototype of a negative emissions technology, Int. J. Greenh. Gas Con., 70, 243–253, https://doi.org/10.1016/j.ijggc.2017.10.007, 2018.
Doelman, C. J., Leurs, R., Oosterom, W. C., and Bast, A.: Mineral dust exposure and free radical-mediated lung damage, Exp. Lung Res., 16, 41–55, https://doi.org/10.3109/01902149009064698, 1990.
Du, L., Song, Q., and Jia, X.: Detecting concept drift: an information entropy-based method using an adaptive sliding window, Intell. Data Anal., 18, 337–364, 2014.
Edwards, H., Moody, C., Newton, E., Jorge-Villar, S., and Russell, M.: Raman Spectroscopic analysis of cyanobacterial colonisation of hydromagnesite, a putative Martian extremophile, Icarus, 175, 372–381, https://doi.org/10.1016/j.icarus.2004.12.006, 2005.
Eisaman, M. D.: Negative Emissions Technologies: The Tradeoffs of Air-Capture Economics, Joule, 4, 516–520, https://doi.org/10.1016/j.joule.2020.02.007, 2020.
Eisaman, M. D., Parajuly, K., Tuganov, A., Eldershaw, C., Chang, N., and Littau, K. A.: CO2 extraction from seawater using bipolar membrane electrodialysis, Energy Environ. Sci., 5, 7346–7352, https://doi.org/10.1039/c2ee03393c, 2012.
Eisaman, M. D., Rivest, J. L. B., Karnitz, S. D., de Lannoy, C.-F., Jose, A., DeVaul, R. W., and Hannun, K.: Indirect ocean capture of atmospheric CO2: Part II. Understanding the cost of negative emissions, Int. J. Greenh. Gas Con., 70, 254–261, https://doi.org/10.1016/j.ijggc.2018.02.020, 2018.
European Commission: Joint Research Centre. Institute for Prospective Technological Studies: Best available techniques (BAT) reference document for the production of cement, lime and magnesium oxide: Industrial Emissions Directive 2010/75/EU (integrated pollution prevention and control), Publications Office, LU, https://op.europa.eu/en/publication-detail/-/publication/12dbe9f3-28c6-44c9-8962-50a1359443d6 (last access: 6 November 2023), 2013.
European Commission: Commission Decision (EU) 2017/848 – of 17 May 2017 – laying down criteria and methodological standards on good environmental status of marine waters and specifications and standardised methods for monitoring and assessment, and repealing Decision 2010/ 477/ EU, https://eur-lex.europa.eu/resource.html?uri=cellar:ef454a92-98a9-11e7-b92d-01aa75ed71a1.0013.02/DOC_1&format=PDF (last access: 6 November 2023), 2017.
Fakhraee, M., Li, Z., Planavsky, N. J., and Reinhard, C. T.: A biogeochemical model of mineral-based ocean alkalinity enhancement: impacts on the biological pump and ocean carbon uptake, Environ. Res. Lett., 18, 044047, https://doi.org/10.1088/1748-9326/acc9d4, 2023.
Fischer, H. C.: Calcination of Calcite: I, Effect of Heating Rate and Temperature on Bulk Density of Calcium Oxide, J. Am. Ceram. Soc., 38, 245–251, https://doi.org/10.1111/j.1151-2916.1955.tb14939.x, 1955.
Flipkens, G., Blust, R., and Town, R. M.: Deriving Nickel (Ni(II)) and Chromium (Cr(III)) Based Environmentally Safe Olivine Guidelines for Coastal Enhanced Silicate Weathering, Environ. Sci. Technol., 55, 12362–12371, https://doi.org/10.1021/acs.est.1c02974, 2021.
Flipkens, G., Fuhr, M., Fiers, G., Meysman, F. J. R., Town, R. M., and Blust, R.: Enhanced olivine dissolution in seawater through continuous grain collisions, Geochim. Cosmochim. Ac., 359, 84–99, https://doi.org/10.1016/j.gca.2023.09.002, 2023.
Foteinis, S., Andresen, J., Campo, F., Caserini, S., and Renforth, P.: Life cycle assessment of ocean liming for carbon dioxide removal from the atmosphere, J. Clean Prod., 370, 133309, https://doi.org/10.1016/j.jclepro.2022.133309, 2022.
Foteinis, S., Campbell, J. S., and Renforth, P.: Life Cycle Assessment of Coastal Enhanced Weathering for Carbon Dioxide Removal from Air, Environ. Sci. Technol., 57, 6169–6178, https://doi.org/10.1021/acs.est.2c08633, 2023.
Fuhr, M., Geilert, S., Schmidt, M., and Wallmann, K.: Kinetics of olivine weathering in seawater: an experimental study, in: Goldschmidt2021 abstracts, Goldschmidt2021, Virtual, https://doi.org/10.7185/gold2021.7375, 2021.
Garai, P., Banerjee, P., Mondal, P., and Saha, N. C.: Effect of Heavy Metals on Fishes: Toxicity and Bioaccumulation, J. Clin. Toxicol., S18, 001, https://www.longdom.org/open-access/effect-of-heavy-metals-on-fishes-toxicity-and-bioaccumulation-82260.html (last access: 15 November 2023), 2021.
