Articles | Volume 2-oae2023
https://doi.org/10.5194/sp-2-oae2023-5-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-2-oae2023-5-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Laboratory experiments in ocean alkalinity enhancement research
Maria D. Iglesias-Rodríguez
CORRESPONDING AUTHOR
Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
Rosalind E. M. Rickaby
Department of Earth Sciences, University of Oxford, Oxford, UK
Arvind Singh
Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
James A. Gately
Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
Related authors
No articles found.
Adam V. Subhas, Nadine Lehmann, and Rosalind E. M. Rickaby
State Planet, 2-oae2023, 8, https://doi.org/10.5194/sp-2-oae2023-8-2023, https://doi.org/10.5194/sp-2-oae2023-8-2023, 2023
Short summary
Short summary
In addition to emissions reductions, methods of actively removing carbon dioxide from the atmosphere must be considered. One of these methods, called ocean alkalinity enhancement, is currently being studied to evaluate its effectiveness and safety. This article details best practices for the study of natural systems to support the development of ocean alkalinity enhancement as a carbon dioxide removal strategy. Relevant Earth system processes are discussed, along with methods to study them.
Andreas Oschlies, Lennart T. Bach, Rosalind E. M. Rickaby, Terre Satterfield, Romany Webb, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 1, https://doi.org/10.5194/sp-2-oae2023-1-2023, https://doi.org/10.5194/sp-2-oae2023-1-2023, 2023
Short summary
Short summary
Reaching promised climate targets will require the deployment of carbon dioxide removal (CDR). Marine CDR options receive more and more interest. Based on idealized theoretical studies, ocean alkalinity enhancement (OAE) appears as a promising marine CDR method. We provide an overview on the current situation of developing OAE as a marine CDR method and describe the history that has led to the creation of the OAE research best practice guide.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Helen E. Phillips, Amit Tandon, Ryo Furue, Raleigh Hood, Caroline C. Ummenhofer, Jessica A. Benthuysen, Viviane Menezes, Shijian Hu, Ben Webber, Alejandra Sanchez-Franks, Deepak Cherian, Emily Shroyer, Ming Feng, Hemantha Wijesekera, Abhisek Chatterjee, Lisan Yu, Juliet Hermes, Raghu Murtugudde, Tomoki Tozuka, Danielle Su, Arvind Singh, Luca Centurioni, Satya Prakash, and Jerry Wiggert
Ocean Sci., 17, 1677–1751, https://doi.org/10.5194/os-17-1677-2021, https://doi.org/10.5194/os-17-1677-2021, 2021
Short summary
Short summary
Over the past decade, understanding of the Indian Ocean has progressed through new observations and advances in theory and models of the oceanic and atmospheric circulation. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean, describing Indian Ocean circulation patterns, air–sea interactions, climate variability, and the critical role of the Indian Ocean as a clearing house for anthropogenic heat.
Puthenveettil Narayana Menon Vinayachandran, Yukio Masumoto, Michael J. Roberts, Jenny A. Huggett, Issufo Halo, Abhisek Chatterjee, Prakash Amol, Garuda V. M. Gupta, Arvind Singh, Arnab Mukherjee, Satya Prakash, Lynnath E. Beckley, Eric Jorden Raes, and Raleigh Hood
Biogeosciences, 18, 5967–6029, https://doi.org/10.5194/bg-18-5967-2021, https://doi.org/10.5194/bg-18-5967-2021, 2021
Short summary
Short summary
Upwelling in the coastal ocean triggers biological productivity and thus enhances fisheries. Therefore, understanding the phenomenon of upwelling and the underlying mechanisms is important. In this paper, the present understanding of the upwelling along the coastline of the Indian Ocean from the coast of Africa all the way up to the coast of Australia is reviewed. The review provides a synthesis of the physical processes associated with upwelling and its impact on the marine ecosystem.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Alex R. Baker, Maria Kanakidou, Katye E. Altieri, Nikos Daskalakis, Gregory S. Okin, Stelios Myriokefalitakis, Frank Dentener, Mitsuo Uematsu, Manmohan M. Sarin, Robert A. Duce, James N. Galloway, William C. Keene, Arvind Singh, Lauren Zamora, Jean-Francois Lamarque, Shih-Chieh Hsu, Shital S. Rohekar, and Joseph M. Prospero
Atmos. Chem. Phys., 17, 8189–8210, https://doi.org/10.5194/acp-17-8189-2017, https://doi.org/10.5194/acp-17-8189-2017, 2017
Short summary
Short summary
Man's activities have greatly increased the amount of nitrogen emitted into the atmosphere. Some of this nitrogen is transported to the world's oceans, where it may affect microscopic marine plants and cause ecological problems. The huge size of the oceans makes direct monitoring of nitrogen inputs impossible, so computer models must be used to assess this issue. We find that current models reproduce observed nitrogen deposition to the oceans reasonably well and recommend future improvements.
