Articles | Volume 6-osr9
https://doi.org/10.5194/sp-6-osr9-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/sp-6-osr9-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The 2025 Starfish Barometer
Sorbonne Université, LOCEAN-IPSL, CNRS/IRD/MNHN, Paris, France
Karina von Schuckmann
Mercator Ocean International, Toulouse, France
Patrick Vincent
Mercator Ocean International, Toulouse, France
Bruno Blanke
LOPS-IUEM, UBO/CNRS/Ifremer/IRD, Brest, France
Joachim Claudet
CNRS, PSL-EPHE-UPVD, CRIOBE, Paris, France
Patrice Guillotreau
MARBEC, IRD/Ifremer/CNRS/Université Montpellier, Montpellier, France
Audrey Hasson
Mercator Ocean International, Toulouse, France
Claire Jolly
OECD, Paris, France
Yunne Shin
MARBEC, IRD/Ifremer/CNRS/Université Montpellier, Montpellier, France
Olivier Thébaud
AMURE, Ifremer/UBO/CNRS/IRD, IUEM, Plouzané, Brest, France
Adrien Vincent
IPOS, Paris, France
Pierre Bahurel
Mercator Ocean International, Toulouse, France
Related authors
Madhavan Girijakumari Keerthi, Olivier Aumont, Lester Kwiatkowski, and Marina Levy
Biogeosciences, 22, 2163–2180, https://doi.org/10.5194/bg-22-2163-2025, https://doi.org/10.5194/bg-22-2163-2025, 2025
Short summary
Short summary
We assessed how well climate models replicate sub-seasonal changes in ocean chlorophyll observed by satellites. Models struggle to capture these variations accurately. Some overestimate fluctuations and their impact on annual chlorophyll variability, while others underestimate them. The underestimation is likely due to limited model resolution, while the overestimation may come from internal model oscillations.
Stéphane Doléac, Marina Lévy, Roy El Hourany, and Laurent Bopp
Biogeosciences, 22, 841–862, https://doi.org/10.5194/bg-22-841-2025, https://doi.org/10.5194/bg-22-841-2025, 2025
Short summary
Short summary
The marine biogeochemistry components of Coupled Model Intercomparison Project phase 6 (CMIP6) models vary widely in their process representations. Using an innovative bioregionalization of the North Atlantic, we reveal that this model diversity largely drives the divergence in net primary production projections under a high-emission scenario. The identification of the most mechanistically realistic models allows for a substantial reduction in projection uncertainty.
Roy El Hourany, Juan Pierella Karlusich, Lucie Zinger, Hubert Loisel, Marina Levy, and Chris Bowler
Ocean Sci., 20, 217–239, https://doi.org/10.5194/os-20-217-2024, https://doi.org/10.5194/os-20-217-2024, 2024
Short summary
Short summary
Satellite observations offer valuable information on phytoplankton abundance and community structure. Here, we employ satellite observations to infer seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. The link has been established using machine learning approaches. The output of this work provides excellent tools to collect essential biodiversity variables and a foundation to monitor the evolution of marine biodiversity.
Inès Mangolte, Marina Lévy, Clément Haëck, and Mark D. Ohman
Biogeosciences, 20, 3273–3299, https://doi.org/10.5194/bg-20-3273-2023, https://doi.org/10.5194/bg-20-3273-2023, 2023
Short summary
Short summary
Ocean fronts are ecological hotspots, associated with higher diversity and biomass for many marine organisms, from bacteria to whales. Using in situ data from the California Current Ecosystem, we show that far from being limited to the production of diatom blooms, fronts are the scene of complex biophysical couplings between biotic interactions (growth, competition, and predation) and transport by currents that generate planktonic communities with an original taxonomic and spatial structure.
Saeed Hariri, Sabrina Speich, Bruno Blanke, and Marina Lévy
Ocean Sci., 19, 1183–1201, https://doi.org/10.5194/os-19-1183-2023, https://doi.org/10.5194/os-19-1183-2023, 2023
Short summary
Short summary
This work presents a series of studies conducted by the authors on the application of the Lagrangian approach for the connectivity analysis between different ocean locations in an idealized open-ocean model. We assess how the connectivity properties of typical oceanic flows are affected by the fine-scale circulation and discuss the challenges facing ocean connectivity estimates related to the spatial resolution. Our results are important to improve the understanding of marine ecosystems.
Clément Haëck, Marina Lévy, Inès Mangolte, and Laurent Bopp
Biogeosciences, 20, 1741–1758, https://doi.org/10.5194/bg-20-1741-2023, https://doi.org/10.5194/bg-20-1741-2023, 2023
Short summary
Short summary
Phytoplankton vary in abundance in the ocean over large regions and with the seasons but also because of small-scale heterogeneities in surface temperature, called fronts. Here, using satellite imagery, we found that fronts enhance phytoplankton much more where it is already growing well, but despite large local increases the enhancement for the region is modest (5 %). We also found that blooms start 1 to 2 weeks earlier over fronts. These effects may have implications for ecosystems.
Alain de Verneil, Zouhair Lachkar, Shafer Smith, and Marina Lévy
Biogeosciences, 19, 907–929, https://doi.org/10.5194/bg-19-907-2022, https://doi.org/10.5194/bg-19-907-2022, 2022
Short summary
Short summary
The Arabian Sea is a natural CO2 source to the atmosphere, but previous work highlights discrepancies between data and models in estimating air–sea CO2 flux. In this study, we use a regional ocean model, achieve a flux closer to available data, and break down the seasonal cycles that impact it, with one result being the great importance of monsoon winds. As demonstrated in a meta-analysis, differences from data still remain, highlighting the great need for further regional data collection.
Zouhair Lachkar, Michael Mehari, Muchamad Al Azhar, Marina Lévy, and Shafer Smith
Biogeosciences, 18, 5831–5849, https://doi.org/10.5194/bg-18-5831-2021, https://doi.org/10.5194/bg-18-5831-2021, 2021
Short summary
Short summary
This study documents and quantifies a significant recent oxygen decline in the upper layers of the Arabian Sea and explores its drivers. Using a modeling approach we show that the fast local warming of sea surface is the main factor causing this oxygen drop. Concomitant summer monsoon intensification contributes to this trend, although to a lesser extent. These changes exacerbate oxygen depletion in the subsurface, threatening marine habitats and altering the local biogeochemistry.
Damien Couespel, Marina Lévy, and Laurent Bopp
Biogeosciences, 18, 4321–4349, https://doi.org/10.5194/bg-18-4321-2021, https://doi.org/10.5194/bg-18-4321-2021, 2021
Short summary
Short summary
An alarming consequence of climate change is the oceanic primary production decline projected by Earth system models. These coarse-resolution models parameterize oceanic eddies. Here, idealized simulations of global warming with increasing resolution show that the decline in primary production in the eddy-resolved simulations is half as large as in the eddy-parameterized simulations. This stems from the high sensitivity of the subsurface nutrient transport to model resolution.