Gartner, E.: Discussion of the paper “A new view on the kinetics of tricalcium silicate hydration,” by L. Nicoleau and A. Nonat, Cem. Concr. Res. 86 (2016) 1–11, Cement Concrete Res., 104, 114–117, https://doi.org/10.1016/j.cemconres.2017.10.015, 2018.
Gattuso, J.-P., Frankignoulle, M., and Wollast, R.: Carbon and Carbonate Metabolism in Coastal Aquatic Ecosystems, Annu. Rev. Ecol. Syst., 29, 405–434, https://doi.org/10.1146/annurev.ecolsys.29.1.405, 1998.
Geilert, S., Frick, D. A., Garbe-Schönberg, D., Scholz, F., Sommer, S., Grasse, P., Vogt, C., and Dale, A. W.: Coastal El Niño triggers rapid marine silicate alteration on the seafloor, Nat. Commun., 14, 1676, https://doi.org/10.1038/s41467-023-37186-5, 2023.
Glass, J. B. and Dupont, C. L.: Oceanic Nickel Biogeochemistry and the Evolution of Nickel Use, in: The Biological Chemistry of Nickel, edited by: Zamble, D., Rowińska-Żyrek, M., and Kozlowski, H., The Royal Society of Chemistry, 12–26, https://doi.org/10.1039/9781788010580-00012, 2017.
Gore, S., Renforth, P., and Perkins, R.: The potential environmental response to increasing oceanalkalinity for negative emissions, Mitig. Adapt. Strateg. Glob. Change, 24, 1191–1211, https://doi.org/10.1007/s11027-018-9830-z, 2019.
Greinert, J. and Derkachev, A.: Glendonites and methane-derived Mg-calcites in the Sea of Okhotsk, Eastern Siberia: implications of a venting-related ikaite/glendonite formation, Mar. Geol., 204, 129–144, https://doi.org/10.1016/S0025-3227(03)00354-2, 2004.
Guo, J. A., Strzepek, R., Willis, A., Ferderer, A., and Bach, L. T.: Investigating the effect of nickel concentration on phytoplankton growth to assess potential side-effects of ocean alkalinity enhancement, Biogeosciences, 19, 3683–3697, https://doi.org/10.5194/bg-19-3683-2022, 2022.
Guy, C. and Schott, J.: Multisite surface reaction versus transport control during the hydrolysis of a complex oxide, Chem. Geol., 78, 181–204, https://doi.org/10.1016/0009-2541(89)90057-0, 1989.
Haas, S., Weber, N., Berry, A., and Erich, E.: Limestone powder carbon dioxide scrubber as the technology for Carbon Capture and Usage, Cement Int., 3, 34−-45, 2014.
Hamilton, J. L., Wilson, S. A., Morgan, B., Harrison, A. L., Turvey, C. C., Paterson, D. J., Dipple, G. M., and Southam, G.: Accelerating Mineral Carbonation in Ultramafic Mine Tailings via Direct CO2 Reaction and Heap Leaching with Potential for Base Metal Enrichment and Recovery, Econ. Geol., 115, 303–323, https://doi.org/10.5382/econgeo.4710, 2020.
Hangx, S. J. T. and Spiers, C. J.: Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability, Int. J. Greenh. Gas Con., 3, 757–767, https://doi.org/10.1016/j.ijggc.2009.07.001, 2009.
Hartmann, J. and Moosdorf, N.: The new global lithological map database GLiM: A representation of rock properties at the Earth surface: Technical Brief, Geochem. Geophy. Geosy., 13, Q12004, https://doi.org/10.1029/2012GC004370, 2012.
Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S., and Köhler, P.: Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions?, Global Planet. Change, 69, 185–194, https://doi.org/10.1016/j.gloplacha.2009.07.007, 2009.
Hartmann, J., Suitner, N., Lim, C., Schneider, J., Marín-Samper, L., Arístegui, J., Renforth, P., Taucher, J., and Riebesell, U.: Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage, Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, 2023.
Harvey, L. D. D.: Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions, J. Geophys. Res., 113, C04028, https://doi.org/10.1029/2007JC004373, 2008.
Hauck, J., Köhler, P., Wolf-Gladrow, D., and Völker, C.: Iron fertilisation and century-scale effects of open ocean dissolution of olivine in a simulated CO2 removal experiment, Environ. Res. Lett., 11, 024007, https://doi.org/10.1088/1748-9326/11/2/024007, 2016.
He, J. and Tyka, M. D.: Limits and CO2 equilibration of near-coast alkalinity enhancement, Biogeosciences, 20, 27–43, https://doi.org/10.5194/bg-20-27-2023, 2023.
Heder, M.: From NASA to EU: the evolution of the TRL scale in Public Sector Innovation, The Innovation Journal, 22, 3, https://web.archive.org/web/20171011071816/https://www.innovation.cc/discussion-papers/22_2_3_heder_nasa-to-eu-trl-scale.pdf (last access: 17 November 2023), 2017.
Hinga, K.: Effects of pH on coastal marine phytoplankton, Mar. Ecol. Prog. Ser., 238, 281–300, https://doi.org/10.3354/meps238281, 2002.