M. Hermoso, I. Z. X. Chan, H. L. O. McClelland, A. M. C. Heureux, and R. E. M. Rickaby
Biogeosciences, 13, 301–312, https://doi.org/10.5194/bg-13-301-2016, https://doi.org/10.5194/bg-13-301-2016, 2016
A. Singh, S. E. Baer, U. Riebesell, A. C. Martiny, and M. W. Lomas
Biogeosciences, 12, 6389–6403, https://doi.org/10.5194/bg-12-6389-2015, https://doi.org/10.5194/bg-12-6389-2015, 2015
Short summary
Short summary
Stoichiometry of macronutrients in the subtropical ocean is important to understand how biogeochemical cycles are coupled. We observed that elemental stoichiometry was much higher in the dissolved organic-matter pools than in the particulate organic matter pools. In addition ratios vary with depth due to changes in growth rates of specific phytoplankton groups, namely cyanobacteria. These data will improve biogeochemical models by placing observational constraints on these ratios.
S. A. Krueger-Hadfield, C. Balestreri, J. Schroeder, A. Highfield, P. Helaouët, J. Allum, R. Moate, K. T. Lohbeck, P. I. Miller, U. Riebesell, T. B. H. Reusch, R. E. M. Rickaby, J. Young, G. Hallegraeff, C. Brownlee, and D. C. Schroeder
Biogeosciences, 11, 5215–5234, https://doi.org/10.5194/bg-11-5215-2014, https://doi.org/10.5194/bg-11-5215-2014, 2014
Cited articles
Albright, R., Mason, B., Miller, M., and Langdon, C.: Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata, P. Natl. Acad. Sci. USA, 107, 20400–20404, https://doi.org/10.1073/pnas.1007273107, 2010.
Asplund, M. E., Baden, S. P., Russ, S., Ellis, R. P., Gong, N., and Hernroth, B. E.: Ocean acidification and host–pathogen interactions: blue mussels, Mytilus edulis, encountering Vibrio tubiashii, Environ. Microbiol., 16, 1029–1039, https://doi.org/10.1111/1462-2920.12307, 2014.
Bach, L. T., Taucher, J., Boxhammer, T., Ludwig, A., The Kristineberg KOSMOS Consortium, Achterberg, E. P., Algueró-Muñiz, M., Anderson, L. G., Bellworthy, J., Büdenbender, J., Czerny, J., Ericson, Y., Esposito, M., Fischer, M., Haunost, M., Hellemann, D., Horn, H. G., Hornick, T., Meyer, J., Sswat, M., Zark, M., and Riebesell, U.: Influence of ocean acidification on a natural winter-to-summer plankton succession: first insights from a long-term mesocosm study draw attention to periods of low nutrient concentrations, PLoS ONE, 11, e0159068, https://doi.org/10.1371/journal.pone.0159068, 2016.
