Articles | Volume 4-osr8
https://doi.org/10.5194/sp-4-osr8-10-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-4-osr8-10-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Event-based wave statistics for the Baltic Sea
Jan-Victor Björkqvist
CORRESPONDING AUTHOR
Finnish Meteorological Institute, Helsinki, 00560, Finland
Norwegian Meteorological Institute, Bergen, 5007, Norway
Hedi Kanarik
Finnish Meteorological Institute, Helsinki, 00560, Finland
Laura Tuomi
Finnish Meteorological Institute, Helsinki, 00560, Finland
Lauri Niskanen
Natural Resources Institute Finland, Helsinki, 00790, Finland
Markus Kankainen
Natural Resources Institute Finland, Helsinki, 00790, Finland
Related authors
Jan-Victor Björkqvist and Victor Alari
EGUsphere, https://doi.org/10.5194/egusphere-2024-3477, https://doi.org/10.5194/egusphere-2024-3477, 2024
Short summary
Short summary
Surface waves are generated by the wind and wave measurements can also be used to estimate the wind speed. This is beneficial in the open ocean where direct measurements of the wind are difficult. The wind speed deduced from wave measurements serve as a third estimate of the wind speed in addition to satellite measurements or numerical model results. We implemented such and algorithm to be used with wave data from a small buoy and validated it against direct wind measurements and model results.
Milla M. Johansson, Jan-Victor Björkqvist, Jani Särkkä, Ulpu Leijala, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 22, 813–829, https://doi.org/10.5194/nhess-22-813-2022, https://doi.org/10.5194/nhess-22-813-2022, 2022
Short summary
Short summary
We analysed the correlation of sea level and wind waves at a coastal location in the Gulf of Finland using tide gauge data, wave measurements, and wave simulations. The correlation was positive for southwesterly winds and negative for northeasterly winds. Probabilities of high total water levels (sea level + wave crest) are underestimated if sea level and waves are considered independent. Suitably chosen copula functions can account for the dependence.
Jan-Victor Björkqvist, Siim Pärt, Victor Alari, Sander Rikka, Elisa Lindgren, and Laura Tuomi
Ocean Sci., 17, 1815–1829, https://doi.org/10.5194/os-17-1815-2021, https://doi.org/10.5194/os-17-1815-2021, 2021
Short summary
Short summary
Waves that travel faster than the wind are called swell. Our study presents wave model statistics of swell waves in the Baltic Sea, since such statistics have not yet been reliably compiled. Our results confirm that long, high, and persistent swell is absent in the Baltic Sea. We found that the dependency between swell and wind waves differs in the open sea compared to nearshore areas. These distinctions are important for studies on how waves interact with the atmosphere and the sea floor.
Jan-Victor Björkqvist, Sander Rikka, Victor Alari, Aarne Männik, Laura Tuomi, and Heidi Pettersson
Nat. Hazards Earth Syst. Sci., 20, 3593–3609, https://doi.org/10.5194/nhess-20-3593-2020, https://doi.org/10.5194/nhess-20-3593-2020, 2020
Short summary
Short summary
Wave observations have a fundamental uncertainty due to the randomness of the sea state. Such scatter is absent in model data, and we tried two methods to best account for this difference when combining measured and modelled wave heights. The results were used to estimate how rare a 2019 storm in the Bothnian Sea was. Both methods were found to have strengths and weaknesses, but our best estimate was that, in the current climate, such a storm might on average repeat about once a century.
Havu Pellikka, Terhi K. Laurila, Hanna Boman, Anu Karjalainen, Jan-Victor Björkqvist, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 20, 2535–2546, https://doi.org/10.5194/nhess-20-2535-2020, https://doi.org/10.5194/nhess-20-2535-2020, 2020
Short summary
Short summary
Meteotsunamis are long waves created by atmospheric disturbances travelling over the sea. These waves can be hazardous in rare cases. Their occurrence in the Baltic Sea has been poorly known, which is why we examine century-long sea level records from the Gulf of Finland to identify these waves. In total, 121 potential meteotsunamis were found. The strong connection between meteotsunami occurrence and lightning observations indicates that meteotsunamis in this region occur during thunderstorms.