Clément Bricaud, Julien Le Sommer, Gurvan Madec, Christophe Calone, Julie Deshayes, Christian Ethe, Jérôme Chanut, and Marina Levy
Geosci. Model Dev., 13, 5465–5483, https://doi.org/10.5194/gmd-13-5465-2020, https://doi.org/10.5194/gmd-13-5465-2020, 2020
Short summary
Short summary
In order to reduce the cost of ocean biogeochemical models, a multi-grid approach where ocean dynamics and tracer transport are computed with different spatial resolution has been developed in the NEMO v3.6 OGCM. Different experiments confirm that the spatial resolution of hydrodynamical fields can be coarsened without significantly affecting the resolved passive tracer fields. This approach leads to a factor of 7 reduction of the overhead associated with running a full biogeochemical model.
Zouhair Lachkar, Marina Lévy, and Shafer Smith
Biogeosciences, 15, 159–186, https://doi.org/10.5194/bg-15-159-2018, https://doi.org/10.5194/bg-15-159-2018, 2018
Short summary
Short summary
This study provides a new contribution to our understanding of the coupling between the oxygen minimum zones (OMZs) and climate. It explores how idealized changes in summer and winter Indian monsoon winds affect the productivity of the Arabian Sea and the size and intensity of its OMZ. We find that intensification of Indian monsoon winds can amplify climate warming on decadal to centennial timescales.
Madhavan Girijakumari Keerthi, Matthieu Lengaigne, Marina Levy, Jerome Vialard, Vallivattathillam Parvathi, Clément de Boyer Montégut, Christian Ethé, Olivier Aumont, Iyyappan Suresh, Valiya Parambil Akhil, and Pillathu Moolayil Muraleedharan
Biogeosciences, 14, 3615–3632, https://doi.org/10.5194/bg-14-3615-2017, https://doi.org/10.5194/bg-14-3615-2017, 2017
Short summary
Short summary
The northern Arabian Sea hosts a winter chlorophyll bloom, which exhibits strong interannual variability. The processes responsible for this interannual variation of the bloom are investigated using observations and a model. The interannual fluctuations of the winter bloom are largely related to the interannual mixed-layer depth (MLD) anomalies, which are driven by net heat flux anomalies. MLD controls the bloom amplitude through a modulation of nutrient turbulent fluxes into the mixed layer.
Parvathi Vallivattathillam, Suresh Iyyappan, Matthieu Lengaigne, Christian Ethé, Jérôme Vialard, Marina Levy, Neetu Suresh, Olivier Aumont, Laure Resplandy, Hema Naik, and Wajih Naqvi
Biogeosciences, 14, 1541–1559, https://doi.org/10.5194/bg-14-1541-2017, https://doi.org/10.5194/bg-14-1541-2017, 2017
Short summary
Short summary
During late boreal summer and fall, the west coast of India (WCI) experiences hypoxia, which turns into anoxia during some years. We analyze a coupled physical–biogeochemical simulation over the 1960–2012 period to investigate the physical processes influencing oxycline interannual variability off the WCI. We show that fall WCI oxycline fluctuations are strongly related to Indian Ocean Dipole (IOD), with positive IODs preventing anoxia, while negative IODs do not necessarily result in anoxia.
Lillian Diarra, Romane Zufic, Audrey Hasson, Cécile Thomas-Courcoux, and Enrique Alvarez Fanjul
State Planet, 5-opsr, 26, https://doi.org/10.5194/sp-5-opsr-26-2025, https://doi.org/10.5194/sp-5-opsr-26-2025, 2025
Short summary
Short summary
This paper explores capacity development in ocean science – strengthening the skills, resources, and systems needed to generate and use ocean data effectively. It reviews global efforts, current gaps, and recommendations for long-term impact. The paper also presents the work of the OceanPrediction Decade Collaborative Centre, showcasing a project aiming to enhance ocean prediction in Africa, illustrating good practices while offering insights for future improvement.
Enrique Álvarez Fanjul and Pierre Bahurel
State Planet, 5-opsr, 1, https://doi.org/10.5194/sp-5-opsr-1-2025, https://doi.org/10.5194/sp-5-opsr-1-2025, 2025
Short summary
Short summary
This paper is a description of the OceanPrediction Decade Collaborative Center and an introduction to this special issue. The objective of this compilation is to describe the actual status of ocean forecasting, detailing its degree of development in the different regions of the world and the most recent advances in all the relevant specific aspects associated with the technique, such as artificial intelligence, cloud computing, and many others.
Madhavan Girijakumari Keerthi, Olivier Aumont, Lester Kwiatkowski, and Marina Levy
Biogeosciences, 22, 2163–2180, https://doi.org/10.5194/bg-22-2163-2025, https://doi.org/10.5194/bg-22-2163-2025, 2025
Short summary
Short summary
We assessed how well climate models replicate sub-seasonal changes in ocean chlorophyll observed by satellites. Models struggle to capture these variations accurately. Some overestimate fluctuations and their impact on annual chlorophyll variability, while others underestimate them. The underestimation is likely due to limited model resolution, while the overestimation may come from internal model oscillations.
Stéphane Doléac, Marina Lévy, Roy El Hourany, and Laurent Bopp
Biogeosciences, 22, 841–862, https://doi.org/10.5194/bg-22-841-2025, https://doi.org/10.5194/bg-22-841-2025, 2025
Short summary
Short summary
The marine biogeochemistry components of Coupled Model Intercomparison Project phase 6 (CMIP6) models vary widely in their process representations. Using an innovative bioregionalization of the North Atlantic, we reveal that this model diversity largely drives the divergence in net primary production projections under a high-emission scenario. The identification of the most mechanistically realistic models allows for a substantial reduction in projection uncertainty.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Urmas Raudsepp, Ilja Maljutenko, Priidik Lagemaa, and Karina von Schuckmann
State Planet Discuss., https://doi.org/10.5194/sp-2024-19, https://doi.org/10.5194/sp-2024-19, 2024
Revised manuscript under review for SP
Short summary
Short summary
Over the last three decades, the Baltic Sea has experienced rising temperature and salinity, reflecting broader atmospheric warming. Heat content fluctuations are driven by subsurface temperature changes in the upper 100 meters, including the thermocline and halocline, influenced by air temperature, evaporation, and wind stress. Freshwater content changes mainly result from salinity shifts in the halocline, with saline water inflow, precipitation, and wind stress as key factors.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Roy El Hourany, Juan Pierella Karlusich, Lucie Zinger, Hubert Loisel, Marina Levy, and Chris Bowler
Ocean Sci., 20, 217–239, https://doi.org/10.5194/os-20-217-2024, https://doi.org/10.5194/os-20-217-2024, 2024
Short summary
Short summary
Satellite observations offer valuable information on phytoplankton abundance and community structure. Here, we employ satellite observations to infer seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. The link has been established using machine learning approaches. The output of this work provides excellent tools to collect essential biodiversity variables and a foundation to monitor the evolution of marine biodiversity.