Bacus, S. and Kelley, A.: Effects of ocean acidification and ocean warming on the behavior and physiology of a subarctic, intertidal grazer, Mar. Ecol. Prog. Ser., 711, 31–45, https://doi.org/10.3354/meps14308, 2023.
Bockmon, E. E. and Dickson, A. G.: An inter-laboratory comparison assessing the quality of seawater carbon dioxide measurements, Mar. Chem., 171, 36–43, https://doi.org/10.1016/j.marchem.2015.02.002, 2015.
Bosch, T. C., Krylow, S. M., Bode, H. R., and Steele, R. E.: Thermotolerance and synthesis of heat shock proteins: these responses are present in Hydra attenuata but absent in Hydra oligactis, P. Natl. Acad. Sci. USA, 85, 7927–7931, https://doi.org/10.1073/pnas.85.21.7927, 1988.
Brantley, S. L., Kubicki, J. D., and White, A. F. (Eds.): Kinetics of water-rock interaction, Springer Verlag, New York, 833 pp., https://doi.org/10.1007/978-0-387-73563-4_5, 2008.
Bruno, J. F., Stachowicz, J. J., and Bertness, M. D.: Inclusion of facilitation into ecological theory, Trend. Ecol. Evol., 18, 119–125, https://doi.org/10.1016/S0169-5347(02)00045-9, 2003.
Brzezinski, M. A.: The Si : C : N ratio of marine diatoms: interspecific variability and the effect of some environmental variables, J. Phycol., 21, 347–357, https://doi.org/10.1111/j.0022-3646.1985.00347.x, 1985.
Burt, D. J., Fröb, F., and Ilyina, T.: The sensitivity of the marine carbonate system to regional ocean alkalinity enhancement, Front. Clim., 3, 624075, https://doi.org/10.3389/fclim.2021.624075, 2021.
Byrne, M. and Przeslawski, R.: Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories, Integr. Comp. Biol., 53, 582–596, https://doi.org/10.1093/icb/ict049, 2013.
Cailleaud, K., Maillet, G., Budzinski, H., Souissi, S., and Forget-Leray, J.: Effects of salinity and temperature on the expression of enzymatic biomarkers in Eurytemora affinis (Calanoida, Copepoda), Comp. Biochem. Phys. A, 147, 841–849, https://doi.org/10.1016/j.cbpa.2006.09.012, 2007.
Calosi, P., Rastrick, S. P. S., Lombardi, C., De Guzman, H. J., Davidson, L., Jahnke, M., Giangrande, A., Hardege, J. D., Schulze, A., Spicer, J. I., and Gambi, M.-C.: Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system, Philos. T. Roy. Soc. B, 368, 20120444, https://doi.org/10.1098/rstb.2012.0444, 2013.
Cao, R., Wang, Q., Yang, D., Liu, Y., Ran, W., Qu, Y., Wu, H., Cong, M., Li, F., Ji, C., and Zhao, J.: CO2-induced ocean acidification impairs the immune function of the Pacific oyster against Vibrio splendidus challenge: an integrated study from a cellular and proteomic perspective, Sci. Total Environ., 625, 1574–1583, https://doi.org/10.1016/j.scitotenv.2018.01.056, 2018.
Casadevall, A. and Fang, F. C.: Reproducible science, Infect. Immun., 78, 4972–4975, https://doi.org/10.1128/IAI.00908-10, 2010.
Catlett, D., Matson, P. G., Carlson, C. A., Wilbanks, E. G., Siegel, D. A., and Iglesias-Rodriguez, M. D.: Evaluation of accuracy and precision in an amplicon sequencing workflow for marine protist communities, Limnology & Ocean Methods, 18, 20–40, https://doi.org/10.1002/lom3.10343, 2020.
Clair, T. A. and Hindar, A.: Liming for the mitigation of acid rain effects in freshwaters: a review of recent results, Environ. Rev., 13, 91–128, https://doi.org/10.1139/a05-009, 2005.