Jan-Victor Björkqvist, Heidi Pettersson, and Kimmo K. Kahma
Ocean Sci., 15, 1469–1487, https://doi.org/10.5194/os-15-1469-2019, https://doi.org/10.5194/os-15-1469-2019, 2019
Short summary
Short summary
In this paper we present wave buoy measurements from the Finnish archipelago. The properties of the waves inside the archipelago differed from waves in the open sea because of the sheltering effect of the islands. In the archipelago the highest single wave was, on average, only 1.58 times the significant wave height, which is lower than what is predicted by previous research. A more robust way to calculate the wave frequency in the complex archipelago conditions was proposed.
Ulpu Leijala, Jan-Victor Björkqvist, Milla M. Johansson, Havu Pellikka, Lauri Laakso, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 18, 2785–2799, https://doi.org/10.5194/nhess-18-2785-2018, https://doi.org/10.5194/nhess-18-2785-2018, 2018
Short summary
Short summary
The coastal flooding risks based on the combined effect of sea level variations and wind-generated waves are estimated for the present, 2050 and 2100. The variability of the wave conditions between the two case study locations in the Helsinki archipelago leads to a difference in the safe building levels of up to 1 m. The rising mean sea level in the Gulf of Finland and the uncertainty of the associated scenarios contribute to the flooding risks notably in 2100.
Jan-Victor Björkqvist, Laura Tuomi, Niko Tollman, Antti Kangas, Heidi Pettersson, Riikka Marjamaa, Hannu Jokinen, and Carl Fortelius
Nat. Hazards Earth Syst. Sci., 17, 1653–1658, https://doi.org/10.5194/nhess-17-1653-2017, https://doi.org/10.5194/nhess-17-1653-2017, 2017
Short summary
Short summary
We studied the highest wave events in the Baltic Sea using wave measurements available since 1996. Going beyond classifying them based solely on the maximum wave height, we found that they can be divided into two groups based on, for example, the length of the storm. Two of the severest storms show different behaviour, with the most recent (in 2017) being the longest on record. We hope this more in-depth description of the storms will aid in the issuing of warnings for extreme wave conditions.
J.-V. Björkqvist, H. Pettersson, L. Laakso, K. K. Kahma, H. Jokinen, and P. Kosloff
Geosci. Instrum. Method. Data Syst., 5, 17–25, https://doi.org/10.5194/gi-5-17-2016, https://doi.org/10.5194/gi-5-17-2016, 2016
Short summary
Short summary
We identified a previously unknown artefact in the Datawell DWR-G4 wave buoy, which measures the GPS signal to resolve surface water waves. The artefact interferes with the part of the measurements containing information about the longer waves and must be removed to obtain accurate readings. We presented a correction method and found it to be accurate based on a comparison to measurements from a larger wave buoy that measures the movements of the device without using the GPS signal.
Jan-Victor Björkqvist and Victor Alari
EGUsphere, https://doi.org/10.5194/egusphere-2024-3477, https://doi.org/10.5194/egusphere-2024-3477, 2024
Short summary
Short summary
Surface waves are generated by the wind and wave measurements can also be used to estimate the wind speed. This is beneficial in the open ocean where direct measurements of the wind are difficult. The wind speed deduced from wave measurements serve as a third estimate of the wind speed in addition to satellite measurements or numerical model results. We implemented such and algorithm to be used with wave data from a small buoy and validated it against direct wind measurements and model results.
Taavi Liblik, Daniel Rak, Enriko Siht, Germo Väli, Johannes Karstensen, Laura Tuomi, Louise C. Biddle, Madis-Jaak Lilover, Māris Skudra, Michael Naumann, Urmas Lips, and Volker Mohrholz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2272, https://doi.org/10.5194/egusphere-2024-2272, 2024
Short summary
Short summary
Eight current meters were deployed to the seafloor across the Baltic to enhance knowledge about circulation and currents. The experiment was complemented by autonomous vehicles. Stable circulation patterns were observed at the sea when weather was steady. Strong and quite persistent currents were observed at the key passage for the deep-water renewal of the Northern Baltic Sea. Deep water renewal mostly occurs during spring and summer periods in the northern Baltic Sea.