Karina von Schuckmann, Lorena Moreira, and Pierre-Yves Le Traon
State Planet, 1-osr7, 1, https://doi.org/10.5194/sp-1-osr7-1-2023, https://doi.org/10.5194/sp-1-osr7-1-2023, 2023
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Inès Mangolte, Marina Lévy, Clément Haëck, and Mark D. Ohman
Biogeosciences, 20, 3273–3299, https://doi.org/10.5194/bg-20-3273-2023, https://doi.org/10.5194/bg-20-3273-2023, 2023
Short summary
Short summary
Ocean fronts are ecological hotspots, associated with higher diversity and biomass for many marine organisms, from bacteria to whales. Using in situ data from the California Current Ecosystem, we show that far from being limited to the production of diatom blooms, fronts are the scene of complex biophysical couplings between biotic interactions (growth, competition, and predation) and transport by currents that generate planktonic communities with an original taxonomic and spatial structure.
Saeed Hariri, Sabrina Speich, Bruno Blanke, and Marina Lévy
Ocean Sci., 19, 1183–1201, https://doi.org/10.5194/os-19-1183-2023, https://doi.org/10.5194/os-19-1183-2023, 2023
Short summary
Short summary
This work presents a series of studies conducted by the authors on the application of the Lagrangian approach for the connectivity analysis between different ocean locations in an idealized open-ocean model. We assess how the connectivity properties of typical oceanic flows are affected by the fine-scale circulation and discuss the challenges facing ocean connectivity estimates related to the spatial resolution. Our results are important to improve the understanding of marine ecosystems.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Clément Haëck, Marina Lévy, Inès Mangolte, and Laurent Bopp
Biogeosciences, 20, 1741–1758, https://doi.org/10.5194/bg-20-1741-2023, https://doi.org/10.5194/bg-20-1741-2023, 2023
Short summary
Short summary
Phytoplankton vary in abundance in the ocean over large regions and with the seasons but also because of small-scale heterogeneities in surface temperature, called fronts. Here, using satellite imagery, we found that fronts enhance phytoplankton much more where it is already growing well, but despite large local increases the enhancement for the region is modest (5 %). We also found that blooms start 1 to 2 weeks earlier over fronts. These effects may have implications for ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Alain de Verneil, Zouhair Lachkar, Shafer Smith, and Marina Lévy
Biogeosciences, 19, 907–929, https://doi.org/10.5194/bg-19-907-2022, https://doi.org/10.5194/bg-19-907-2022, 2022
Short summary
Short summary
The Arabian Sea is a natural CO2 source to the atmosphere, but previous work highlights discrepancies between data and models in estimating air–sea CO2 flux. In this study, we use a regional ocean model, achieve a flux closer to available data, and break down the seasonal cycles that impact it, with one result being the great importance of monsoon winds. As demonstrated in a meta-analysis, differences from data still remain, highlighting the great need for further regional data collection.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Zouhair Lachkar, Michael Mehari, Muchamad Al Azhar, Marina Lévy, and Shafer Smith
Biogeosciences, 18, 5831–5849, https://doi.org/10.5194/bg-18-5831-2021, https://doi.org/10.5194/bg-18-5831-2021, 2021
Short summary
Short summary
This study documents and quantifies a significant recent oxygen decline in the upper layers of the Arabian Sea and explores its drivers. Using a modeling approach we show that the fast local warming of sea surface is the main factor causing this oxygen drop. Concomitant summer monsoon intensification contributes to this trend, although to a lesser extent. These changes exacerbate oxygen depletion in the subsurface, threatening marine habitats and altering the local biogeochemistry.
Damien Couespel, Marina Lévy, and Laurent Bopp
Biogeosciences, 18, 4321–4349, https://doi.org/10.5194/bg-18-4321-2021, https://doi.org/10.5194/bg-18-4321-2021, 2021
Short summary
Short summary
An alarming consequence of climate change is the oceanic primary production decline projected by Earth system models. These coarse-resolution models parameterize oceanic eddies. Here, idealized simulations of global warming with increasing resolution show that the decline in primary production in the eddy-resolved simulations is half as large as in the eddy-parameterized simulations. This stems from the high sensitivity of the subsurface nutrient transport to model resolution.
Clément Bricaud, Julien Le Sommer, Gurvan Madec, Christophe Calone, Julie Deshayes, Christian Ethe, Jérôme Chanut, and Marina Levy
Geosci. Model Dev., 13, 5465–5483, https://doi.org/10.5194/gmd-13-5465-2020, https://doi.org/10.5194/gmd-13-5465-2020, 2020
Short summary
Short summary
In order to reduce the cost of ocean biogeochemical models, a multi-grid approach where ocean dynamics and tracer transport are computed with different spatial resolution has been developed in the NEMO v3.6 OGCM. Different experiments confirm that the spatial resolution of hydrodynamical fields can be coarsened without significantly affecting the resolved passive tracer fields. This approach leads to a factor of 7 reduction of the overhead associated with running a full biogeochemical model.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
A. M. Collin, M. Andel, D. James, and J. Claudet
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1849–1854, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1849-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1849-2019, 2019
Louise Rousselet, Alain de Verneil, Andrea M. Doglioli, Anne A. Petrenko, Solange Duhamel, Christophe Maes, and Bruno Blanke
Biogeosciences, 15, 2411–2431, https://doi.org/10.5194/bg-15-2411-2018, https://doi.org/10.5194/bg-15-2411-2018, 2018
Short summary
Short summary
The patterns of the large- and fine-scale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE oceanographic cruise. The combined use of in situ and satellite data allows for the identification of water mass transport pathways and fine-scale structures, such as fronts, that drive surface distribution of tracers and microbial community structures.
Zouhair Lachkar, Marina Lévy, and Shafer Smith
Biogeosciences, 15, 159–186, https://doi.org/10.5194/bg-15-159-2018, https://doi.org/10.5194/bg-15-159-2018, 2018
Short summary
Short summary
This study provides a new contribution to our understanding of the coupling between the oxygen minimum zones (OMZs) and climate. It explores how idealized changes in summer and winter Indian monsoon winds affect the productivity of the Arabian Sea and the size and intensity of its OMZ. We find that intensification of Indian monsoon winds can amplify climate warming on decadal to centennial timescales.
Madhavan Girijakumari Keerthi, Matthieu Lengaigne, Marina Levy, Jerome Vialard, Vallivattathillam Parvathi, Clément de Boyer Montégut, Christian Ethé, Olivier Aumont, Iyyappan Suresh, Valiya Parambil Akhil, and Pillathu Moolayil Muraleedharan
Biogeosciences, 14, 3615–3632, https://doi.org/10.5194/bg-14-3615-2017, https://doi.org/10.5194/bg-14-3615-2017, 2017
Short summary
Short summary
The northern Arabian Sea hosts a winter chlorophyll bloom, which exhibits strong interannual variability. The processes responsible for this interannual variation of the bloom are investigated using observations and a model. The interannual fluctuations of the winter bloom are largely related to the interannual mixed-layer depth (MLD) anomalies, which are driven by net heat flux anomalies. MLD controls the bloom amplitude through a modulation of nutrient turbulent fluxes into the mixed layer.
