Articles | Volume 1-osr7
https://doi.org/10.5194/sp-1-osr7-15-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-1-osr7-15-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intense wind-driven coastal upwelling in the Balearic Islands in response to Storm Blas (November 2021)
Baptiste Mourre
CORRESPONDING AUTHOR
SOCIB, Balearic Islands Coastal Observing and Forecasting System,
07122 Palma, Spain
Emma Reyes
SOCIB, Balearic Islands Coastal Observing and Forecasting System,
07122 Palma, Spain
Pablo Lorente
Puertos del Estado, 28042 Madrid, Spain
Alex Santana
SOCIB, Balearic Islands Coastal Observing and Forecasting System,
07122 Palma, Spain
Jaime Hernández-Lasheras
SOCIB, Balearic Islands Coastal Observing and Forecasting System,
07122 Palma, Spain
Ismael Hernández-Carrasco
SOCIB, Balearic Islands Coastal Observing and Forecasting System,
07122 Palma, Spain
Maximo García-Jove
SOCIB, Balearic Islands Coastal Observing and Forecasting System,
07122 Palma, Spain
Nikolaos D. Zarokanellos
SOCIB, Balearic Islands Coastal Observing and Forecasting System,
07122 Palma, Spain
Related authors
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Jaime Hernandez-Lasheras, Baptiste Mourre, Alejandro Orfila, Alex Santana, Emma Reyes, and Joaquín Tintoré
Ocean Sci., 17, 1157–1175, https://doi.org/10.5194/os-17-1157-2021, https://doi.org/10.5194/os-17-1157-2021, 2021
Short summary
Short summary
Correct surface ocean circulation forecasts are highly relevant to search and rescue, oil spills, and ecological processes, among other things. High-frequency radar (HFR) is a remote sensing technology that measures surface currents in coastal areas with high temporal and spatial resolution. We performed a series of experiments in which we use HFR observations from the Ibiza Channel to improve the forecasts provided by a regional ocean model in the western Mediterranean.
Jaime Hernandez-Lasheras and Baptiste Mourre
Ocean Sci., 14, 1069–1084, https://doi.org/10.5194/os-14-1069-2018, https://doi.org/10.5194/os-14-1069-2018, 2018
Short summary
Short summary
Different sampling strategies have been assessed in order to evaluate the most efficient configuration for the assimilation of high resolution measurements into a regional ocean model. The results show the capability of the model to ingest both large scale and high resolution observations and the improvement of the forecast fields. In particular, the configurations using eight gliders and the one assimilating CTDs show similar results and the give the best performance among all the simulations
Reiner Onken, Heinz-Volker Fiekas, Laurent Beguery, Ines Borrione, Andreas Funk, Michael Hemming, Jaime Hernandez-Lasheras, Karen J. Heywood, Jan Kaiser, Michaela Knoll, Baptiste Mourre, Paolo Oddo, Pierre-Marie Poulain, Bastien Y. Queste, Aniello Russo, Kiminori Shitashima, Martin Siderius, and Elizabeth Thorp Küsel
Ocean Sci., 14, 321–335, https://doi.org/10.5194/os-14-321-2018, https://doi.org/10.5194/os-14-321-2018, 2018
Short summary
Short summary
In June 2014, high-resolution oceanographic data were collected in the
western Mediterranean Sea by two research vessels, 11 gliders, moored
instruments, drifters, and one profiling float. The objective
of this article is to provide an overview of the data set which
is utilised by various ongoing studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads
for gliders.
Antonio Sánchez-Román, Simón Ruiz, Ananda Pascual, Baptiste Mourre, and Stéphanie Guinehut
Ocean Sci., 13, 223–234, https://doi.org/10.5194/os-13-223-2017, https://doi.org/10.5194/os-13-223-2017, 2017
Short summary
Short summary
In this work we investigate the capability of the Argo array in the Mediterranean Sea to capture mesoscale circulation structures (diameter of around 150 km). To do that we conduct several experiments to simulate different spatial sampling configurations of the Argo array in the basin. Results show that the actual Argo array in the Mediterranean (2° × 2°) might be enlarged until a spatial resolution of nearly 75 × 75 km (450 floats) in order to capture the mesoscale signal.