Elina Miettunen, Laura Tuomi, Antti Westerlund, Hedi Kanarik, and Kai Myrberg
Ocean Sci., 20, 69–83, https://doi.org/10.5194/os-20-69-2024, https://doi.org/10.5194/os-20-69-2024, 2024
Short summary
Short summary
We studied circulation and transports in the Archipelago Sea (in the Baltic Sea) with a high-resolution hydrodynamic model. Transport dynamics show different variabilities in the north and south, so no single transect can represent transport through the whole area in all cases. The net transport in the surface layer is southward and follows the alignment of the deeper channels. In the lower layer, the net transport is southward in the northern part of the area and northward in the southern part.
Verónica González-Gambau, Estrella Olmedo, Antonio Turiel, Cristina González-Haro, Aina García-Espriu, Justino Martínez, Pekka Alenius, Laura Tuomi, Rafael Catany, Manuel Arias, Carolina Gabarró, Nina Hoareau, Marta Umbert, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data, 14, 2343–2368, https://doi.org/10.5194/essd-14-2343-2022, https://doi.org/10.5194/essd-14-2343-2022, 2022
Short summary
Short summary
We present the first Soil Moisture and Ocean Salinity Sea Surface Salinity (SSS) dedicated products over the Baltic Sea (ESA Baltic+ Salinity Dynamics). The Baltic+ L3 product covers 9 days in a 0.25° grid. The Baltic+ L4 is derived by merging L3 SSS with sea surface temperature information, giving a daily product in a 0.05° grid. The accuracy of L3 is 0.7–0.8 and 0.4 psu for the L4. Baltic+ products have shown to be useful, covering spatiotemporal data gaps and for validating numerical models.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Milla M. Johansson, Jan-Victor Björkqvist, Jani Särkkä, Ulpu Leijala, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 22, 813–829, https://doi.org/10.5194/nhess-22-813-2022, https://doi.org/10.5194/nhess-22-813-2022, 2022
Short summary
Short summary
We analysed the correlation of sea level and wind waves at a coastal location in the Gulf of Finland using tide gauge data, wave measurements, and wave simulations. The correlation was positive for southwesterly winds and negative for northeasterly winds. Probabilities of high total water levels (sea level + wave crest) are underestimated if sea level and waves are considered independent. Suitably chosen copula functions can account for the dependence.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Antti Westerlund, Elina Miettunen, Laura Tuomi, and Pekka Alenius
Ocean Sci., 18, 89–108, https://doi.org/10.5194/os-18-89-2022, https://doi.org/10.5194/os-18-89-2022, 2022
Short summary
Short summary
Water exchange through the Åland Sea (in the Baltic Sea) affects the conditions in the neighbouring Gulf of Bothnia. Pathways and variability of flows were studied with a high-resolution hydrodynamic model. Our analysis showed a northward transport in the deep layer and net transport towards the south in the surface layer. While on the southern edge of the Åland Sea the primary route of deep-water exchange is through Lågskär Deep, some deep water still bypasses it to the Åland Sea.
Jan-Victor Björkqvist, Siim Pärt, Victor Alari, Sander Rikka, Elisa Lindgren, and Laura Tuomi
Ocean Sci., 17, 1815–1829, https://doi.org/10.5194/os-17-1815-2021, https://doi.org/10.5194/os-17-1815-2021, 2021
Short summary
Short summary
Waves that travel faster than the wind are called swell. Our study presents wave model statistics of swell waves in the Baltic Sea, since such statistics have not yet been reliably compiled. Our results confirm that long, high, and persistent swell is absent in the Baltic Sea. We found that the dependency between swell and wind waves differs in the open sea compared to nearshore areas. These distinctions are important for studies on how waves interact with the atmosphere and the sea floor.
