Articles | Volume 2-oae2023
https://doi.org/10.5194/sp-2-oae2023-2-2023
https://doi.org/10.5194/sp-2-oae2023-2-2023
27 Nov 2023
 | OAE Guide 2023 | Chapter 2
 | 27 Nov 2023 | OAE Guide 2023 | Chapter 2

Seawater carbonate chemistry considerations for ocean alkalinity enhancement research: theory, measurements, and calculations

Kai G. Schulz, Lennart T. Bach, and Andrew G. Dickson

Related authors

Effects of grain size and seawater salinity on magnesium hydroxide dissolution and secondary calcium carbonate precipitation kinetics: implications for ocean alkalinity enhancement
Charly Andre Moras, Tyler Cyronak, Lennart Thomas Bach, Renaud Joannes-Boyau, and Kai Georg Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2024-645,https://doi.org/10.5194/egusphere-2024-645, 2024
Short summary
Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2024-692,https://doi.org/10.5194/egusphere-2024-692, 2024
Short summary
Investigating the effect of silicate and calcium based ocean alkalinity enhancement on diatom silicification
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart Thomas Bach
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-144,https://doi.org/10.5194/bg-2023-144, 2023
Revised manuscript accepted for BG
Short summary
Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community
Aaron Ferderer, Zanna Chase, Fraser Kennedy, Kai G. Schulz, and Lennart T. Bach
Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022,https://doi.org/10.5194/bg-19-5375-2022, 2022
Short summary
Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022,https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary

Cited articles

Anbeek, C.: The dependence of dissolution rates on grain size for some fresh and weathered feldspars, Geochim. Cosmochim. Ac., 56, 3957–3970, 1992. 
Bach, L. T.: The additionality problem of Ocean Alkalinity Enhancement, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2023-122, in review, 2023. 
Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S., and Renforth, P.: CO2 removal with enhanced weathering and ocean alkalinity enhancement: Potential risks and co-benefits for marine pelagic ecosystems, Front. Clim., 1, 7, https://doi.org/10.3389/fclim.2019.00007, 2019. 
Ben-Yaakov, S. and Goldhaber, M. B.: The influence of seawater composition on the apparent constants of the carbonate system, Deep-Sea Res., 20, 87–99, 1972. 
Bockmon, E. E. and Dickson, A. G.: An inter-laboratory comparison assessing the quality of seawater carbon dioxide measurements, Mar. Chem., 171, 36–43, 2015. 
Download
Short summary
Ocean alkalinity enhancement is a promising approach for long-term anthropogenic carbon dioxide sequestration, required to avoid catastrophic climate change. In this chapter we describe its impacts on seawater carbonate chemistry speciation and highlight pitfalls that need to be avoided during sampling, storage, measurements, and calculations.
Altmetrics
Final-revised paper
Preprint