Pablo Lorente, Anna Rubio, Emma Reyes, Lohitzune Solabarrieta, Silvia Piedracoba, Joaquín Tintoré, and Julien Mader
State Planet, 1-osr7, 8, https://doi.org/10.5194/sp-1-osr7-8-2023, https://doi.org/10.5194/sp-1-osr7-8-2023, 2023
Short summary
Short summary
Upwelling is an important process that impacts water quality and aquaculture production in coastal areas. In this work we present a new methodology to monitor this phenomenon in two different regions by using surface current estimations provided by remote sensing technology called high-frequency radar.
Pablo Lorente, Marta de Alfonso, Pilar Gil, Fernando Manzano, Anna Magdalena Matulka, Begoña Pérez-Gómez, Susana Pérez-Rubio, and M. Isabel Ruiz
State Planet Discuss., https://doi.org/10.5194/sp-2023-31, https://doi.org/10.5194/sp-2023-31, 2023
Revised manuscript accepted for SP
Short summary
Short summary
Over recent decades, extreme weather events have attracted growing public concern due to its widespread impact on the environment and human wellbeing. Their comprehensive monitoring is crucial to adopt prevention strategies and reduce coastal vulnerability. In this work, the record-breaking wave event that hit Melilla harbour (SW Mediterranean Sea) during early April 2022 was investigated to elucidate the meteorological drivers and evaluate the energetic response of Melilla harbour basins.
Gotzon Basterretxea, Joan S. Font-Muñoz, Ismael Hernández-Carrasco, and Sergio A. Sañudo-Wilhelmy
Ocean Sci., 19, 973–990, https://doi.org/10.5194/os-19-973-2023, https://doi.org/10.5194/os-19-973-2023, 2023
Short summary
Short summary
We examine global ocean color data and modeling outputs of nutrients using SOM analysis to identify characteristic spatial and temporal patterns of HNLC regions and their association with different climate modes. HNLC regions in polar and subpolar areas have experienced an increase in phytoplankton biomass over the last decades, particularly in the Southern Ocean. Our study finds that chlorophyll variations in HNLC regions respond to major climate variability signals.
Rafael R. Torres, Estefanía Giraldo, Cristian Muñoz, Ana Caicedo, Ismael Hernández-Carrasco, and Alejandro Orfila
Ocean Sci., 19, 685–701, https://doi.org/10.5194/os-19-685-2023, https://doi.org/10.5194/os-19-685-2023, 2023
Short summary
Short summary
A reverse seasonal ocean circulation in the Panama Bight has been assessed using 27 years of absolute dynamical topography. The mean circulation in the eastern tropical Pacific (east of 100° W) is analyzed from the mean dynamic topography (MDT) and a self-organizing-map analysis. Small differences are observed west of ~82° W. In the Panama Bight, MDT shows the cyclonic circulation when the Panama surface wind jet dominates the region. We assess ENSO effects on seasonal circulation.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Jaime Hernandez-Lasheras, Baptiste Mourre, Alejandro Orfila, Alex Santana, Emma Reyes, and Joaquín Tintoré
Ocean Sci., 17, 1157–1175, https://doi.org/10.5194/os-17-1157-2021, https://doi.org/10.5194/os-17-1157-2021, 2021
Short summary
Short summary
Correct surface ocean circulation forecasts are highly relevant to search and rescue, oil spills, and ecological processes, among other things. High-frequency radar (HFR) is a remote sensing technology that measures surface currents in coastal areas with high temporal and spatial resolution. We performed a series of experiments in which we use HFR observations from the Ibiza Channel to improve the forecasts provided by a regional ocean model in the western Mediterranean.
Lohitzune Solabarrieta, Ismael Hernández-Carrasco, Anna Rubio, Michael Campbell, Ganix Esnaola, Julien Mader, Burton H. Jones, and Alejandro Orfila
Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, https://doi.org/10.5194/os-17-755-2021, 2021
Short summary
Short summary
High-frequency radar technology measures coastal ocean surface currents. The use of this technology is increasing as it provides near-real-time information that can be used in oil spill or search-and-rescue emergencies to forecast the trajectories of floating objects. In this work, an analog-based short-term prediction methodology is presented, and it provides surface current forecasts of up to 48 h. The primary advantage is that it is easily implemented in real time.