Ho, D. T., Bopp, L., Palter, J. B., Long, M. C., Boyd, P. W., Neukermans, G., and Bach, L. T.: Monitoring, reporting, and verification for ocean alkalinity enhancement, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 12, https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023.
Hopkinson, L., Rutt, K., and Cressey, G.: The transformation of nesquehonite to hydromagnesite in the system CaO-MgO-H2O-CO2: An experimental spectroscopic study, J. Geol., 116, 387–400, 2008.
House, K. Z., House, C. H., Schrag, D. P., and Aziz, M. J.: Electrochemical Acceleration of Chemical Weathering as an Energetically Feasible Approach to Mitigating Anthropogenic Climate Change, Environ. Sci. Technol., 41, 8464–8470, https://doi.org/10.1021/es0701816, 2007.
Hu, Y.-B., Wolf-Gladrow, D. A., Dieckmann, G. S., Völker, C., and Nehrke, G.: A laboratory study of ikaite (CaCO3 ⚫ 6H2O) precipitation as a function of pH, salinity, temperature and phosphate concentration, Mar. Chem., 162, 10–18, https://doi.org/10.1016/j.marchem.2014.02.003, 2014.
Huntington, S.: A guide to using calcium reactors, Reefkeeping Online Magazine, http://www.reefkeeping.com/issues/2002-05/sh/feature/ (last access: 17 November 2023), 2002.
Ilyina, T., Wolf-Gladrow, D., Munhoven, G., and Heinze, C.: Assessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidification, Geophys. Res. Lett., 40, 5909–5914, https://doi.org/10.1002/2013GL057981, 2013.
ISO: Environmental management: life cycle assessment: principles and framework, Vol. ISO 14040, https://www.iso.org/standard/37456.html (last access: 15 November 23), 2006.
Jahnke, R. A. and Jahnke, D. B.: Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depocenter, Deep-Sea Res. Pt. I, 47, 1405–1428, https://doi.org/10.1016/S0967-0637(99)00118-1, 2000.
Jeandel, C. and Oelkers, E. H.: The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles, Chem. Geol., 395, 50–66, https://doi.org/10.1016/j.chemgeo.2014.12.001, 2015.
Jeandel, C., Peucker-Ehrenbrink, B., Jones, M. T., Pearce, C. R., Oelkers, E. H., Godderis, Y., Lacan, F., Aumont, O., and Arsouze, T.: Ocean margins: The missing term in oceanic element budgets?, Eos Trans. AGU, 92, 217–218, https://doi.org/10.1029/2011EO260001, 2011.
Kazakov, A. V., Tikhomirova, M. M., and Plotnikova, V. I.: The System of Carbonate Equilibria, Int. Geol. Rev., 1, 1–39, https://doi.org/10.1080/00206815909473450, 1959.
Kelland, M., Rau, G., Battochio, B., Vallis, J., Gladkovas, M., Thomas, S., Bradley, K., Brereton, C., Garg, S., and Mezei, A.: Integrating Carbon Capture in Mining Through Metallurgy. Part 1: Leaching and Reclamation of Asbestos Tailings: Thetford Mines Carbon Capture and Remediation Project, in: Proceedings of the 61st Conference of Metallurgists, COM 2022, COM 2022, Springer, Cham, 515–527, https://doi.org/10.1007/978-3-031-17425-4_66, 2022.
Kheshgi, H. S.: Sequestering atmospheric carbon dioxide by increasing ocean alkalinity, Energy, 20, 915–922, https://doi.org/10.1016/0360-5442(95)00035-F, 1995.
Kim, S., Nitzsche, M. P., Rufer, S. B., Lake, J. R., Varanasi, K. K., and Hatton, T. A.: Asymmetric chloride-mediated electrochemical process for CO2 removal from oceanwater, Energy Environ. Sci., 16, 2030–2044, https://doi.org/10.1039/D2EE03804H, 2023.
Kim, Y., Caumon, M.-C., Barres, O., Sall, A., and Cauzid, J.: Identification and composition of carbonate minerals of the calcite structure by Raman and infrared spectroscopies using portable devices, Spectrochim. Acta A, 261, 119980, https://doi.org/10.1016/j.saa.2021.119980, 2021.
Kirchner, J. S., Lettmann, K. A., Schnetger, B., Wolff, J.-O., and Brumsack, H.-J.: Carbon capture via accelerated weathering of limestone: Modeling local impacts on the carbonate chemistry of the southern North Sea, Int. J. Greenh. Gas Con., 92, 102855, https://doi.org/10.1016/j.ijggc.2019.102855, 2020a.
Kirchner, J. S., Berry, A., Ohnemüller, F., Schnetger, B., Erich, E., Brumsack, H.-J., and Lettmann, K. A.: Reducing CO 2 Emissions of a Coal-Fired Power Plant via Accelerated Weathering of Limestone: Carbon Capture Efficiency and Environmental Safety, Environ. Sci. Technol., 54, 4528–4535, https://doi.org/10.1021/acs.est.9b07009, 2020b.
Kirschvink, J. L.: Late Proterozoic Low-Latitude Global Glaciation: The Snowball Earth, in: the Proterozoic Biosphere: A Multidisciplinary Study, edited by: Schopf, J. and Klein, C., 51–52, Cambridge University Press, Cambridge, UK, ISBN 9780521366151, 1992.