Cohen, S., Krueger, T., and Fine, M.: Measuring coral calcification under ocean acidification: methodological considerations for the 45 Ca-uptake and total alkalinity anomaly technique, PeerJ, 5, e3749, https://doi.org/10.7717/peerj.3749, 2017.
Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I., and Russell, B. D.: The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance, Philos. T. Roy. Soc. B, 368, 20120442, https://doi.org/10.1098/rstb.2012.0442, 2013.
Cornwall, C. E. and Hurd, C. L.: Experimental design in ocean acidification research: problems and solutions, ICES J. Mar. Sci., 73, 572–581, https://doi.org/10.1093/icesjms/fsv118, 2016.
Crain, C. M., Kroeker, K., and Halpern, B. S.: Interactive and cumulative effects of multiple human stressors in marine systems, Ecol. Lett., 11, 1304–1315, https://doi.org/10.1111/j.1461-0248.2008.01253.x, 2008.
Darling, E. S. and Côté, I. M.: Quantifying the evidence for ecological synergies, Ecol. Lett., 11, 1278–1286, https://doi.org/10.1111/j.1461-0248.2008.01243.x, 2008.
Davies, S. P.: Short-term growth measurements of corals using an accurate buoyant weighing technique, Mar. Biol., 101, 389–395, 1989.
DeCarlo, T. M., Comeau, S., Cornwall, C. E., Gajdzik, L., Guagliardo, P., Sadekov, A., Thillainath, E. C., Trotter, J., and McCulloch, M. T.: Investigating marine bio-calcification mechanisms in a changing ocean with in vivo and high-resolution ex vivo Raman spectroscopy, Glob. Change Biol., 25, 1877–1888, https://doi.org/10.1111/gcb.14579, 2019.
De Nooijer, L. J., Van Dijk, I., Toyofuku, T., and Reichart, G. J.: The impacts of seawater Mg Ca and temperature on element incorporation in benthic foraminiferal calcite, Geochem. Geophy. Geosy., 18, 3617–3630, 2017.
Dickson, A. G.: The carbon dioxide system in seawater: equilibrium chemistry and measurements, Guide to best practices for ocean acidification research and data reporting, edited by: Riebesell, U., Fabry, V. J., Hansson, L., and Gattuso, J.-P., Publications Office of the European Union, Luxembourg, https://doi.org/10.2777/66906, ISBN 978-92-79-20650-4, 2010.
Dodge, R. E., Wyers, S. C., Frith, H. R., Knap, A. H., Smith, S. R., Cook, C. B., and Sleeter, T. D.: Coral calcification rates by the buoyant weight technique: effects of alizarin staining, J. Exp. Mar. Biol. Ecol., 75, 217–232, 1984.
Dupont, C. L., Barbeau, K., and Palenik, B.: Ni uptake and limitation in marine Synechococcus strains, Appl. Environ. Microbiol., 74, 23–31, https://doi.org/10.1128/AEM.01007-07, 2008.
Dupont, C. L., Buck, K. N., Palenik, B., and Barbeau, K.: Nickel utilization in phytoplankton assemblages from contrasting oceanic regimes, Deep-Sea Res. Pt. I, 57, 553–566, https://doi.org/10.1016/j.dsr.2009.12.014, 2010.
Esposito, M. C., Boni, R., Cuccaro, A., Tosti, E., and Gallo, A.: Sperm motility impairment in free spawning invertebrates under near-future level of ocean acidification: uncovering the mechanism, Front. Mar. Sci., 6, 794, https://doi.org/10.3389/fmars.2019.00794, 2020.
Farrell, A. P., Eliason, E. J., Sandblom, E., and Clark, T. D.: Fish cardiorespiratory physiology in an era of climate change, Can. J. Zool., 87, 835–851, 2009.
Ferderer, A., Chase, Z., Kennedy, F., Schulz, K. G., and Bach, L. T.: Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community, Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, 2022.