Pablo Lorente, Marcos García-Sotillo, Arancha Amo-Baladrón, Roland Aznar, Bruno Levier, José C. Sánchez-Garrido, Simone Sammartino, Álvaro de Pascual-Collar, Guillaume Reffray, Cristina Toledano, and Enrique Álvarez-Fanjul
Ocean Sci., 15, 967–996, https://doi.org/10.5194/os-15-967-2019, https://doi.org/10.5194/os-15-967-2019, 2019
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane LawChune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-165, https://doi.org/10.5194/os-2018-165, 2019
Publication in OS not foreseen
Short summary
Short summary
This paper highlight the adjustment of the wave physics in order to improve the surface stress and thus the ocean/wave coupling dedicated to Iberian Biscay and Ireland domain. The validation with altimeters wave data during the year 2014 has shown a slight improvement of the significant wave height. Statistical analysis of the results of the new and old versions of the wave model MFWAM is examined for the three main ocean regions of the IBI domain.
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane Law-Chune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-167, https://doi.org/10.5194/os-2018-167, 2019
Publication in OS not foreseen
Short summary
Short summary
This work highlights the relevance of coupling wave model with ocean model in order to improve key surface ocean parameters and in general to better describe the ocean circulation at small and large scale.
The results focus on the Iberian Biscay and Ireland ocean region with fine grid resolution of 2.5 km for the ocean model. The main conclusion is the improvement of wave physics induces a better ocean mixing at the upper layer and a positive impact for sea surface height in storm events.
Jaime Hernandez-Lasheras and Baptiste Mourre
Ocean Sci., 14, 1069–1084, https://doi.org/10.5194/os-14-1069-2018, https://doi.org/10.5194/os-14-1069-2018, 2018
Short summary
Short summary
Different sampling strategies have been assessed in order to evaluate the most efficient configuration for the assimilation of high resolution measurements into a regional ocean model. The results show the capability of the model to ingest both large scale and high resolution observations and the improvement of the forecast fields. In particular, the configurations using eight gliders and the one assimilating CTDs show similar results and the give the best performance among all the simulations
Ismael Hernández-Carrasco, Lohitzune Solabarrieta, Anna Rubio, Ganix Esnaola, Emma Reyes, and Alejandro Orfila
Ocean Sci., 14, 827–847, https://doi.org/10.5194/os-14-827-2018, https://doi.org/10.5194/os-14-827-2018, 2018
Short summary
Short summary
A new methodology to reconstruct HF radar velocity fields based on neural networks is developed. Its performance is compared with other methods focusing on the propagation of errors introduced in the reconstruction of the velocity fields through the trajectories, Lagrangian flow structures and residence times. We find that even when a large number of measurements in the HFR velocity field is missing, the Lagrangian techniques still give an accurate description of oceanic transport properties.
Reiner Onken, Heinz-Volker Fiekas, Laurent Beguery, Ines Borrione, Andreas Funk, Michael Hemming, Jaime Hernandez-Lasheras, Karen J. Heywood, Jan Kaiser, Michaela Knoll, Baptiste Mourre, Paolo Oddo, Pierre-Marie Poulain, Bastien Y. Queste, Aniello Russo, Kiminori Shitashima, Martin Siderius, and Elizabeth Thorp Küsel
Ocean Sci., 14, 321–335, https://doi.org/10.5194/os-14-321-2018, https://doi.org/10.5194/os-14-321-2018, 2018
Short summary
Short summary
In June 2014, high-resolution oceanographic data were collected in the
western Mediterranean Sea by two research vessels, 11 gliders, moored
instruments, drifters, and one profiling float. The objective
of this article is to provide an overview of the data set which
is utilised by various ongoing studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads
for gliders.
Nikolaos D. Zarokanellos and Burton H. Jones
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-544, https://doi.org/10.5194/bg-2017-544, 2018
Manuscript not accepted for further review
Short summary
Short summary
This is the first in-situ study that describes the temporal-spatial variability in the Red Sea during the winter/spring transition. In situ oceanographic glider data and remotely sensed chlorophyll are used to demonstrate how physical processes control biogeochemical variability in the central Red Sea. We believe that continuing to study these processes in the globally extreme Red Sea will help us to better understand the climate effects.