James Hansen, Makiko Sato, Pushker Kharecha, Karina von Schuckmann, David J. Beerling, Junji Cao, Shaun Marcott, Valerie Masson-Delmotte, Michael J. Prather, Eelco J. Rohling, Jeremy Shakun, Pete Smith, Andrew Lacis, Gary Russell, and Reto Ruedy
Earth Syst. Dynam., 8, 577–616, https://doi.org/10.5194/esd-8-577-2017, https://doi.org/10.5194/esd-8-577-2017, 2017
Short summary
Short summary
Global temperature now exceeds +1.25 °C relative to 1880–1920, similar to warmth of the Eemian period. Keeping warming less than 1.5 °C or CO2 below 350 ppm now requires extraction of CO2 from the air. If rapid phaseout of fossil fuel emissions begins soon, most extraction can be via improved agricultural and forestry practices. In contrast, continued high emissions places a burden on young people of massive technological CO2 extraction with large risks, high costs and uncertain feasibility.
Parvathi Vallivattathillam, Suresh Iyyappan, Matthieu Lengaigne, Christian Ethé, Jérôme Vialard, Marina Levy, Neetu Suresh, Olivier Aumont, Laure Resplandy, Hema Naik, and Wajih Naqvi
Biogeosciences, 14, 1541–1559, https://doi.org/10.5194/bg-14-1541-2017, https://doi.org/10.5194/bg-14-1541-2017, 2017
Short summary
Short summary
During late boreal summer and fall, the west coast of India (WCI) experiences hypoxia, which turns into anoxia during some years. We analyze a coupled physical–biogeochemical simulation over the 1960–2012 period to investigate the physical processes influencing oxycline interannual variability off the WCI. We show that fall WCI oxycline fluctuations are strongly related to Indian Ocean Dipole (IOD), with positive IODs preventing anoxia, while negative IODs do not necessarily result in anoxia.
K. von Schuckmann, J.-B. Sallée, D. Chambers, P.-Y. Le Traon, C. Cabanes, F. Gaillard, S. Speich, and M. Hamon
Ocean Sci., 10, 547–557, https://doi.org/10.5194/os-10-547-2014, https://doi.org/10.5194/os-10-547-2014, 2014
Cited articles
Andrew, R. M. and Peters, G. P.: The Global Carbon Project's fossil CO2 emissions dataset (2024v18), CICERO Center for International Climate Research Oslo, Norway, Zenodo [data set], https://doi.org/10.5281/ZENODO.14106218, 2024. a
Arneth, A., Leadley, P., Claudet, J., Coll, M., Rondinini, C., Rounsevell, M. D. A., Shin, Y., Alexander, P., and Fuchs, R.: Making protected areas effective for biodiversity, climate and food, Glob. Chang. Biol., 29, 3883–3894, https://doi.org/10.1111/gcb.16664, 2023. a
Asche, F., Garlock, T. M., Anderson, J. L., Pincinato, R. B., Anderson, C. M., Camp, E. V., Chu, J., Cojocaru, A. L., Eggert, H., Lorenzen, K., Love, D. C., and Tveteras, R.: A Review of Global Fisheries Performance, Fish Fish., 26, 444–453, https://doi.org/10.1111/faf.12890, 2025. a
Basurto, X., Gutierrez, N. L., Franz, N., Mancha-Cisneros, M. D. M., Gorelli, G., Aguión, A., Funge-Smith, S., Harper, S., Mills, D. J., Nico, G., Tilley, A., Vannuccini, S., Virdin, J., Westlund, L., Allison, E. H., Anderson, C. M., Baio, A., Cinner, J., Fabinyi, M., Hicks, C. C., Kolding, J., Melnychuk, M. C., Ovando, D., Parma, A. M., Robinson, J. P. W., and Thilsted, S. H.: Illuminating the multidimensional contributions of small-scale fisheries, Nature, 637, 875–884, https://doi.org/10.1038/s41586-024-08448-z, 2025. a, b
Blasiak, R. and Claudet, J.: Governance of the High Seas, Annu. Rev. Env. Resour., 49, 549–572, https://doi.org/10.1146/annurev-environ-011023-022521, 2024. a
Blasiak, R., Jouffray, J.-B., Wabnitz, C. C. C., Sundström, E., and Österblom, H.: Corporate control and global governance of marine genetic resources, Sci. Adv., 4, eaar5237, https://doi.org/10.1126/sciadv.aar5237, 2018. a
Blythe, J. L., Gill, D. A., Claudet, J., Bennett, N. J., Gurney, G. G., Baggio, J. A., Ban, N. C., Bernard, M. L., Brun, V., Darling, E. S., Di Franco, A., Epstein, G., Franks, P., Horan, R., Jupiter, S. D., Lau, J., Lazzari, N., Mahajan, S. L., Mangubhai, S., Naggea, J., Turner, R. A., and Zafra-Calvo, N.: Blue justice: A review of emerging scholarship and resistance movements, Camb. Prisms Coast. Futures, 1, e15, https://doi.org/10.1017/cft.2023.4, 2023. a
Braulik, G. T., Taylor, B. L., Minton, G., Notarbartolo Di Sciara, G., Collins, T., Rojas-Bracho, L., Crespo, E. A., Ponnampalam, L. S., Double, M. C., and Reeves, R. R.: Red-list status and extinction risk of the world's whales, dolphins, and porpoises, Conserv. Biol., 37, e14090, https://doi.org/10.1111/cobi.14090, 2023. a
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and coastal waters, Science, 359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018. a, b
CBD: Aichi Biodiversity Targets, CBD, https://www.cbd.int/sp/targets (last access: 18 April 2025), 2010. a
CBD: Kunming-Montreal Global Biodiversity Framework, CBD, https://www.cbd.int/gbf (last access: 18 April 2025), 2022. a
Chaudhary, C., Richardson, A. J., Schoeman, D. S., and Costello, M. J.: Global warming is causing a more pronounced dip in marine species richness around the equator, P. Natl. Acad. Sci. USA, 118, e2015094118, https://doi.org/10.1073/pnas.2015094118, 2021. a
Cheng, L., Abraham, J., Trenberth, K. E., Reagan, J., Zhang, H.-M., Storto, A., Von Schuckmann, K., Pan, Y., Zhu, Y., Mann, M. E., Zhu, J., Wang, F., Yu, F., Locarnini, R., Fasullo, J., Huang, B., Graham, G., Yin, X., Gouretski, V., Zheng, F., Li, Y., Zhang, B., Wan, L., Chen, X., Wang, D., Feng, L., Song, X., Liu, Y., Reseghetti, F., Simoncelli, S., Chen, G., Zhang, R., Mishonov, A., Tan, Z., Wei, W., Yuan, H., Li, G., Ren, Q., Cao, L., Lu, Y., Du, J., Lyu, K., Sulaiman, A., Mayer, M., Wang, H., Ma, Z., Bao, S., Yan, H., Liu, Z., Yang, C., Liu, X., Hausfather, Z., Szekely, T., and Gues, F.: Record High Temperatures in the Ocean in 2024, Adv. Atmos. Sci., 42, 1092–1109, https://doi.org/10.1007/s00376-025-4541-3, 2025. a