Figuerola, B., Hancock, A. M., Bax, N., Cummings, V. J., Downey, R., Griffiths, H. J., Smith, J., and Stark, J. S.: A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean, Front. Mar. Sci., 8, 584445, https://doi.org/10.3389/fmars.2021.584445, 2021.
Forbes, V. E. and Calow, P.: Population growth rate as a basis for ecological risk assessment of toxic chemicals, Philos. T. Roy. Soc. Lond. B, 357, 1299–1306, 2002.
Fu, F. X., Zhang, Y., Warner, M. E., Feng, Y., Sun, J., and Hutchins, D. A.: A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum, Harmful Algae, 7, 76–90, https://doi.org/10.1016/j.hal.2007.05.006, 2008.
Fuhr, M., Geilert, S., Schmidt, M., Liebetrau, V., Vogt, C., Ledwig, B., and Wallmann, K.: Kinetics of olivine weathering in seawater: an experimental study, Front. Clim., 4, 831587, https://doi.org/10.3389/fclim.2022.831587, 2022.
Galic, N., Sullivan, L. L., Grimm, V., and Forbes, V. E.: When things don't add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing, Ecol. Lett., 21, 568–577, https://doi.org/10.1111/ele.12923, 2018.
Gately, J. A., Kim, S. M., Jin, B., Brzezinski, M. A., and Iglesias-Rodriguez, M. D.: Coccolithophores and diatoms resilient to ocean alkalinity enhancement: a glimpse of hope?, Sci. Adv., 9, eadg6066, https://doi.org/10.1126/sciadv.adg6066, 2023.
Gerhard, M., Koussoroplis, A.-M., Raatz, M., Pansch, C., Fey, S. B., Vajedsamiei, J., Calderó-Pascual, M., Cunillera-Montcusí, D., Juvigny-Khenafou, N. P., and Polazzo, F.: Environmental variability in aquatic ecosystems: avenues for future multifactorial experiments, Limnol. Oceanogr. Lett., 8, 247–266, 2023.
Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W., and Holt, R. D.: A framework for community interactions under climate change, Trend. Ecol. Evol., 25, 325–331, https://doi.org/10.1016/j.tree.2010.03.002, 2010.
Godbold, J. A. and Solan, M.: Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions, Philos. T. Roy. Soc. B, 368, 20130186, https://doi.org/10.1098/rstb.2013.0186, 2013.
Gradoville, M. R., Bombar, D., Crump, B. C., Letelier, R. M., Zehr, J. P., and White, A. E.: Diversity and activity of nitrogen-fixing communities across ocean basins: diversity and activity of marine nitrogen-fixers, Limnol. Oceanogr., 62, 1895–1909, https://doi.org/10.1002/lno.10542, 2017.
Greatorex, R. and Knights, A. M.: Differential effects of ocean acidification and warming on biological functioning of a predator and prey species may alter future trophic interactions, Mar. Environ. Res., 186, 105903, https://doi.org/10.1016/j.marenvres.2023.105903, 2023.
Gross, M.: Emergency services: a birds eye perspective on the many different functions of stress proteins, Curr. Protein Pept. Sc., 5, 213–223, https://doi.org/10.2174/1389203043379684, 2004.
Guillard, R. R. L. and Ryther, J. H.: Studies of marine planktonic diatoms: i. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) gran., Can. J. Microbiol., 8, 229–239, https://doi.org/10.1139/m62-029, 1962.
Guo, J. A., Strzepek, R., Willis, A., Ferderer, A., and Bach, L. T.: Investigating the effect of nickel concentration on phytoplankton growth to assess potential side-effects of ocean alkalinity enhancement, Biogeosciences, 19, 3683–3697, https://doi.org/10.5194/bg-19-3683-2022, 2022.
Hartmann, J., Suitner, N., Lim, C., Schneider, J., Marín-Samper, L., Arístegui, J., Renforth, P., Taucher, J., and Riebesell, U.: Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage, Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, 2023.