Köhler, P., Abrams, J. F., Völker, C., Hauck, J., and Wolf-Gladrow, D. A.: Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology, Environ. Res. Lett., 8, 014009, https://doi.org/10.1088/1748-9326/8/1/014009, 2013.
Königsberger, E., Königsberger, L.-C., and Gamsjäger, H.: Low-temperature thermodynamic model for the system Na2CO3–MgCO3–CaCO3–H2O, Geochim. Cosmochim. Ac., 63, 3105–3119, https://doi.org/10.1016/S0016-7037(99)00238-0, 1999.
Kumar, A., Du, F., and Lienhard, J. H.: Caustic Soda Production, Energy Efficiency, and Electrolyzers, ACS Energy Lett., 6, 3563–3566, https://doi.org/10.1021/acsenergylett.1c01827, 2021.
La Plante, E. C., Simonetti, D. A., Wang, J., Al-Turki, A., Chen, X., Jassby, D., and Sant, G. N.: Saline Water-Based Mineralization Pathway for Gigatonne-Scale CO2 Management, ACS Sustainable Chem. Eng., 9, 1073–1089, https://doi.org/10.1021/acssuschemeng.0c08561, 2021.
La Plante, E. C., Chen, X., Bustillos, S., Bouissonnie, A., Traynor, T., Jassby, D., Corsini, L., Simonetti, D. A., and Sant, G. N.: Electrolytic Seawater Mineralization and the Mass Balances That Demonstrate Carbon Dioxide Removal, ACS EST Eng., 3, 955–968, https://doi.org/10.1021/acsestengg.3c00004, 2023.
Lammers, L. N., Duan, Y., Anaya, L., Koishi, A., Lopez, R., Delima, R., Jassby, D., and Sedlak, D. L.: Electrolytic Sulfuric Acid Production with Carbon Mineralization for Permanent Carbon Dioxide Removal, ACS Sustainable Chem. Eng., 11, 4800–4812, https://doi.org/10.1021/acssuschemeng.2c07441, 2023.
Langer, W. H., San Juan, C. A., Rau, G. H. and Caldeira, K.: Accelerated weathering of limestone for CO2 mitigation: Opportunities for the stone and cement industries, Mining. Eng., 61, 27–32, https://www.researchgate.net/publication/283868780_Accelerated_weathering_of limestone_for_CO2_mitigation_Opportunities_for_the_stone_and_cement_industries#fullTextFileContent (last access: 6 November 2023), 2009.
Laruelle, G. G., Lauerwald, R., Pfeil, B., and Regnier, P.: Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas: Continental shelf seas CO2 fluxes, Global Biogeochem. Cy., 28, 1199–1214, https://doi.org/10.1002/2014GB004832, 2014.
Laruelle, G. G., Cai, W.-J., Hu, X., Gruber, N., Mackenzie, F. T., and Regnier, P.: Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide, Nat. Commun., 9, 454, https://doi.org/10.1038/s41467-017-02738-z, 2018.
Lennie, A. R., Tang, C. C., and Thompson, S. P.: The structure and thermal expansion behaviour of ikaite, CaCO3 ⚫ 6H2O, from T=114 to T=293 K, Mineral. Mag., 68, 135–146, https://doi.org/10.1180/0026461046810176, 2004.
Lewis, E. and Wallace, D. W. R.: Program Developed for CO2 System Calculations, CDIAC, ESS-DIVE repository [data set], https://doi.org/10.15485/1464255, 1998.
Linke, P., Suess, E., Torres, M., Martens, V., Rugh, W. D., Ziebis, W., and Kulm, L. D.: In situ measurement of fluid flow from cold seeps at active continental margins, Deep-Sea Res. Pt. I, 41, 721–739, https://doi.org/10.1016/0967-0637(94)90051-5, 1994.
Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C.: An estimate of global primary production in the ocean from satellite radiometer data, J. Plankton Res., 17, 1245–1271, https://doi.org/10.1093/plankt/17.6.1245, 1995.
Madeddu, S., Priestnall, M., Godoy, E., Kumar, R. V., Raymahasay, S., Evans, M., Wang, R., Manenye, S., and Kinoshita, H.: Extraction of Mg(OH)2 from Mg silicate minerals with NaOH assisted with H2O: implications for CO2 capture from exhaust flue gas, Faraday Discuss., 183, 369–387, https://doi.org/10.1039/C5FD00047E, 2015.
Marion, G. M.: Carbonate mineral solubility at low temperatures in the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system, Geochim. Cosmochim. Ac., 65, 1883–1896, https://doi.org/10.1016/S0016-7037(00)00588-3, 2001.
Marland, G.: Phase equilibria in the system calcium carbonate-water, Geochim. Cosmochim. Ac., 39, 1193–1197, https://doi.org/10.1016/0016-7037(75)90061-7, 1975.
McLaren, D.: A comparative global assessment of potential negative emissions technologies, Process. Saf. Environ., 90, 489–500, https://doi.org/10.1016/j.psep.2012.10.005, 2012.