Claudet, J., Bopp, L., Cheung, W. W. L., Devillers, R., Escobar-Briones, E., Haugan, P., Heymans, J. J., Masson-Delmotte, V., Matz-Lück, N., Miloslavich, P., Mullineaux, L., Visbeck, M., Watson, R., Zivian, A. M., Ansorge, I., Araujo, M., Aricò, S., Bailly, D., Barbière, J., Barnerias, C., Bowler, C., Brun, V., Cazenave, A., Diver, C., Euzen, A., Gaye, A. T., Hilmi, N., Ménard, F., Moulin, C., Muñoz, N. P., Parmentier, R., Pebayle, A., Pörtner, H.-O., Osvaldina, S., Ricard, P., Santos, R. S., Sicre, M.-A., Thiébault, S., Thiele, T., Troublé, R., Turra, A., Uku, J., and Gaill, F.: A Roadmap for Using the UN Decade of Ocean Science for Sustainable Development in Support of Science, Policy, and Action, One Earth, 2, 34–42, https://doi.org/10.1016/j.oneear.2019.10.012, 2020. a
Claudet, J., Blythe, J., Gill, D. A., Bennett, N. J., Gurney, G. G., Evans, L., Mahajan, S. L., Turner, R. A., Ahmadia, G. N., Ban, N. C., Epstein, G., Jupiter, S. D., Lau, J., Mangubhai, S., Zafra-Calvo, N., Lazzari, N., Baggio, J. A., Bernard, M. L., Brun, V., D'Agata, S., Di Franco, A., Horan, R., and Naggea, J.: Advancing ocean equity at the nexus of development, climate and conservation policy, Nat. Ecol. Evol., 8, 1205–1208, https://doi.org/10.1038/s41559-024-02417-5, 2024. a
Cosby, A. G., Lebakula, V., Smith, C. N., Wanik, D. W., Bergene, K., Rose, A. N., Swanson, D., and Bloom, D. E.: Accelerating growth of human coastal populations at the global and continent levels: 2000–2018, Sci. Rep., 14, 22489, https://doi.org/10.1038/s41598-024-73287-x, 2024. a
El Moussaoui, N. and Idelhakkar, B.: The Impact of Oil Spills on the Economy and the Environment, European Journal of Economic and Financial Research, 7, https://doi.org/10.46827/ejefr.v7i4.1570, 2023. a
European Commission: The Commission welcomes the agreement on sustainable fisheries reached at Indian Ocean Tuna Commission, European Commission, https://ec.europa.eu/commission/presscorner/detail/en/ip_24_2683 (last access: 17 April 2025), 2024. a
European Environment Agency, Reichel, A., Trier, X., Fernandez, R., Bakas, I., and Zeiger, B.: Plastics, the circular economy and Europe's environment: a priority for action, Publications Office of the European Union, https://doi.org/10.2800/5847, 2021. a
FAO, Duke University, and WorldFish: Illuminating Hidden Harvests: The contributions of small-scale fisheries to sustainable development, FAO, Duke University, WorldFish, Rome, 376 pp., https://doi.org/10.4060/cc4576en, ISBN 978-92-5-137682-9, 2023. a
Forster, P. M., Smith, C., Walsh, T., Lamb, W. F., Lamboll, R., Hall, B., Hauser, M., Ribes, A., Rosen, D., Gillett, N. P., Palmer, M. D., Rogelj, J., von Schuckmann, K., Trewin, B., Allen, M., Andrew, R., Betts, R. A., Borger, A., Boyer, T., Broersma, J. A., Buontempo, C., Burgess, S., Cagnazzo, C., Cheng, L., Friedlingstein, P., Gettelman, A., Gütschow, J., Ishii, M., Jenkins, S., Lan, X., Morice, C., Mühle, J., Kadow, C., Kennedy, J., Killick, R. E., Krummel, P. B., Minx, J. C., Myhre, G., Naik, V., Peters, G. P., Pirani, A., Pongratz, J., Schleussner, C.-F., Seneviratne, S. I., Szopa, S., Thorne, P., Kovilakam, M. V. M., Majamäki, E., Jalkanen, J.-P., van Marle, M., Hoesly, R. M., Rohde, R., Schumacher, D., van der Werf, G., Vose, R., Zickfeld, K., Zhang, X., Masson-Delmotte, V., and Zhai, P.: Indicators of Global Climate Change 2023: annual update of key indicators of the state of the climate system and human influence, Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, 2024. a
Forster, P. M., Smith, C., Walsh, T., Lamb, W. F., Lamboll, R., Cassou, C., Hauser, M., Hausfather, Z., Lee, J.-Y., Palmer, M. D., von Schuckmann, K., Slangen, A. B. A., Szopa, S., Trewin, B., Yun, J., Gillett, N. P., Jenkins, S., Matthews, H. D., Raghavan, K., Ribes, A., Rogelj, J., Rosen, D., Zhang, X., Allen, M., Aleluia Reis, L., Andrew, R. M., Betts, R. A., Borger, A., Broersma, J. A., Burgess, S. N., Cheng, L., Friedlingstein, P., Domingues, C. M., Gambarini, M., Gasser, T., Gütschow, J., Ishii, M., Kadow, C., Kennedy, J., Killick, R. E., Krummel, P. B., Liné, A., Monselesan, D. P., Morice, C., Mühle, J., Naik, V., Peters, G. P., Pirani, A., Pongratz, J., Minx, J. C., Rigby, M., Rohde, R., Savita, A., Seneviratne, S. I., Thorne, P., Wells, C., Western, L. M., van der Werf, G. R., Wijffels, S. E., Masson-Delmotte, V., and Zhai, P.: Indicators of Global Climate Change 2024: annual update of key indicators of the state of the climate system and human influence, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2025-250, in review, 2025. a
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L. M., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A. R., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A. K., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lan, X., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P. C., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S. M., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, 2025. a, b, c
Galgani, F., Lusher, A. L., Strand, J., Haarr, M. L., Vinci, M., Molina Jack, E., Kagi, R., Aliani, S., Herzke, D., Nikiforov, V., Primpke, S., Schmidt, N., Fabres, J., De Witte, B., Solbakken, V. S., and van Bavel, B.: Revisiting the strategy for marine litter monitoring within the european marine strategy framework directive (MSFD), Ocean Coast. Manage., 255, 107254, https://doi.org/10.1016/j.ocecoaman.2024.107254, 2024. a
Garlock, T. M., Asche, F., Anderson, J. L., Eggert, H., Anderson, T. M., Che, B., Chávez, C. A., Chu, J., Chukwuone, N., Dey, M. M., Fitzsimmons, K., Flores, J., Guillen, J., Kumar, G., Liu, L., Llorente, I., Nguyen, L., Nielsen, R., Pincinato, R. B. M., Sudhakaran, P. O., Tibesigwa, B., and Tveteras, R.: Environmental, economic, and social sustainability in aquaculture: the aquaculture performance indicators, Nat. Commun., 15, 5274, https://doi.org/10.1038/s41467-024-49556-8, 2024. a