Antonio Sánchez-Román, Simón Ruiz, Ananda Pascual, Baptiste Mourre, and Stéphanie Guinehut
Ocean Sci., 13, 223–234, https://doi.org/10.5194/os-13-223-2017, https://doi.org/10.5194/os-13-223-2017, 2017
Short summary
Short summary
In this work we investigate the capability of the Argo array in the Mediterranean Sea to capture mesoscale circulation structures (diameter of around 150 km). To do that we conduct several experiments to simulate different spatial sampling configurations of the Argo array in the basin. Results show that the actual Argo array in the Mediterranean (2° × 2°) might be enlarged until a spatial resolution of nearly 75 × 75 km (450 floats) in order to capture the mesoscale signal.
P. Lorente, S. Piedracoba, J. Soto-Navarro, and E. Alvarez-Fanjul
Ocean Sci., 11, 921–935, https://doi.org/10.5194/os-11-921-2015, https://doi.org/10.5194/os-11-921-2015, 2015
Short summary
Short summary
In this paper, we provide a detailed description of basic sea surface circulation features in the Ebro River delta (NW Mediterranean) as derived from reliable high-frequency radar surface current measurements. An integrated quality control approach has been applied to ensure the acquisition of accurate radar data, which remains a priority for the research community. This work should be of interest to readers in the areas of operational oceanography and also to a broad community of end-users.
I. Hernández-Carrasco, J. Sudre, V. Garçon, H. Yahia, C. Garbe, A. Paulmier, B. Dewitte, S. Illig, I. Dadou, M. González-Dávila, and J. M. Santana-Casiano
Biogeosciences, 12, 5229–5245, https://doi.org/10.5194/bg-12-5229-2015, https://doi.org/10.5194/bg-12-5229-2015, 2015
Short summary
Short summary
We have reconstructed maps of air-sea CO2 fluxes at high resolution (4 km) in the offshore Benguela region using sea surface temperature and ocean colour data and CarbonTracker CO2 fluxes data at low resolution (110 km).
The inferred representation of pCO2 improves the description provided by CarbonTracker, enhancing small-scale variability.
We find that the resolution, as well as the inferred pCO2 data itself, is closer to in situ measurements of pCO2.
I. Hernández-Carrasco, C. López, A. Orfila, and E. Hernández-García
Nonlin. Processes Geophys., 20, 921–933, https://doi.org/10.5194/npg-20-921-2013, https://doi.org/10.5194/npg-20-921-2013, 2013
Cited articles
Álvarez-Fanjul, E., Pérez Gómez, M., Alonso-Muñoyerr, M. de
A., Jiménez, P. L., Sotillo, M. G., Lin-Ye, J., Lecocq, A., Serna, M. R.
G. de la, Rubio, S. P., Clementi, E., Coppini, G., García-León, M.,
Muñoz, D. S., Rico, M. Y. L., Mestres, M., Molina, R., Tintoré, J.,
Mourre, B., Masina, S., Mosso, C., Reyes, E., and Santana, A.: Western
Mediterranean record-breaking storm Gloria: An integrated assessment based
on models and observations, in: Copernicus Ocean State Report, Issue 6, edited by: von Schuckmann, K., Le Traon, P.-Y., Smith, N., Pascual, A., Djavidnia, S., Brasseur, P., and Grégoire, M., J. Oper. Oceanogr., 15, Supplement 1, 1–220, https://doi.org/10.1080/1755876X.2022.2095169, 2022.
Amores, A., Marcos, M., Carrió, D. S., and Gómez-Pujol, L.: Coastal impacts of Storm Gloria (January 2020) over the north-western Mediterranean, Nat. Hazards Earth Syst. Sci., 20, 1955–1968, https://doi.org/10.5194/nhess-20-1955-2020, 2020.
Bakun, A.: Coastal upwelling indices, west coast of North America, 1946-71, NOAA technical report NMFS SSRF, https://repository.library.noaa.gov/view/noaa/9041 (last access: 14 April 2023), 1973.
Bakun, A. and Agostini, V. N.: Seasonal patterns of wind-induced
upwelling/downwelling in the Mediterranean Sea, Sci. Mar., 65, 243–257,
2001.