McNeil, B. I., Matear, R. J., Key, R. M., Bullister, J. L., and Sarmiento, J. L.: Anthropogenic CO2 Uptake by the Ocean Based on the Global Chlorofluorocarbon Data Set, Science, 299, 235–239, https://doi.org/10.1126/science.1077429, 2003.
McQueen, N., Kelemen, P., Dipple, G., Renforth, P., and Wilcox, J.: Ambient weathering of magnesium oxide for CO2 removal from air, Nat. Commun., 11, 3299, https://doi.org/10.1038/s41467-020-16510-3, 2020.
Meysman, F. J. R. and Montserrat, F.: Negative CO2 emissions via enhanced silicate weathering in coastal environments, Biol. Lett., 13, 20160905, https://doi.org/10.1098/rsbl.2016.0905, 2017.
Meysman, F. J. R., Cornelissen, R., Trashin, S., Bonné, R., Martinez, S. H., Van Der Veen, J., Blom, C. J., Karman, C., Hou, J.-L., Eachambadi, R. T., Geelhoed, J. S., Wael, K. D., Beaumont, H. J. E., Cleuren, B., Valcke, R., Van Der Zant, H. S. J., Boschker, H. T. S., and Manca, J. V.: A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria, Nat. Commun., 10, 4120, https://doi.org/10.1038/s41467-019-12115-7, 2019.
Middelburg, J. J., Soetaert, K., and Hagens, M.: Ocean alkalinity, buffering and biogeochemical processes, Rev. Geophys., 58, e2019RG000681, https://doi.org/10.1029/2019RG000681, 2020.
Mikkelsen, A., Andersen, A. B., Engelsen, S. B., Hansen, H. C. B., Larsen, O., and Skibsted, L. H.: Presence and Dehydration of Ikaite, Calcium Carbonate Hexahydrate, in Frozen Shrimp Shell, J. Agric. Food Chem., 47, 911–917, https://doi.org/10.1021/jf980932a, 1999.
Montserrat, F., Renforth, P., Hartmann, J., Leermakers, M., Knops, P., and Meysman, F. J. R.: Olivine Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal Environments, Environ. Sci. Technol., 51, 3960–3972, https://doi.org/10.1021/acs.est.6b05942, 2017.
Moras, C. A., Bach, L. T., Cyronak, T., Joannes-Boyau, R., and Schulz, K. G.: Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution, Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, 2022.
Moropoulou, A., Bakolas, A., and Aggelakopoulou, E.: The Effects of Limestone Characteristics and Calcination Temperature on the Reactivity of Quicklime, Cement Concrete Res., 31, 633–639, https://doi.org/10.1016/S0008-8846(00)00490-7, 2001.
Nduagu, E., Björklöf, T., Fagerlund, J., Wärnå, J., Geerlings, H., and Zevenhoven, R.: Production of magnesium hydroxide from magnesium silicate for the purpose of CO2 mineralisation – Part 1: Application to Finnish serpentinite, Miner. Eng., 30, 75–86, https://doi.org/10.1016/j.mineng.2011.12.004, 2012.
Neumann, A., Van Beusekom, J. E. E., Eisele, A., Emeis, K., Friedrich, J., Kröncke, I., Logemann, E. L., Meyer, J., Naderipour, C., Schückel, U., Wrede, A., and Zettler, M. L.: Macrofauna as a major driver of bentho-pelagic exchange in the southern North Sea, Limnol. Oceanogr., 66, 2203–2217, https://doi.org/10.1002/lno.11748, 2021.
Nishiyama, R., Munemoto, T., and Fukushi, K.: Formation condition of monohydrocalcite from CaCl2–MgCl2–Na2CO3 solutions, Geochim. Cosmochim. Ac., 100, 217–231, https://doi.org/10.1016/j.gca.2012.09.002, 2013.
O'Brien, T., Bommaraju, T. V., and Hine, F.: Handbook of chlor-alkali technology, Springer, New York, 5 pp., https://doi.org/10.1007/b113786, 2005.
Oelkers, E. H., Declercq, J., Saldi, G. D., Gislason, S. R., and Schott, J.: Olivine dissolution rates: A critical review, Chem. Geol., 500, 1–19, https://doi.org/10.1016/j.chemgeo.2018.10.008, 2018.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool, A.: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 681–686, https://doi.org/10.1038/nature04095, 2005.
Oskierski, H. C., Turvey, C. C., Wilson, S., Dlugogorski, B. Z., Altarawneh, M., and Mavromatis, V.: Mineralisation of atmospheric CO2 in hydromagnesite in ultramafic mine tailings – Insights from Mg isotopes, Geochim. Cosmochim. Ac., 309, 191–208, https://doi.org/10.1016/j.gca.2021.06.020, 2021.
Pan, X.-J., Dou, Z.-H., Zhang, T.-A., Meng, D.-L., and Fan, Y.-Y.: Separation of metal ions and resource utilization of magnesium from saline lake brine by membrane electrolysis, Sep. Purif. Technol., 251, 117316, https://doi.org/10.1016/j.seppur.2020.117316, 2020.