Harvey, B. P., Gwynn-Jones, D., and Moore, P. J.: Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming, Ecol. Evol., 3, 1016–1030, https://doi.org/10.1002/ece3.516, 2013.
Havenhand, J. N., Buttler, F.-R., Thorndyke, M. C., and Williamson, J. E.: Near-future levels of ocean acidification reduce fertilization success in a sea urchin, Curr. Biol., 18, R651–R652, 2008.
Hettinger, A., Sanford, E., Hill, T. M., Russell, A. D., Sato, K. N. S., Hoey, J., Forsch, M., Page, H. N., and Gaylord, B.: Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster, Ecology, 93, 2758–2768, https://doi.org/10.1890/12-0567.1, 2012.
Hilton, J., Lishman, H., Mackness, S., and Heaney, S. I.: An automated method for the analysis of “particulate” carbon and nitrogen in natural waters, Hydrobiologia, 141, 269–271, 1986.
Ho, T.-Y.: Nickel limitation of nitrogen fixation in Trichodesmium, Limnol. Oceanogr., 58, 112–120, https://doi.org/10.4319/lo.2013.58.1.0112, 2013.
Hu, X.: Effect of organic alkalinity on seawater buffer capacity: a numerical exploration, Aquat. Geochem., 26, 161–178, 2020.
Hurlbert, S. H.: The ancient black art and transdisciplinary extent of pseudoreplication, J. Comp. Psychol., 123, 434–443, https://doi.org/10.1037/a0016221, 2009.
Hutchins, D. A., Fu, F.-X., Zhang, Y., Warner, M. E., Feng, Y., Portune, K., Bernhardt, P. W., and Mulholland, M. R.: CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry, Limnol. Oceanogr., 52, 1293–1304, https://doi.org/10.4319/lo.2007.52.4.1293, 2007.
Hutchins, D. A., Fu, F.-X., Yang, S.-C., John, S. G., Romaniello, S. J., Andrews, M. G., and Walworth, N. G.: Responses of globally important phytoplankton groups to olivine dissolution products and implications for carbon dioxide removal via ocean alkalinity enhancement, Microbiology [preprint], https://doi.org/10.1101/2023.04.08.536121, 2023.
Iglesias-Rodriguez, M. D., Halloran, P. R., Rickaby, R. E., Hall, I. R., Colmenero-Hidalgo, E., Gittins, J. R., Green, D. R., Tyrrell, T., Gibbs, S. J., and von Dassow, P.: Phytoplankton calcification in a high-CO2 world, Science, 320, 336–340, 2008.
Johnson D. W.: Selection on offspring size and contemporary evolution under ocean acidification, Nat. Clim. Change 12, 757–760, 2022.
Kelly, M. W., Padilla-Gamiño, J. L., and Hofmann, G. E.: Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus, Glob. Change Biol., 19, 2536–2546, 2013.
Khalil, M., Doo, S. S., Stuhr, M., and Westphal, H.: Long term physiological responses to combined ocean acidifcation and warming show energetic trade ofs in an asterinid starfish, Coral Reefs, 42, 845–858, https://doi.org/10.1007/s00338-023-02388-2, 2023.
Kim, H.-C. and Lee, K.: Significant contribution of dissolved organic matter to seawater alkalinity, Geophys. Res. Lett., 36, L20603, https://doi.org/10.1029/2009GL040271, 2009.
Koeve, W., Kim, H.-C. Lee, K., and Oschlies, A: Computation of fCO2 and the concentration of carbonate ions and the potential role of DOM accumulation in ocean acidification experiments, Joint EPOCA, BIOACID an UKOARP Meeting, 27–30 September 2010, Atlantic Hotel, Bremerhaven, Germany, p. 30, https://oceanrep.geomar.de/id/eprint/11788/ (last access: 16 November 2023), 2010.
Kroeker, K. J. and Sanford, E.: Ecological leverage points: species interactions amplify the physiological effects of global environmental change in the ocean, Annu. Rev. Mar. Sci., 14, 75–103, https://doi.org/10.1146/annurev-marine-042021-051211, 2022.