Tuomas Kärnä, Patrik Ljungemyr, Saeed Falahat, Ida Ringgaard, Lars Axell, Vasily Korabel, Jens Murawski, Ilja Maljutenko, Anja Lindenthal, Simon Jandt-Scheelke, Svetlana Verjovkina, Ina Lorkowski, Priidik Lagemaa, Jun She, Laura Tuomi, Adam Nord, and Vibeke Huess
Geosci. Model Dev., 14, 5731–5749, https://doi.org/10.5194/gmd-14-5731-2021, https://doi.org/10.5194/gmd-14-5731-2021, 2021
Short summary
Short summary
We present Nemo-Nordic 2.0, a novel operational marine model for the Baltic Sea. The model covers the Baltic Sea and the North Sea with approximately 1 nmi resolution. We validate the model's performance against sea level, water temperature, and salinity observations, as well as sea ice charts. The skill analysis demonstrates that Nemo-Nordic 2.0 can reproduce the hydrographic features of the Baltic Sea.
Jan-Victor Björkqvist, Sander Rikka, Victor Alari, Aarne Männik, Laura Tuomi, and Heidi Pettersson
Nat. Hazards Earth Syst. Sci., 20, 3593–3609, https://doi.org/10.5194/nhess-20-3593-2020, https://doi.org/10.5194/nhess-20-3593-2020, 2020
Short summary
Short summary
Wave observations have a fundamental uncertainty due to the randomness of the sea state. Such scatter is absent in model data, and we tried two methods to best account for this difference when combining measured and modelled wave heights. The results were used to estimate how rare a 2019 storm in the Bothnian Sea was. Both methods were found to have strengths and weaknesses, but our best estimate was that, in the current climate, such a storm might on average repeat about once a century.
Havu Pellikka, Terhi K. Laurila, Hanna Boman, Anu Karjalainen, Jan-Victor Björkqvist, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 20, 2535–2546, https://doi.org/10.5194/nhess-20-2535-2020, https://doi.org/10.5194/nhess-20-2535-2020, 2020
Short summary
Short summary
Meteotsunamis are long waves created by atmospheric disturbances travelling over the sea. These waves can be hazardous in rare cases. Their occurrence in the Baltic Sea has been poorly known, which is why we examine century-long sea level records from the Gulf of Finland to identify these waves. In total, 121 potential meteotsunamis were found. The strong connection between meteotsunami occurrence and lightning observations indicates that meteotsunamis in this region occur during thunderstorms.
Jan-Victor Björkqvist, Heidi Pettersson, and Kimmo K. Kahma
Ocean Sci., 15, 1469–1487, https://doi.org/10.5194/os-15-1469-2019, https://doi.org/10.5194/os-15-1469-2019, 2019
Short summary
Short summary
In this paper we present wave buoy measurements from the Finnish archipelago. The properties of the waves inside the archipelago differed from waves in the open sea because of the sheltering effect of the islands. In the archipelago the highest single wave was, on average, only 1.58 times the significant wave height, which is lower than what is predicted by previous research. A more robust way to calculate the wave frequency in the complex archipelago conditions was proposed.
Robinson Hordoir, Lars Axell, Anders Höglund, Christian Dieterich, Filippa Fransner, Matthias Gröger, Ye Liu, Per Pemberton, Semjon Schimanke, Helen Andersson, Patrik Ljungemyr, Petter Nygren, Saeed Falahat, Adam Nord, Anette Jönsson, Iréne Lake, Kristofer Döös, Magnus Hieronymus, Heiner Dietze, Ulrike Löptien, Ivan Kuznetsov, Antti Westerlund, Laura Tuomi, and Jari Haapala
Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, https://doi.org/10.5194/gmd-12-363-2019, 2019
Short summary
Short summary
Nemo-Nordic is a regional ocean model based on a community code (NEMO). It covers the Baltic and the North Sea area and is used as a forecast model by the Swedish Meteorological and Hydrological Institute. It is also used as a research tool by scientists of several countries to study, for example, the effects of climate change on the Baltic and North seas. Using such a model permits us to understand key processes in this coastal ecosystem and how such processes will change in a future climate.