Papadimitriou, S., Kennedy, H., Kennedy, P., and Thomas, D. N.: Kinetics of ikaite precipitation and dissolution in seawater-derived brines at sub-zero temperatures to 265 K, Geochim. Cosmochim. Ac., 140, 199–211, https://doi.org/10.1016/j.gca.2014.05.031, 2014.
Pedersen, F. M. and Hansen, P.: Effects of high pH on natural planktonic community, Mar. Ecol.-Prog. Ser., 260, 19–31, https://doi.org/10.3354/meps260019, 2003.
Penman, D. E. and Rooney, A. D.: Coupled carbon and silica cycle perturbations during the Marinoan snowball Earth deglaciation, Geology, 47, 317–320, https://doi.org/10.1130/G45812.1, 2019.
Pesce, C., Godina, M. C., Henry, A., and Pesce, G. L.: Effects of Steam-Slaking on the Characteristics of Lime from Three Different UK Manufacturers, in: Proceedings of the 75th RILEM Annual Week 2021, Merida, Mexico, 29 August–3 September 2021, Springer Cham, 771–780, https://doi.org/10.1007/978-3-031-21735-7_82, 2023.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., and Saltzman, E.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature 399, 429–436, https://doi.org/10.1038/20859, 1999.
Pollyea, R. M. and Rimstidt, J. D.: Rate equations for modeling carbon dioxide sequestration in basalt, Appl. Geochem., 81, 53–62, https://doi.org/10.1016/j.apgeochem.2017.03.020, 2017.
Rahman, S., Aller, R. C., and Cochran, J. K.: The Missing Silica Sink: Revisiting the Marine Sedimentary Si Cycle Using Cosmogenic 32Si: The Missing Sedimentary Silica Sink, Global Biogeochem. Cy., 31, 1559–1578, https://doi.org/10.1002/2017GB005746, 2017.
Rau, G. H.: Electrochemical Splitting of Calcium Carbonate to Increase Solution Alkalinity: Implications for Mitigation of Carbon Dioxide and Ocean Acidity, Environ. Sci. Technol., 42, 8935–8940, https://doi.org/10.1021/es800366q, 2008.
Rau, G. H.: CO2 Mitigation via Capture and Chemical Conversion in Seawater, Environ. Sci. Technol., 45, 1088–1092, https://doi.org/10.1021/es102671x, 2011.
Rau, G. H. and Caldeira, K.: Enhanced carbonate dissolution: A means of sequestering waste CO2 as ocean bicarbonate, Energ. Convers. Manag., 40, 1803–1813, https://doi.org/10.1016/S0196-8904(99)00071-0, 1999.
Rau, G. H., Knauss, K. G., Langer, W. H., and Caldeira, K.: Reducing energy-related CO2 emissions using accelerated weathering of limestone, Energy, 32, 1471–1477, https://doi.org/10.1016/j.energy.2006.10.011, 2007.
Rau, G. H., Carroll, S. A., Bourcier, W. L., Singleton, M. J., Smith, M. M., and Aines, R. D.: Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production, P. Natl. Acad. Sci. USA, 110, 10095–10100, https://doi.org/10.1073/pnas.1222358110, 2013.
Rau, G., Rackley, S., Burt, W., Tahmasebi, S., Sadoon, O., Kielly, B., and Kelland, M.: Initial Outline of OAE CDR MRV: Concepts and Needs, Planetary Technologies, Inc., https://www.planetarytech.com/wp-content/uploads/2022/03/OAE-MRV-Concepts.pdf (last access: 17 November 2023), 2022.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson, A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A., Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P. A., Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6, 597–607, https://doi.org/10.1038/ngeo1830, 2013.
Renforth, P. and Campbell, J. S.: The role of soils in the regulation of ocean acidification, Phil. Trans. R. Soc. B, 376, 20200174, https://doi.org/10.1098/rstb.2020.0174, 2021.
Renforth, P. and Henderson, G.: Assessing ocean alkalinity for carbon sequestration: Ocean Alkalinity for C Sequestration, Rev. Geophys., 55, 636–674, https://doi.org/10.1002/2016RG000533, 2017.
Renforth, P. and Kruger, T.: Coupling Mineral Carbonation and Ocean Liming, Energy Fuels, 27, 4199–4207, https://doi.org/10.1021/ef302030w, 2013.
Renforth, P., Jenkins, B. G., and Kruger, T.: Engineering challenges of ocean liming, Energy, 60, 442–452, https://doi.org/10.1016/j.energy.2013.08.006, 2013.
Renforth, P., Baltruschat, S., Peterson, K., Mihailova, B. D., and Hartmann, J.: Using ikaite and other hydrated carbonate minerals to increase ocean alkalinity for carbon dioxide removal and environmental remediation, Joule, 6, 2674–2679, https://doi.org/10.1016/j.joule.2022.11.001, 2022.
Riebesell, U., Basso, D., Geilert, S., Dale, A. W., and Kreuzburg, M.: Mesocosm experiments in ocean alkalinity enhancement research, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023.
Rigopoulos, I., Harrison, A. L., Delimitis, A., Ioannou, I., Efstathiou, A. M., Kyratsi, T., and Oelkers, E. H.: Carbon sequestration via enhanced weathering of peridotites and basalts in seawater, Appl. Geochem., 91, 197–207, https://doi.org/10.1016/j.apgeochem.2017.11.001, 2018.