Global Fishing Watch: New research harnesses AI and satellite imagery to reveal the expanding footprint of human activity at sea, Global Fishing Watch, https://globalfishingwatch.org/press-release/new-research-harnesses-ai-and-satellite-imagery-to-reveal-the-expanding-footprint-of-human-activity-at-sea/ (last access: 17 April 2025), 2024. a
Global Mangrove Alliance: The State of the World's Mangroves 2024, Global Mangrove Alliance, https://doi.org/10.5479/10088/119867, 2024. a
Guinaldo, T., Cassou, C., Sallée, J.-B., and Liné, A.: Internal variability effect doped by climate change drove the 2023 marine heat extreme in the North Atlantic, Commun. Earth Environ., 6, 291, https://doi.org/10.1038/s43247-025-02197-1, 2025. a
Gutierrez, N. L., Funge-Smith, S., Gorelli, G., Mancha-Cisneros, M. M., Defeo, O., Johnson, A. F., and Melnychuk, M. C.: Production and environmental interactions of small-scale fisheries, in: Illuminating Hidden Harvests: The contributions of small-scale fisheries to sustainable development, FAO, Duke University, WorldFish, Rome, https://doi.org/10.4060/cc4576en, ISBN 978-92-5-137682-9, 2023. a
Halpern, B. S., Longo, C., Hardy, D., McLeod, K. L., Samhouri, J. F., Katona, S. K., Kleisner, K., Lester, S. E., O'Leary, J., Ranelletti, M., Rosenberg, A. A., Scarborough, C., Selig, E. R., Best, B. D., Brumbaugh, D. R., Chapin, F. S., Crowder, L. B., Daly, K. L., Doney, S. C., Elfes, C., Fogarty, M. J., Gaines, S. D., Jacobsen, K. I., Karrer, L. B., Leslie, H. M., Neeley, E., Pauly, D., Polasky, S., Ris, B., Martin, K. S., Stone, G. S., Sumaila, U. R., and Zeller, D.: An index to assess the health and benefits of the global ocean, Nature, 488, 615–620, https://doi.org/10.1038/nature11397, 2012. a, b
Halpern, B. S., Frazier, M., Afflerbach, J., O'Hara, C., Katona, S., Lowndes, J. S. S., Jiang, N., Pacheco, E., Scarborough, C., and Polsenberg, J.: Drivers and implications of change in global ocean health over the past five years, PLoS ONE, 12, e0178267, https://doi.org/10.1371/journal.pone.0178267, 2017. a
Harris, P. T., Maes, T., Raubenheimer, K., and Walsh, J. P.: A marine plastic cloud – Global mass balance assessment of oceanic plastic pollution, Cont. Shelf Res., 255, 104947, https://doi.org/10.1016/j.csr.2023.104947, 2023. a
High Seas Alliance: High Seas Treaty Ratification Tracker, High Seas Alliance, https://highseasalliance.org/treaty-ratification/ (last access: 17 April 2025), 2025. a
Hoegh-Guldberg, O., Skirving, W., Dove, S., Spady, B., Norrie, A., Geiger, E., Liu, G., De La Cour, J., and Manzello, D.: Coral reefs in peril in a record-breaking year, Science, 382, 1238–1240, https://doi.org/10.1126/science.adk4532, 2023. a
IMO: 2023 IMO Strategy on Reduction of GHG Emissions from Ships – Annex 15, RESOLUTION MEPC.377(80), IMO, https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/annex/MEPC%2080/Annex%2015.pdf (last access: 18 April 2025), 2023. a
IOC-UNESCO: State of the Ocean Report, Paris, UNESCO-IOC, IOC Technical Series, 190, https://doi.org/10.25607/4WBG-D349, 2024. a, b
IOM: Missing Migrants Project: Data, IOM, https://missingmigrants.iom.int/data (last access: 17 April 2025), 2025. a
IPBES: Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, edited by: Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Guèze, M., Agard, J., Arneth, A., Balvanera, P., Brauman, K. A., Butchart, S. H. M., Chan, K. M. A., Garibaldi, L. A., Ichii, K., Liu, J., Subramanian, S. M., Midgley, G. F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., Polasky, S., Purvis, A., Razzaque, J., Reyers, B., Roy Chowdhury, R., Shin, Y. J., Visseren-Hamakers, I. J., Willis, K. J., and Zayas, C. N., IPBES secretariat, Bonn, Germany, Zenodo, https://doi.org/10.5281/ZENODO.3553579, 56 pp., ISBN 978-3-947851-13-3, 2019. a, b
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp., https://doi.org/10.1017/9781009157964, ISBN 978-1-00-915796-4, 2019. a, b
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 3–32, https://doi.org/10.1017/9781009157896.001, 2021. a, b, c
IPOS: The global deep sea consultation, IPOS, https://ipos.earth/global-deep-sea-consultation-pilot-project (last access: 8 May 2025), 2025. a
ITLOS: International Tribunal for the Law of the Sea: Request for an advisory opinion submitted by the commission of small island states on climate change and international law, Advisory opinion, ITLOS, https://www.itlos.org/fileadmin/itlos/documents/cases/31/Advisory_Opinion/C31_Adv_Op_21.05.2024_orig.pdf (last access: 8 May 2025), 2024. a
IUCN: Red List of Mangrove Ecosystems, IUCN, https://iucn.org/resources/conservation-tool/iucn-red-list-ecosystems/red-list-mangrove-ecosystems (last access: 8 May 2025), 2024. a
IUMI: IUMI Stats Report 2024, International Union of Marine Insurance, Germany, 40 pp., https://iumi.com/statistics/iumi-stats-report-2024/ (last access: 17 April 2025), 2024. a
Jabado, R., Morata, A., Bennett, R., Finucci, B., Ellis, J., Fowler, S., Grant, M., Barbosa Martins, A., and Sinclair, S. (Eds.): The Global Status of Sharks, Rays, and Chimaeras, IUCN, Gland, Switzerland, https://doi.org/10.59216/ssg.gsrsrc.2024, 2024. a
Jing, R., Heft-Neal, S., Chavas, D. R., Griswold, M., Wang, Z., Clark-Ginsberg, A., Guha-Sapir, D., Bendavid, E., and Wagner, Z.: Global population profile of tropical cyclone exposure from 2002 to 2019, Nature, 626, 549–554, https://doi.org/10.1038/s41586-023-06963-z, 2024. a
Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H., and Nyström, M.: The Blue Acceleration: The Trajectory of Human Expansion into the Ocean, One Earth, 2, 43–54, https://doi.org/10.1016/j.oneear.2019.12.016, 2020. a
Knapp, S. and Heij, C.: Evaluation of total risk exposure and insurance premiums in the maritime industry, Transport. Res. D-Tr. E., 54, 321–334, https://doi.org/10.1016/j.trd.2017.06.001, 2017. a