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., Rooy, W. de,
Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, Karl-Ivar
Lenderink, G., Niemelä, S., Nielsen, K. P., Onvlee, J., Rontu, L., Samuelsson, P., Muñoz, D. S., Subias, A., Tijm, S., Toll, V., Yang, X., and Køltzow, M. Ø.: The
HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system,
Mon. Weather Rev., 145, 1919–1935, 2017.
Casella, E., Molcard, A., and Provenzale, A.: Mesoscale vortices in the
Ligurian Sea and their effect on coastal upwelling processes, J. Marine Syst., 88, 12–19, 2011.
Clementi, E., Aydogdu, A., Goglio, A. C., Pistoia, J., Escudier, R., Drudi,
M., Grandi, A., Mariani, A., Lyubartsev, V., Lecci, R., Cretí, S.,
Coppini, G., Masina, S., and Pinardi, N.: Mediterranean Sea Physical
Analysis and Forecast (CMEMS MED-Currents, EAS6 system), Version 1,
Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/CMCC/MEDSEA_ANALYSISFORECAST_PHY_006_013_EAS6, 2021.
Colella, S., Böhm, E., Cesarini, C., Garnesson, P., Netting, J., and Calton, B.: EU Copernicus Marine Service Product User Manual for the Mediterranean Sea Ocean Colour Plankton, Reflectance, Transparency and Optics L3 NRT daily observations, OCEANCOLOUR_MED_BGC_L3_NRT_009_141, Issue 3.0, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-OC-PUM.pdf (last access: 14 April 2023), 2022a.
Colella, S., Brando, V. E., Di Cicco, A., D’Alimonte, D., Forneris, V., and Bracaglia, M.: EU Copernicus Marine Service Quality Information Document for the Mediterranean Sea Ocean Colour Plankton, Reflectance, Transparency and Optics L3 NRT daily observations, OCEANCOLOUR_MED_BGC_L3_NRT_009_141, Issue 2.0, Mercator Ocean International, https://catalogue. marine.copernicus.eu/documents/QUID/CMEMS-OC-QUID-009-141to144-151to154.pdf (last access: 14 April 2023), 2022b.
Demarcq, H. and Faure, V.: Coastal upwelling and associated retention
indices derived from satellite SST. Application to Octopus vulgaris
recruitment, Oceanol. Acta, 23, 391–408, 2000.
Dobricic, S. and Pinardi, N.: An oceanographic three-dimensional variational
data assimilation scheme, Ocean Model., 22, 89–105, 2008.
EU Copernicus Marine Service Product: Mediterranean Sea- In-Situ Near Real
Time Observations, Mercator Ocean International [data set],
https://doi.org/10.48670/moi-00044, 2022a.
EU Copernicus Marine Service Product: Mediterranean Sea Physics Analysis and
Forecast, Mercator Ocean International [data set],
https://doi.org/10.25423/CMCC/MEDSEA_ANALYSISFORECAST_PHY_006_013_EAS7, 2022b.
EU Copernicus Marine Service Product: Mediterranean Sea High Resolution and
Ultra High Resolution Sea Surface Temperature Analysis, Mercator Ocean
International [data set], https://doi.org/10.48670/moi-00172, 2022c.
EU Copernicus Marine Service Product: Global Ocean- in-situ Near real time
observations of ocean currents, Mercator Ocean International [data set],
https://doi.org/10.48670/moi-00041, 2022d.
EU Copernicus Marine Service Product: Mediterranean Sea Ocean Colour
Plankton, Reflectance, Transparency and Optics L3 NRT daily observations,
Mercator Ocean International [data set],
https://doi.org/10.48670/moi-00297, 2022e.
EU Copernicus Marine Service Product: European Seas Along Track L 3 Sea
Level Anomalies Nrt Tailored For Data Assimilation, Mercator Ocean
International [data set], https://doi.org/10.48670/moi-00140, 2023.
Gaertner, M. A., Jacob, D., Gil, V., Domínguez, M., Padorno, E.,
Sánchez, E., and Castro, M.: Tropical cyclones over the Mediterranean
Sea in climate change simulations, Geophys. Res. Lett., 34, L14711, https://doi.org/10.1029/2007GL029977, 2007.
García-León, M.: Coastal Risk Forecast System: Fostering Proactive
Management at the Catalan Coast, Doctoral dissertation, Polytechnic
University of Catalonia, Barcelona, http://hdl.handle.net/2117/330131 (last access: 14 April 2023), 2018.