Rodriguez-Blanco, J. D., Shaw, S., and Benning, L. G.: The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, viavaterite, Nanoscale, 3, 265–271, https://doi.org/10.1039/C0NR00589D, 2011.
Russell, M. J., Keith, J. I., Veysel, Z., Derya, M., Filiz, S., Allan, J. H., and Anthony, E. F.: Search for signs of ancient life on Mars: Expectations from hydromagnesite microbialites, Salda Lake, Turkey, Journal of the Geological Society, 156, 869–888, https://doi.org/10.1144/gsjgs.156.5.0869, 1999.
Sano, Y., Hao, Y., and Kuwahara, F.: Development of an electrolysis based system to continuously recover magnesium from seawater, Heliyon, 4, e00923, https://doi.org/10.1016/j.heliyon.2018.e00923, 2018.
Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton University Press, ISBN 9780691017075, 2006.
Schuiling, R. D. and de Boer, P. L.: Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability. Comment: Nature and laboratory models are different, Int. J. Greenh. Gas Con., 4, 855–856, 2010.
Schuiling, R. D. and de Boer, P. L.: Rolling stones; fast weathering of olivine in shallow seas for cost-effective CO2 capture and mitigation of global warming and ocean acidification, Earth Syst. Dynam. Discuss., 2, 551–568, https://doi.org/10.5194/esdd-2-551-2011, 2011.
Schulz, H. D. and Zabel, M.: Marine Geochemistry, 2nd edn., 574 pp., Springer Berlin, https://doi.org/10.1007/3-540-32144-6, 2006.
Schulz, K. G., Bach, L. T., and Dickson, A. G.: Seawater carbonate chemistry considerations for ocean alkalinity enhancement research: theory, measurements, and calculations, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 2, https://doi.org/10.5194/sp-2-oae2023-2-2023, 2023.
Seeländer, K.: Alkalinity enhancement in rivers, Bachelor Thesis, University of Southern Denmark, Odense, DK, 2023.
Shahar, A., Bassett, W. A., Mao, H.-K., Chou, I.-M., and Mao, W.: The stability and Raman spectra of ikaite, CaCO3 ⚫ 6H2O, at high pressure and temperature, 90, 1835–1839, https://doi.org/10.2138/am.2005.1783, 2005.
Simkin, T. and Smith, J. V.: Minor-Element Distribution in Olivine, J. Geol., 78, 304–325, https://doi.org/10.1086/627519, 1970.
Smith, S. M., Geden, O., Nemet, G. F., Gidden, M. J., Lamb, W. F., Powis, C., Bellamy, R., Callaghan, M. W., Cowie, A., Cox, E., Fuss, S., Gasser, T., Grassi, G., Greene, J., Lück, S., Mohan, A., Müller-Hansen, F., Peters, G. P., Pratama, Y., Repke, T., Riahi, K., Schenuit, F., Steinhauser, J., Strefler, J., Valenzuela, J. M., and Minx, J. C.: The State of Carbon Dioxide Removal, 1st edn., The State of Carbon Dioxide Removal, https://doi.org/10.17605/OSF.IO/W3B4Z, 2023
Sommer, S., Gier, J., Treude, T., Lomnitz, U., Dengler, M., Cardich, J., and Dale, A. W.: Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen minimum zone cause an imbalance of benthic nitrogen fluxes, Deep-Sea Res. Pt. I, 112, 113–122, https://doi.org/10.1016/j.dsr.2016.03.001, 2016.
Sonnichsen, C., Atamanchuk, D., Hendricks, A., Morgan, S., Smith, J., Grundke, I., Luy, E., and Sieben, V. J.: An Automated Microfluidic Analyzer for In Situ Monitoring of Total Alkalinity, ACS Sens., 8, 344–352, https://doi.org/10.1021/acssensors.2c02343, 2023.
Stolaroff, J. K., Keith, D. W., and Lowry, G. V.: Carbon Dioxide Capture from Atmospheric Air Using Sodium Hydroxide Spray, Environ. Sci. Technol., 42, 2728–2735, https://doi.org/10.1021/es702607w, 2008.
Strathmann, H., Giorno, L., and Drioli, E.: An Introduction to Membrane Science and Technology, Inst. on Membrane Technology, 394 pp., ISBN 9788880800637, 8880800639, 2006.
Strefler, J., Amann, T., Bauer, N., Kriegler, E., and Hartmann, J.: Potential and costs of carbon dioxide removal by enhanced weathering of rocks, Environ. Res. Lett., 13, 034010, https://doi.org/10.1088/1748-9326/aaa9c4, 2018.
Sun, X. and Turchyn, A. V.: Significant contribution of authigenic carbonate to marine carbon burial, Nat. Geosci., 7, 201–204, https://doi.org/10.1038/ngeo2070, 2014.
Talabi, O. O., Dorfi, A. E., O'Neil, G. D., and Esposito, D. V.: Membraneless electrolyzers for the simultaneous production of acid and base, Chem. Commun., 53, 8006–8009, https://doi.org/10.1039/C7CC02361H, 2017.
Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G., and Gerzabek, M. H.: An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ. Chem. Lett., 5, 9–12, https://doi.org/10.1007/s10311-006-0079-5, 2007.
Terlouw, T., Bauer, C., Rosa, L., and Mazzotti, M.: Life cycle assessment of carbon dioxide removal technologies: a critical review, Energy Environ. Sci., 14, 1701–1721, https://doi.org/10.1039/D0EE03757E, 2021.
Thomsen, J. K., Geest, T., and Cox, R. P.: Mass Spectrometric Studies of the Effect of pH on the Accumulation of Intermediates in Denitrification by Paracoccus denitrificans, Appl. Environ. Microbiol., 60, 536–541, https://doi.org/10.1128/aem.60.2.536-541.1994, 1994.
Torres, M. E., Hong, W.-L., Solomon, E. A., Milliken, K., Kim, J.-H., Sample, J. C., Teichert, B. M. A., and Wallmann, K.: Silicate weathering in anoxic marine sediment as a requirement for authigenic carbonate burial, Earth-Sci. Rev., 200, 102960, https://doi.org/10.1016/j.earscirev.2019.102960, 2020.
Tréguer, P. J., Sutton, J. N., Brzezinski, M., Charette, M. A., Devries, T., Dutkiewicz, S., Ehlert, C., Hawkings, J., Leynaert, A., Liu, S. M., Llopis Monferrer, N., López-Acosta, M., Maldonado, M., Rahman, S., Ran, L., and Rouxel, O.: Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean, Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, 2021.
Tyka, M. D., Van Arsdale, C., and Platt, J. C.: CO2 capture by pumping surface acidity to the deep ocean, Energy Environ. Sci., 15, 786–798, https://doi.org/10.1039/D1EE01532J, 2022.
Volkenborn, N., Robertson, D. M., and Reise, K.: Sediment destabilizing and stabilizing bio-engineers on tidal flats: cascading effects of experimental exclusion, Helgoland Mar. Res., 63, 27–35, https://doi.org/10.1007/s10152-008-0140-9, 2009.
Voosen, P.: Ocean geoengineering scheme aces its first field test, Science, 378, 1266–1267, https://doi.org/10.1126/science.adg3427, 2022.
Wallmann, K., Aloisi, G., Haeckel, M., Tishchenko, P., Pavlova, G., Greinert, J., Kutterolf, S., and Eisenhauer, A.: Silicate weathering in anoxic marine sediments, Geochim. Cosmochim. Ac., 72, 2895–2918, https://doi.org/10.1016/j.gca.2008.03.026, 2008.
Wallmann, K., Diesing, M., Scholz, F., Rehder, G., Dale, A. W., Fuhr, M., and Suess, E.: Erosion of carbonate-bearing sedimentary rocks may close the alkalinity budget of the Baltic Sea and support atmospheric CO2 uptake in coastal seas, Front. Mar. Sci., 9, 968069, https://doi.org/10.3389/fmars.2022.968069, 2022.
Wang, H., Pilcher, D. J., Kearney, K. A., Cross, J. N., Shugart, O. M., Eisaman, M. D., and Carter, B. R.: Simulated Impact of Ocean Alkalinity Enhancement on Atmospheric CO2 Removal in the Bering Sea, Earth's Future, 11, e2022EF002816, https://doi.org/10.1029/2022EF002816, 2023.
Willauer, H. D., DiMascio, F., Hardy, D. R., and Williams, F. W.: Feasibility of CO2 Extraction from Seawater and Simultaneous Hydrogen Gas Generation Using a Novel and Robust Electrolytic Cation Exchange Module Based on Continuous Electrodeionization Technology, Ind. Eng. Chem. Res., 53, 12192–12200, https://doi.org/10.1021/ie502128x, 2014.
Xing, L., Pullin, H., Bullock, L., Renforth, P., Darton, R. C., and Yang, A.: Potential of enhanced weathering of calcite in packed bubble columns with seawater for carbon dioxide removal, Chem. Eng. J., 431, 134096, https://doi.org/10.1016/j.cej.2021.134096, 2022.
Yakymechko, Y., Lutsyuk, I., Jaskulski, R., Dulnik, J., and Kropyvnytska, T.: The Effect of Vibro-Activation Time on the Properties of Highly Active Calcium Hydroxide, Buildings, 10, 111, https://doi.org/10.3390/buildings10060111, 2020.
Zarandi, A. E., Larachi, F., Beaudoin, G., Plante, B., and Sciortino, M.: Ambient mineral carbonation of different lithologies of mafic to ultramafic mining wastes/tailings – A comparative study, Int. J. Greenh. Gas Con., 63, 392–400, https://doi.org/10.1016/j.ijggc.2017.06.016, 2017.
Short summary
Ocean-alkalinity-enhancement technologies refer to various methods and approaches aimed at increasing the alkalinity of seawater. This chapter explores technologies for increasing ocean alkalinity, including electrochemical-based approaches, ocean liming, accelerated weathering of limestone, hydrated carbonate addition, and coastal enhanced weathering, and suggests best practices in research and development.
Ocean-alkalinity-enhancement technologies refer to various methods and approaches aimed at...
Altmetrics
Final-revised paper
Preprint