Kron, W., Eichner, J., and Kundzewicz, Z. W.: Reduction of flood risk in Europe – Reflections from a reinsurance perspective, J. Hydrol., 576, 197–209, https://doi.org/10.1016/j.jhydrol.2019.06.050, 2019. a
Krusberg, T., Schildt, L., Jouffray, J.-B., Zhivkoplias, E., and Blasiak, R.: A review of marine genetic resource valuations, npj Ocean Sustain., 3, 46, https://doi.org/10.1038/s44183-024-00081-7, 2024. a
Laiolo, E., Alam, I., Uludag, M., Jamil, T., Agusti, S., Gojobori, T., Acinas, S. G., Gasol, J. M., and Duarte, C. M.: Metagenomic probing toward an atlas of the taxonomic and metabolic foundations of the global ocean genome, Front. Sci., 1, 1038696, https://doi.org/10.3389/fsci.2023.1038696, 2024. a
Landrigan, P. J., Raps, H., Cropper, M., Bald, C., Brunner, M., Canonizado, E. M., Charles, D., Chiles, T. C., Donohue, M. J., Enck, J., Fenichel, P., Fleming, L. E., Ferrier-Pages, C., Fordham, R., Gozt, A., Griffin, C., Hahn, M. E., Haryanto, B., Hixson, R., Ianelli, H., James, B. D., Kumar, P., Laborde, A., Law, K. L., Martin, K., Mu, J., Mulders, Y., Mustapha, A., Niu, J., Pahl, S., Park, Y., Pedrotti, M.-L., Pitt, J. A., Ruchirawat, M., Seewoo, B. J., Spring, M., Stegeman, J. J., Suk, W., Symeonides, C., Takada, H., Thompson, R. C., Vicini, A., Wang, Z., Whitman, E., Wirth, D., Wolff, M., Yousuf, A. K., and Dunlop, S.: The Minderoo-Monaco Commission on Plastics and Human Health, Ann. Glob. Health, 89, 23, https://doi.org/10.5334/aogh.4056, 2023. a
Lindequist, U.: Marine-Derived Pharmaceuticals – Challenges and Opportunities, Biomol. Ther., 24, 561–571, https://doi.org/10.4062/biomolther.2016.181, 2016. a
Losciale, R., Day, J. C., Rasheed, M. A., and Heron, S. F.: The vulnerability of World Heritage seagrass habitats to climate change, Glob. Change Biol., 30, e17113, https://doi.org/10.1111/gcb.17113, 2024. a
Lubchenco, J. and Grorud-Colvert, K.: Making waves: The science and politics of ocean protection, Science, 350, 382–383, https://doi.org/10.1126/science.aad5443, 2015. a
McLeman, R., Hevesi, C., and Cadham, E.: Evolution of climate-related migration and displacement in IPCC reporting, Working paper, Department of Geography & Environmental Studies, Wilfrid Laurier University, Environmental Science Research Network, https://doi.org/10.2139/ssrn.5166785, 5 March 2025. a
Minière, A., Von Schuckmann, K., Sallée, J.-B., and Vogt, L.: Robust acceleration of Earth system heating observed over the past six decades, Sci. Rep., 13, 22975, https://doi.org/10.1038/s41598-023-49353-1, 2023. a
Munich RE: Flood risks on the rise: Greater loss prevention is needed, Munich RE, https://www.munichre.com/en/risks/natural-disasters/floods.html (last access: 17 April 2025), 2025a. a
Munich RE: Hurricanes, typhoons, cyclones: Tropical storms – The natural hazard with the highest losses, Munich RE, https://www.munichre.com/en/risks/natural-disasters/hurricanes.html (last access: 17 April 2025), 2025b. a
Nawarat, K., Reyns, J., Vousdoukas, M. I., Duong, T. M., Kras, E., and Ranasinghe, R.: Coastal hardening and what it means for the world's sandy beaches, Nat. Commun., 15, 10626, https://doi.org/10.1038/s41467-024-54952-1, 2024. a
Ndaliman, H. A. and Yukaka, Abubakar.: The Drivers of African Migrants to Europe and the Mediterranean Sea Death Trap, International Journal of Intellectual Discourse, 7, 291–299, 2024. a
NOAA: NOAA confirms 4th global coral bleaching event, NOAA, https://www.noaa.gov/news-release/noaa-confirms-4th-global-coral-bleaching-event (last access: 17 April 2025), 2024. a
Nordhaus, W.: The Economics of Hurricanes in the United States, National Bureau of Economic Research, Cambridge, MA, https://doi.org/10.3386/w12813, 2006. a
Ocean Census: The Ocean Census Discovers Over 800 New Marine Species, Ocean Census, https://oceancensus.org/publications/press-release-the-ocean-census-discovers-over-800-new-marine-species/ (last access: 17 April 2025), 2025. a
Ocean Literacy World Conference: Venice Declaration for Ocean Literacy in Action, Ocean Literacy World Conference, 7–8 June 2024, Venice, Italy, https://www.marine-ed.org/news/venice-declaration-for-ocean-literacy-in-action (last access: 17 April 2025), 2024. a
OECD: The Ocean Economy to 2050, OECD Publishing, Paris, https://doi.org/10.1787/a9096fb1-en, 2025. a, b
Oschlies, A.: A committed fourfold increase in ocean oxygen loss, Nat. Commun., 12, 2307, https://doi.org/10.1038/s41467-021-22584-4, 2021. a
Österblom, H., Wabnitz, C. C. C., Tladi, D., Allison, E. H., Arnaud-Haond, S., Bebbington, J., Bennett, N., Blasiak, R., Boonstra, W., Choudhury, A., Cisneros-Montemayor, A., Daw, T., Fabinyi, M., Franz, N., Harden-Davies, H., Kleiber, D., Lopes, P., McDougall, C., Resosudarmo, B. P., and Selim, S. A.: Towards Ocean Equity, in: The Blue Compendium: From Knowledge to Action for a Sustainable Ocean Economy, edited by: Lubchenco, J. and Haugan, P. M., Springer International Publishing, Cham, 485–521, https://doi.org/10.1007/978-3-031-16277-0_13, 2023. a
Pan, Y., Minière, A., von Schuckmann, K., Li, Z., Li, Y., Cheng, L., and Zhu, J.: Ocean heat content in 2024, Nat. Rev. Earth Environ., 6, 249–251, https://doi.org/10.1038/s43017-025-00655-0, 2025. a
Paolo, F. S., Kroodsma, D., Raynor, J., Hochberg, T., Davis, P., Cleary, J., Marsaglia, L., Orofino, S., Thomas, C., and Halpin, P.: Satellite mapping reveals extensive industrial activity at sea, Nature, 625, 85–91, https://doi.org/10.1038/s41586-023-06825-8, 2024. a
Pike, E. P., MacCarthy, J. M. C., Hameed, S. O., Harasta, N., Grorud‐Colvert, K., Sullivan‐Stack, J., Claudet, J., Horta E Costa, B., Gonçalves, E. J., Villagomez, A., and Morgan, L.: Ocean protection quality is lagging behind quantity: Applying a scientific framework to assess real marine protected area progress against the 30 by 30 target, Conserv. Lett., 17, e13020, https://doi.org/10.1111/conl.13020, 2024. a, b