Goglio, A.-C., Clementi, E., Grandi, A., Mariani, A., Giurato, M., and Aydogdu, A.: EU Copernicus Marine Service Quality Information Document for the Mediterranean Sea Physics Analysis and Forecast, MEDSEA_ANALYSISFORECAST_PHY_006_013, Issue 2.3, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-MED-QUID-006-013.pdf (last access: 14 April 2023), 2022.
González-Alemán, J. J., Pascale, S., Gutierrez-Fernandez, J., Murakami, H., Gaertner, M. A., and Vecchi, G. A.: Potential increase in
hazard from Mediterranean hurricane activity with global warming, Geophys. Res. Lett., 46, 1754–1764, 2019.
Hernandez-Lasheras, J. and Mourre, B.: Dense CTD survey versus glider fleet sampling: comparing data assimilation performance in a regional ocean model west of Sardinia, Ocean Sci., 14, 1069–1084, https://doi.org/10.5194/os-14-1069-2018, 2018.
Hernandez-Lasheras, J., Mourre, B., Orfila, A., Santana, A., Reyes, E., and Tintoré, J.: Evaluating high-frequency radar data assimilation impact in coastal ocean operational modelling, Ocean Sci., 17, 1157–1175, https://doi.org/10.5194/os-17-1157-2021, 2021.
Jacox, M. G., Edwards, C. A., Hazen, E. L., and Bograd, S. J.: Coastal
upwelling revisited: Ekman, Bakun, and improved upwelling indices for the
U.S. west coast, J. Geophys. Res., 123, 7332–7350, 2018.
Juza, M., Mourre, B., Renault, L., Gómara, S., Sebastián, K., Lora,
S., Beltran, J. P., Frontera, B., Garau, B., Troupin, C., Torner, M., Heslop, E., Casas, B., Escudier, R., Vizoso, G., and Tintoré, J.: SOCIB operational ocean forecasting system and multi-platform validation in the Western Mediterranean Sea, J. Oper. Oceanogr., 9, s155–s166, 2016.
Kohut, J. T., Glenn, S. M., and Paduan, J. D.: Inner-shelf response to tropical storm Floyd. J. Geophys. Res., 111, C09S91, https://doi.org/10.1029/2003JC002173, 2006.
Lecci, R., Drudi, M., Grandi, A., Creti, S., and Clementi, M.: EU Copernicus
Marine Service Product User Manual for the Mediterranean Sea Physics
Analysis and Forecast, MEDSEA_ANALYSISFORECAST_PHY_006_013, Issue 2.2, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-MED-PUM-006-013.pdf (last access: 14 April 2023), 2022
Lopez-García, M. J., Millot, C., Font, J., and Garcia-Ladona, E.: Surface circulation variability in the Balearic Basin, J. Geophys. Res., 99, 3285–3296, 1994.
Lorente, P., Piedracoba, S., Montero, P., Sotillo, M. G., Ruiz, M. I., and
Álvarez-Fanjul, E.: Comparative Analysis of Summer Upwelling and
Downwelling Events in NW Spain: A Model-Observations Approach, Remote Sens.-Basel, 2020, 12, 2762, https://doi.org/10.3390/rs12172762, 2020.
Lorente, P., Rubio, A., Reyes, E., Solabarrieta, L., Piedracoba, S., Tintoré, J., and Mader, J.: High-frequency radar-derived coastal upwelling index, in: 7th edition of the Copernicus Ocean State Report (OSR7), edited by: von Schuckmann, K., Moreira, L., Le Traon, P.-Y., Grégoire, M., Marcos, M., Staneva, J., Brasseur, P., Garric, G., Lionello, P., Karstensen, J., and Neukermans, G., Copernicus Publications, State Planet, 1-osr7, 8, https://doi.org/10.5194/sp-1-osr7-8-2023, 2023.
Macías, D., Bruno, M., Echevarría, F., Vázquez, A., and
García, C. M.: Meteorologically-induced mesoscale variability of the
North-western Alboran Sea (southern Spain) and related biological patterns,
Estuar. Coast. Shelf S., 78, 250–266, 2008.
