Articles | Volume 4-osr8
https://doi.org/10.5194/sp-4-osr8-9-2024
https://doi.org/10.5194/sp-4-osr8-9-2024
30 Sep 2024
 | OSR8 | Chapter 3.1
 | 30 Sep 2024 | OSR8 | Chapter 3.1

Oceanographic preconditions for planning seawater heat pumps in the Baltic Sea – an example from the Tallinn Bay, Gulf of Finland

Jüri Elken, Ilja Maljutenko, Priidik Lagemaa, Rivo Uiboupin, and Urmas Raudsepp

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on sp-2023-21', Anonymous Referee #1, 14 Dec 2023
  • RC2: 'Comment on sp-2023-21', Anonymous Referee #2, 09 Mar 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (review by editor) (25 Mar 2024) by Johannes Karstensen
AR by Jüri Elken on behalf of the Authors (04 Apr 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (12 Jun 2024) by Johannes Karstensen
ED: Publish as is (19 Jun 2024) by Marilaure Grégoire (Chief editor)
AR by Jüri Elken on behalf of the Authors (20 Jun 2024)  Manuscript 
Download
Short summary
Baltic deep water is generally warmer than surface water during winter when district heating is required. Depending on the location, depth, and oceanographic situation, bottom water of Tallinn Bay can be used as an energy source for seawater heat pumps until the end of February, covering the major time interval when heating is needed. Episodically, there are colder-water events when seawater heat extraction has to be complemented by other sources of heating energy.
Altmetrics
Final-revised paper
Preprint