Ulpu Leijala, Jan-Victor Björkqvist, Milla M. Johansson, Havu Pellikka, Lauri Laakso, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 18, 2785–2799, https://doi.org/10.5194/nhess-18-2785-2018, https://doi.org/10.5194/nhess-18-2785-2018, 2018
Short summary
Short summary
The coastal flooding risks based on the combined effect of sea level variations and wind-generated waves are estimated for the present, 2050 and 2100. The variability of the wave conditions between the two case study locations in the Helsinki archipelago leads to a difference in the safe building levels of up to 1 m. The rising mean sea level in the Gulf of Finland and the uncertainty of the associated scenarios contribute to the flooding risks notably in 2100.
Jan-Victor Björkqvist, Laura Tuomi, Niko Tollman, Antti Kangas, Heidi Pettersson, Riikka Marjamaa, Hannu Jokinen, and Carl Fortelius
Nat. Hazards Earth Syst. Sci., 17, 1653–1658, https://doi.org/10.5194/nhess-17-1653-2017, https://doi.org/10.5194/nhess-17-1653-2017, 2017
Short summary
Short summary
We studied the highest wave events in the Baltic Sea using wave measurements available since 1996. Going beyond classifying them based solely on the maximum wave height, we found that they can be divided into two groups based on, for example, the length of the storm. Two of the severest storms show different behaviour, with the most recent (in 2017) being the longest on record. We hope this more in-depth description of the storms will aid in the issuing of warnings for extreme wave conditions.
J.-V. Björkqvist, H. Pettersson, L. Laakso, K. K. Kahma, H. Jokinen, and P. Kosloff
Geosci. Instrum. Method. Data Syst., 5, 17–25, https://doi.org/10.5194/gi-5-17-2016, https://doi.org/10.5194/gi-5-17-2016, 2016
Short summary
Short summary
We identified a previously unknown artefact in the Datawell DWR-G4 wave buoy, which measures the GPS signal to resolve surface water waves. The artefact interferes with the part of the measurements containing information about the longer waves and must be removed to obtain accurate readings. We presented a correction method and found it to be accurate based on a comparison to measurements from a larger wave buoy that measures the movements of the device without using the GPS signal.
Cited articles
Björkqvist, J.-V., Tuomi, L., Tollman, N., Kangas, A., Pettersson, H., Marjamaa, R., Jokinen, H., and Fortelius, C.: Brief communication: Characteristic properties of extreme wave events observed in the northern Baltic Proper, Baltic Sea, Nat. Hazards Earth Syst. Sci., 17, 1653–1658, https://doi.org/10.5194/nhess-17-1653-2017, 2017.
Björkqvist, J.-V., Lukas, I., Alari, V., van Vledder, G. Ph., Hulst, S., Pettersson, H., Behrens, A., and Männik, A.: Comparing a 41-year model hindcast with decades of wave measurements from the Baltic Sea, Ocean Eng., 152, 57–71, https://doi.org/10.1016/J.OCEANENG.2018.01.048, 2018.
Björkqvist, J.-V., Kahma, K. K., Johansson, M., Jokinen, H., Leijala, U., Särkkä, J., Tikka K., and Tuomi, L.: Turvalliset rakentamiskorkeudet Helsingin rannoilla, Kaupunkiympäristön julkaisuja 2019:20, https://www.hel.fi/static/liitteet/kaupunkiymparisto/julkaisut/julkaisut/julkaisu-20-19.pdf (last access: 12 June 2023), 2019.
Björkqvist, J.-V., Rikka, S., Alari, V., Männik, A., Tuomi, L., and Pettersson, H.: Wave height return periods from combined measurement–model data: a Baltic Sea case study, Nat. Hazards Earth Syst. Sci., 20, 3593–3609, https://doi.org/10.5194/nhess-20-3593-2020, 2020.