Marchesiello, P. and Estrade, P.: Upwelling limitation by onshore
geostrophic flow, J. Mar. Res., 68, 37–62, 2010.
Millot, C.: Wind induced upwellings in the Gulf of Lions, Oceanol. Acta, 2, 261–274, 1979.
Millot, C.: Some features of the Algerian Current, J. Geophys. Res.-Oceans, 90, 7169–7176, 1985.
Mourre B., Aguiar, E., Juza, M., Hernandez-Lasheras, J., Reyes, E., Heslop, E., Escudier, R., Cutolo, E., Ruiz, S., Mason, E., Pascual, A., and Tintoré, J.: Assessment of high-resolution regional ocean prediction systems using multi-platform observations: illustrations in the Western Mediterranean Sea, in: “New Frontiers in Operational Oceanography”, edited by: Chassignet, E., Pascual, A., Tintoré, J., and Verron, J., GODAE Ocean View, 663–694, https://doi.org/10.17125/gov2018.ch24, 2018.
Olita, A., Ribotti, A., Fazioli, L., Perilli, A., and Sorgente, R.: Surface
circulation and upwelling in the Sardinia Sea: A numerical study, Cont. Shelf Res., 71, 95–108, 2013.
Paduan, J. D. and Rosenfeld, L. K.: Remotely sensed surface currents in Monterey
Bay from shore-based HF radar (CODAR), J. Geophys. Res., 101, 20669–20686,
1996.
Pauly, D. and Christensen, V.: Primary production required to sustain global fisheries, Nature, 374, 255–257, 1995.
Pisano, A., Fanelli, C., Buongiorno Nardelli, B., Tronconi, C., Cesarini, C., and La Padula, F.: EU Copernicus Marine Service Product User Manual for Mediterranean Sea High Resolution and Ultra High Resolution Sea Surface Temperature Analysis, SST_MED_SST_L4_NRT_OBSERVATIONS_010_004, Issue 3.0, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-SST-PUM-010-004-006-012-013.pdf,
(last access: 14 April 2023), 2022a.
Pisano, A., Fanelli, C., Buongiorno Nardelli, B., Tronconi, C., La Padula,
F., and Cesarini, C.: EU Copernicus Marine Service Quality Information Document for Mediterranean Sea High Resolution and Ultra High Resolution Sea Surface Temperature Analysis, SST_MED_SST_L4_NRT_OBSERVATIONS_010_004, Issue 3.0, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-SST-QUID-010-004-006-012-013.pdf,
(last access: 14 April 2023), 2022b.
Pouliquen, S., Carval, T., Petit de la Villéon, L., Tarot, S., and In
Situ TAC partners: EU Copernicus Marine Service Product User Manual for the
Mediterranean Sea- In-Situ Near Real Time Observations,
INSITU_MED_PHYBGCWAV_DISCRETE_MYNRT_013_035, Issue 1.14, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-INS-PUM-013-030-036.pdf (last access: 14 April 2023), 2022.
Pujol, M.-I.: EU Copernicus Marine Service Product User Manual for the European Seas Along Track L 3 Sea Level Anomalies Nrt Tailored For Data Assimilation, SEALEVEL_EUR_PHY_L3_NRT_OBSERVATIONS_008_059, Issue 7.0, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-SL-PUM-008-032-068.pdf (last access: 14 April 2023), 2022.
Pujol, M.-I., Taburet, G., and SL-TAC Team: EU Copernicus Marine Service Quality Information Document for the European Seas Along Track L 3 Sea Level Anomalies Nrt Tailored For Data Assimilation, SEALEVEL_EUR_PHY_L3_NRT_OBSERVATIONS_008_059, Issue 8.2, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-SL-QUID-008-032-068.pdf (last access: 14 April 2023), 2023.
Rey, V., Dufresne, C., Fuda, J.-L., Mallarino, D., Missamou, T., Paugam, C.,
Rougier, G., and Taupier-Letage, I.: On the use of long-term observation of
water level and temperature along the shore for a better understanding of
the dynamics: example of Toulon area, France, Ocean Dynam., 70, 913–933,
2020.
Romero, R. and Emanuel, K.: Medicane risk in a changing climate, J. Geophys. Res.-Atmos., 118, 5992–6001, 2013.