Kroeker, K. J., Kordas, R. L., Crim, R. N., and Singh, G. G.: Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms: biological responses to ocean acidification, Ecol. Lett., 13, 1419–1434, https://doi.org/10.1111/j.1461-0248.2010.01518.x, 2010.
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J.: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming, Glob. Change Biol., 19, 1884–1896, https://doi.org/10.1111/gcb.12179, 2013a.
Kroeker, K. J., Micheli, F., and Gambi, M. C.: Ocean acidification causes ecosystem shifts via altered competitive interactions, Nat. Clim. Change, 3, 156–159, https://doi.org/10.1038/nclimate1680, 2013b.
LaRoche, J., Rost, B., and Engel, A.: Bioassays, batch culture and chemostat experimentation, in: Approaches and tools to manipulate the carbonate chemistry, Guide for Best Practices in Ocean Acidification Research and Data Reporting, edited by: Riebesell, U., Fabry, V. J., Hansson, L., and Gattuso, J.-P., 81–94, https://doi.org/10.2777/66906, ISBN 978-92-79-20650-4, 2010.
La Terza, A., Papa, G., Miceli, C., and Luporini, P.: Divergence between two Antarctic species of the ciliate Euplotes, E. focardii and E. nobilii, in the expression of heat-shock protein 70 genes, Mol. Ecol., 10, 1061–1067, https://doi.org/10.1046/j.1365-294X.2001.01242.x, 2001.
Lawrence, M. J., Eliason, E. J., Brownscombe, J. W., Gilmour, K. M., Mandelman, J. W., and Cooke, S. J.: An experimental evaluation of the role of the stress axis in mediating predator-prey interactions in wild marine fish, Comp. Biochem. Phys. A, 207, 21–29, 2017.
Lee, Y. H., Kim, M.-S., Wang, M., Bhandari, R. K., Park, H. G., Wu, R. S.-S., and Lee, J.-S.: Epigenetic plasticity enables copepods to cope with ocean acidification, Nat. Clim. Change, 12, 918–927, 2022.
Lesser, M. P.: Oxidative stress in marine environments: biochemistry and physiological ecology, Annu. Rev. Physiol., 68, 253–278, https://doi.org/10.1146/annurev.physiol.68.040104.110001, 2006.
Li, Y., Liew, Y. J., Cui, G., Cziesielski, M. J., Zahran, N., Michell, C. T., Voolstra, C. R., and Aranda, M.: DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia, Sci. Adv., 4, eaat2142, https://doi.org/10.1126/sciadv.aat2142, 2018.
Liu, G., Innes, D., and Thompson, R. J.: Quantitative analysis of sperm plane circular movement in the blue mussels Mytilus edulis, M. trossulus and their hybrids, J. Exp. Zool. Part A, 315, 280–290, 2011.
Lushchak, V. I.: Environmentally induced oxidative stress in aquatic animals, Aquat. Toxicol., 101, 13–30, https://doi.org/10.1016/j.aquatox.2010.10.006, 2011.
Ma, K. C. K., Monsinjon, J. R., Froneman, P. W., and McQuaid, C. D.: Thermal stress gradient causes increasingly negative effects towards the range limit of an invasive mussel, Sci. Total Environ., 865, 161184, https://doi.org/10.1016/j.scitotenv.2022.161184, 2023.
Maranhão, P. and Marques, J. C.: The influence of temperature and salinity on the duration of embryonic development, fecundity and growth of the amphipod Echinogammarus marinus Leach (Gammaridae), Acta Oecol., 24, 5–13, 2003.
Maranón, E., Cermeno, P., Fernández, E., Rodríguez, J., and Zabala, L.: Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem, Limnol. Oceanogr., 49, 1652–1666, 2004.