Charles, E. and Ollivier, A.: EU Copernicus Marine Service Quality Information Document for Global Ocean L 3 Significant Wave Height From Reprocessed Satellite Measurements, WAVE_GLO_PHY_SWH_L3_MY_014_005, Issue 1.0, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-WAV-QUID-014-005.pdf (last access: 13 June 2023), 2021.
Cieślikiewicz, W. and Paplińska-Swerpel, B.: A 44-year hindcast of wind wave fields over the Baltic Sea, Coast. Eng., 55, 894–905, https://doi.org/10.1016/j.coastaleng.2008.02.017, 2008.
EU Copernicus Marine Service Product: Global Ocean L 3 Significant Wave Height From Reprocessed Satellite Measurements, Mercator Ocean International [data set], https://doi.org/10.48670/moi-00176, 2021.
EU Copernicus Marine Service Product: Baltic Sea Wave Hindcast, Mercator Ocean International [data set], https://doi.org/10.48670/moi-00014, 2023a.
EU Copernicus Marine Service Product: Global Ocean L 3 Significant Wave Height From Nrt Satellite Measurements, Mercator Ocean International [data set], https://doi.org/10.48670/moi-00179, 2023b.
Faltinsen, O. M. and Shen, Y.: Wave and Current Effects on Floating Fish Farms, J. Marine. Sci. Appl., 17, 284–296, https://doi.org/10.1007/s11804-018-0033-5, 2018.
Hanson, H. and Larson, M.: Implications of extreme waves and water levels in the southern Baltic Sea, J. Hydraul. Res., 46, 292–302, https://doi.org/10.1080/00221686.2008.9521962, 2008.
Husson, R., and Charles, E.: EU Copernicus Marine Service Product User for Global Ocean L 3 Significant Wave Height From Reprocessed Satellite Measurements, WAVE_GLO_PHY_SWH_L3_MY_014_005, Issue 2.0, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-WAV-PUM-014-005-006-007.pdf (last access: 13 June 2023), 2021.
Jalkanen, J.-P., Johansson, L., Kukkonen, J., Brink, A., Kalli, J., and Stipa, T.: Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide, Atmos. Chem. Phys., 12, 2641–2659, https://doi.org/10.5194/acp-12-2641-2012, 2012.
Kanarik, H., Björkqvist, J.-V., and Tuomi, L.: Data and code for the article “Event-based wave statistics for the Baltic Sea” by Björkqvist et al. (2024), Finnish Meteorological Institute [code and data set], https://doi.org/10.57707/fmi-b2share.fad6a08688ab493b9f8e5d0fdf5db432, 2024.
Karathanasi F. E., Soukissian T. H., and Hayes D. R.: Wave Analysis for Offshore Aquaculture Projects: A Case Study for the Eastern Mediterranean Sea, Climate, 10, 2, https://doi.org/10.3390/cli10010002, 2022.
Kudryavtseva, N., Räämet, A., and Soomere, T.: Coastal Flooding: Joint Probability of Extreme Water Levels and Waves along the Baltic Sea Coast, J. Coastal Res., 95, 1146–1151, https://doi.org/10.2112/SI95-222.1, 2020.
Leijala, U., Björkqvist, J.-V., Johansson, M. M., Pellikka, H., Laakso, L., and Kahma, K. K.: Combining probability distributions of sea level variations and wave run-up to evaluate coastal flooding risks, Nat. Hazards Earth Syst. Sci., 18, 2785–2799, https://doi.org/10.5194/nhess-18-2785-2018, 2018.
Lindgren, E., Tuomi, L., and Huess, V.: EU Copernicus Marine Service Quality Information Document for the Baltic Sea Wave Hindcast, BALTICSEA_REANALYSIS_WAV_003_015, Issue 1.1, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-BAL-QUID-003-015.pdf (last access: 8 April 2024), 2023a.