Plastics Europe: Plastics – the fast Facts 2024, Plastics Europe, https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2024/ (last access: 17 April 2025), 2024. a
Precedence Research: Marine Oligosaccharides Market Size, Share and Trends 2025 to 2034, Precedence Research, https://www.precedenceresearch.com/marine-oligosaccharides-market (last access: 17 April 2025), 2025. a
Protected Planet: Protected Planet Report, Protected Planet, https://pp-digital-report-files.s3.us-east-1.amazonaws.com/Protected+Planet+Report+2024.pdf (last access: 20 May 2025), 2024. a
Ren, C.-G., Zhong, Z.-H., Liu, Z.-Y., Lin, S., Luo, Y.-K., and Qin, S.: The ever-lasting green tides: What can we do?, Heliyon, 10, e25220, https://doi.org/10.1016/j.heliyon.2024.e25220, 2024. a
Santos, R. G., Machovsky-Capuska, G. E., and Andrades, R.: Plastic ingestion as an evolutionary trap: Toward a holistic understanding, Science, 373, 56–60, https://doi.org/10.1126/science.abh0945, 2021. a
Shellock, R. J., Fullbrook, L., McKinley, E., Cvitanovic, C., Kelly, R., and Martin, V.: The nature and use of Ocean Literacy in achieving sustainable ocean futures: A Systematic Map, Ocean Coast. Manage., 257, 107325, https://doi.org/10.1016/j.ocecoaman.2024.107325, 2024. a
Sigwart, J. D., Blasiak, R., Jaspars, M., Jouffray, J.-B., and Tasdemir, D.: Unlocking the potential of marine biodiscovery, Nat. Prod. Rep., 38, 1235–1242, https://doi.org/10.1039/D0NP00067A, 2021. a
Storto, A. and Yang, C.: Acceleration of the ocean warming from 1961 to 2022 unveiled by large-ensemble reanalyses, Nat. Commun., 15, 545, https://doi.org/10.1038/s41467-024-44749-7, 2024. a
Strand, M., Retter, G.-B., Khan, M., Frid, A., Hudson, M., Leonard, K., Paul, K., Baron-Aguilar, C., Boswell, R., Cisneros-Montemayor, A., Copenhaver, A. E., Costa, Y., Hiwasaki, L., Jingwas Russ Jones, N., Kelly, B. P., Kosgei, J., Metcalf, V. K., Moshani, A., Yaa Oduro, G., Scott, C. P., and Rakotondrazafy, V.: Co-producing Sustainable Ocean Plans with Indigenous and traditional knowledge holders, World Resources Institute, Washington DC, https://doi.org/10.69902/8f1075e8, 2024. a
Terhaar, J., Burger, F. A., Vogt, L., Frölicher, T. L., and Stocker, T. F.: Record sea surface temperature jump in 2023–2024 unlikely but not unexpected, Nature, 639, 942–946, https://doi.org/10.1038/s41586-025-08674-z, 2025. a, b
UNEP: From Pollution to Solution: A global assessment of marine litter and plastic pollution, United Nations Environment Programme, Nairobi, https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution (last access: 17 April 2025), 2021. a
UNEP-WCMC and IUCN: Protected Planet Report 2024, UNEP-WCMC and IUCN, Cambridge, United Kingdom, Gland, Switzerland, https://digitalreport.protectedplanet.net/ (last access: 17 April 2025), 2024. a
Virdin, J., Nico, G., Franz, N., Vannuccini, S., Anderson, C., Mancha-Cisneros, M. M., Baio, A., Bennet, A., Fontenele, E., Gozzer Wuest, R., Grillo, J., Harper, S., Muhonda, P., Rice, E., and Sueiro, J. C.: Small-Scale Fisheries Contributions to Economic Value and Livelihoods, in: Illuminating Hidden Harvests: The contributions of small-scale fisheries to sustainable development, FAO, Duke University, WorldFish, Rome, https://doi.org/10.4060/cc4576en, ISBN 978-92-5-137682-9, 2023. a
von Schuckmann, K., Minière, A., Gues, F., Cuesta-Valero, F. J., Kirchengast, G., Adusumilli, S., Straneo, F., Ablain, M., Allan, R. P., Barker, P. M., Beltrami, H., Blazquez, A., Boyer, T., Cheng, L., Church, J., Desbruyeres, D., Dolman, H., Domingues, C. M., García-García, A., Giglio, D., Gilson, J. E., Gorfer, M., Haimberger, L., Hakuba, M. Z., Hendricks, S., Hosoda, S., Johnson, G. C., Killick, R., King, B., Kolodziejczyk, N., Korosov, A., Krinner, G., Kuusela, M., Landerer, F. W., Langer, M., Lavergne, T., Lawrence, I., Li, Y., Lyman, J., Marti, F., Marzeion, B., Mayer, M., MacDougall, A. H., McDougall, T., Monselesan, D. P., Nitzbon, J., Otosaka, I., Peng, J., Purkey, S., Roemmich, D., Sato, K., Sato, K., Savita, A., Schweiger, A., Shepherd, A., Seneviratne, S. I., Simons, L., Slater, D. A., Slater, T., Steiner, A. K., Suga, T., Szekely, T., Thiery, W., Timmermans, M.-L., Vanderkelen, I., Wjiffels, S. E., Wu, T., and Zemp, M.: Heat stored in the Earth system 1960–2020: where does the energy go?, Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, 2023. a
von Schuckmann, K., Moreira, L., Cancet, M., Gues, F., Autret, E., Baker, J., Bricaud, C., Bourdalle-Badie, R., Castrillo, L., Cheng, L., Chevallier, F., Ciani, D., de Pascual-Collar, A., De Toma, V., Drevillon, M., Fanelli, C., Garric, G., Gehlen, M., Giesen, R., Hodges, K., Iovino, D., Jandt-Scheelke, S., Jansen, E., Juza, M., Karagali, I., Lavergne, T., Masina, S., McAdam, R., Minière, A., Morrison, H., Panteleit, T. R., Pisano, A., Pujol, M.-I., Stoffelen, A., Thual, S., Van Gennip, S., Veillard, P., Yang, C., and Zuo, H.: The state of the global ocean, in: 8th edition of the Copernicus Ocean State Report (OSR8), edited by: von Schuckmann, K., Moreira, L., Grégoire, M., Marcos, M., Staneva, J., Brasseur, P., Garric, G., Lionello, P., Karstensen, J., and Neukermans, G., Copernicus Publications, State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024. a, b
Short summary
The Ocean is vital to humanity, but humans are putting it at risk. The Starfish Barometer is a new yearly civic rendezvous that shows how people and the Ocean affect each other. Using science-based facts, it highlights major trends in ocean health, the pressures it faces, the harm to people, and current protection efforts and opportunities. The goal is to raise awareness to secure a better future for the Ocean and humanity.
The Ocean is vital to humanity, but humans are putting it at risk. The Starfish Barometer is a...
Altmetrics
Final-revised paper
Preprint