Rossi, V., Feng, M., Pattiaratchi, C., Roughan, M., and Waite, A. M.: On the
factors influencing the development of sporadic upwelling in the Leeuwin
Current system, J. Geophys. Res.-Oceans, 118, 3608–3621, 2013.
Salusti, E.: Satellite images of upwellings and cold filament dynamics as
transient effects of violent air-sea interactions downstream from the island
of Sardinia (western Mediterranean Sea), J. Geophys. Res.-Oceans, 103, 3013–3031, 1998.
Sarhan, T., García-Lafuente, J., Vargas, M., Vargas, J. M., and Plaza, F.: Upwelling mechanisms in the northwestern Alboran Sea, J. Marine Syst., 23, 317–331, 2000.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling
system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model., 9, 347–404,
2005.
Sotillo, M. G., Mourre, B., Mestres, M., Lorente, P., Aznar, R.,
García-León, M., Liste, M., Santana, A., Espino, M., and
Álvarez, E.: Evaluation of the operational CMEMS and coastal downstream
ocean forecasting services during the storm Gloria (January 2020), Frontiers
in Marine Science, 8, 644525, https://doi.org/10.3389/fmars.2021.644525, 2021.
Tintoré, J., Vizoso, G., Casas, B., Heslop, E., Pascual, A., Orfila, A., Ruiz, S., Martínez-Ledesma, M., Torner, M., Cusí, S., Diedrich, A., Balaguer, P., Gómez-Pujol, L., Álvarez-Ellacuria, A., Gómara, S., Sebastian, K., Lora, S., Beltrán, J. P., Renault, L., Juzà, M., Álvarez, D., March, D., Garau, B., Castilla, C., Cañellas, T., Roque, D., Lizarán, I., Pitarch, S., Carrasco, M. A., Lana, A., Mason, E., Escudier, R., Conti, D., Sayol, J. M., Barceló, B., Alemany, F., Reglero, P., Massuti, E., Vélez-Belchí, P., Ruiz, J., Oguz, T., Gómez, M., Álvarez, E., Ansorena, L., and Manriquez, M.: SOCIB: the Balearic Islands Observing and Forecasting System responding to science, technology and society needs, Mar. Technol. Soc. J., 47, 17 pp., 2013.
Verbrugge, N., Etienne, H., Corgnati, L., Mantovani, C., Reyes, E., Solabarrieta, L., Rubio, A., Carval, T., Mader, J., and Drouineau, L.: EU Copernicus Marine Service Product User Manual for the Global Ocean- in-situ Near real time observations of ocean currents, INSITU_GLO_PHY_UV_DISCRETE_NRT_013_048, Issue 2.2, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-INS-PUM-013-048.pdf (last access: 14 April 2022), 2022a.
Verbrugge, N., Etienne, H., Corgnati, L., Mantovani, C., Reyes, E., Solabarrieta, L., Rubio, A., Carval, T., Mader, J., and Drouineau, L.: EU Copernicus Marine Service Quality Information Document for the Global Ocean- in-situ Near real time observations of ocean currents, INSITU_GLO_PHY_UV_DISCRETE_NRT_013_048, Issue 2.2, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-INS-QUID-013-048.pdf (last access: 14 April 2023), 2022b.
Volpe, G., Colella, S., Brando, V. E., Forneris, V., La Padula, F., Di Cicco, A., Sammartino, M., Bracaglia, M., Artuso, F., and Santoleri, R.: Mediterranean ocean colour Level 3 operational multi-sensor processing, Ocean Sci., 15, 127–146, https://doi.org/10.5194/os-15-127-2019, 2019.
Wehde, H., von Schuckmann, K., Pouliquen, S., Grouazel, A., Bartolome, T.,
Tintore, J., De Alfonso Alonso-Munoyerro, M., Carval, T., Racapé, V., and
the INSTAC team: EU Copernicus Marine Service Quality Information Document
for the Mediterranean Sea- In-Situ Near Real Time Observations,
INSITU_MED_PHYBGCWAV_DISCRETE_MYNRT_013_035, Issue 2.2, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-INS-QUID-013-030-036.pdf (last access: 14 April 2023), 2022.
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
We characterize the signature of an intense storm-induced coastal upwelling along the...
Altmetrics
Final-revised paper
Preprint