Lindgren, E., Tuomi, L., Huess, V. and Kanarik, H.: EU Copernicus Marine Service Product User for the Baltic Sea Wave Hindcast, BALTICSEA_REANALYSIS_WAV_003_015, Issue 1.2, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-BAL-PUM-003-015.pdf (last access: 8 April 2024), 2023b.
Mertz, F., Husson, R., Taburet, N., Charles E., Estimbre, J.-J. and Ghantous, M.: EU Copernicus Marine Service Product User Manual for Global Ocean L 3 Significant Wave Height From Nrt Satellite Measurements, WAVE_GLO_PHY_SWH_L3_NRT_014_001, Issue 2.3, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-WAV-PUM-014-001-002-003-004.pdf (last access: 8 April 2024), 2023.
NSF: Flytende oppdrettsanlegg, Krav til utforming, dimensjonering, utførelse, installasjon og drift (Marine fish farms, Requirements for design, dimensioning, production, installation and operation), Norsk Standard NS 9415, 75 pp., https://online.standard.no/nb/ns-9415-2003 (last access: 27 May 2024), 2003.
Räämet, A. and Soomere, T.: The wave climate and its seasonal variability in the northeastern Baltic Sea, Est. J. Earth Sci., 59, 100–113, https://doi.org/10.3176/earth.2010.1.08, 2010.
Semedo, A., Sušelj, K., Rutgersson, A., and Sterl, A.: A global view on the wind sea and swell climate and variability from ERA-40, J. Climate, 24, 1461–1479, https://doi.org/10.1175/2010JCLI3718.1, 2011.
Semedo, A., Vettor, R., Breivik, Ø., Sterl, A., Reistad, M., Soares, C. G., and Lima, D.: The wind sea and swell waves climate in the Nordic seas, Ocean Dynam., 65, 223–240, https://doi.org/10.1007/s10236-014-0788-4, 2015.
Soomere, T. and Viška, M.: Simulated wave-driven sediment transport along the eastern coast of the Baltic Sea, J. Marine Syst., 129, 96–105, https://doi.org/10.1016/j.jmarsys.2013.02.001, 2014.
Soomere, T., Behrens, A., Tuomi, L., and Nielsen, J. W.: Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun, Nat. Hazards Earth Syst. Sci., 8, 37–46, https://doi.org/10.5194/nhess-8-37-2008, 2008.
Soomere, T., Pindsoo, K., Kudryavtseva, N., and Eelsalu, M.: Variability of distributions of wave set-up heights along a shoreline with complicated geometry, Ocean Sci., 16, 1047–1065, https://doi.org/10.5194/os-16-1047-2020, 2020.
Taburet, N., Husson, R., Charles, E., Jettou, G., Philip, A., Philipps, S., Ghantous, M., and Kocha, C.: EU Copernicus Marine Service Quality Information Document for Global Ocean L 3 Significant Wave Height From Nrt Satellite Measurements, WAVE_GLO_PHY_SWH_L3_NRT_014_001, Issue 3.4, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-WAV-QUID-014-001.pdf (last access: 8 April 2024), 2023.
Tuomi, L., Kahma, K. K., and Pettersson, H.: Wave hindcast statistics in the seasonally ice-covered Baltic Sea, Boreal Environ. Res., 16, 451–472, 2011.
Vanem, E.: A regional extreme value analysis of ocean waves in a changing climate, Ocean Eng., 144, 277–295, https://doi.org/10.1016/j.oceaneng.2017.08.027, 2017.
Young, I. R., Zieger, S., and Babanin, A. V.: Global Trends in Wind Speed and Wave Height, Science, 332, 451–455, https://doi.org/10.1126/science.1197219, 2011.
Short summary
Typical wave statistics do not provide information on how often certain wave heights are exceeded and the length of such events. Our study found a strong seasonal dependence for 2.5 and 4 m wave events in the Baltic Sea. Wave heights of over 7 m occurred less than once per year. The number of 1 m wave events can double within 20 km in nearshore areas. Our results are important for all operations at sea, including ship traffic and fish farming.
Typical wave statistics do not provide information on how often certain wave heights are...
Altmetrics
Final-revised paper
Preprint