Martin, B., Jager, T., Nisbet, R. M., Preuss, T. G., and Grimm, V.: Limitations of extrapolating toxic effects on reproduction to the population level, Ecol. Appl., 24, 1972–1983, 2014.
Martz, T. R., Daly, K. L., Byrne, R. H., Stillman, J. H., and Turk, D.: Technology for ocean acidification research: needs and availability, Oceanography, 28, 40–47, 2015.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M. I.: Climate change 2021: the physical science basis, Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896, 2021.
Matsumoto, K., Tanioka, T., and Rickaby, R.: Linkages between dynamic phytoplankton C : N : P and the ocean carbon cycle under climate change, Oceanography, 33, 44–52, 2020.
Middelburg, J. J., Soetaert, K., and Hagens, M.: Ocean alkalinity, buffering and biogeochemical processes, Rev. Geophys., 58, e2019RG000681, https://doi.org/10.1029/2019RG000681, 2020.
Millero, F. J., Woosley, R., DiTrolio, B., and Waters, J.: Effect of ocean acidification on the speciation of metals in seawater, Oceanography, 22, 72–85, 2009.
Mitchell, A., Hayes, C., Booth, D. J., and Nagelkerken, I.: Future shock: ocean acidification and seasonal water temperatures alter the physiology of competing temperate and coral reef fishes, Sci. Total Environ., 883, 163684, https://doi.org/10.1016/j.scitotenv.2023.163684, 2023.
Montoya, J. P., Voss, M., Kahler, P., and Capone, D. G.: A simple, high-precision, high-sensitivity tracer assay for N(inf2) fixation, Appl. Environ. Microbiol., 62, 986–993, https://doi.org/10.1128/aem.62.3.986-993.1996, 1996.
Montserrat, F., Renforth, P., Hartmann, J., Leermakers, M., Knops, P., and Meysman, F. J. R.: Olivine dissolution in seawater: implications for CO2 sequestration through enhanced weathering in coastal environments, Environ. Sci. Technol., 51, 3960–3972, https://doi.org/10.1021/acs.est.6b05942, 2017.
Moras, C. A., Bach, L. T., Cyronak, T., Joannes-Boyau, R., and Schulz, K. G.: Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution, Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, 2022.
Morel, F. M., Rueter, J. G., Anderson, D. M., and Guillard, R. R. L.: Aquil: a chemically defined phytoplankton culture medium for trace metal studies, J. Phycol., 15, 135–141, 1979.
Moya, A., Huisman, L., Foret, S., Gattuso, J.-P., Hayward, D. C., Ball, E. E., and Miller, D. J.: Rapid acclimation of juvenile corals to CO2-mediated acidification by upregulation of heat shock protein and Bcl-2 genes, Mol. Ecol., 24, 438–452, 2015.
National Academies of Sciences, Engineering, and Medicine (NASEM): A research strategy for ocean-based carbon dioxide removal and sequestration, National Academies Press, Washington, D.C., https://doi.org/10.17226/26278, 2022.
Nawaz, S., Lezaun, J., Valenzuela, J. M., and Renforth, P.: Broaden research on ocean alkalinity enhancement to better characterize social impacts, Environ. Sci. Technol., 57, 8863–8869, https://doi.org/10.1021/acs.est.2c09595, 2023.
Nielsen, E. S.: The use of radio-active carbon (C14) for measuring organic production in the sea, ICES J. Mar. Sci., 18, 117–140, 1952.
O'Donnell, M. J., Hammond, L. M., and Hofmann, G. E.: Predicted impact of ocean acidification on a marine invertebrate: elevated CO2 alters response to thermal stress in sea urchin larvae, Mar. Biol., 156, 439–446, 2009.
Paiva, F., Brennecke, D., Pansch, C., and Briski, E.: Consistency of aquatic enclosed experiments: the importance of scale and ecological complexity, Divers. Distrib., 27, 524–532, 2021.
Paul, A. J., Bach, L. T., Schulz, K.-G., Boxhammer, T., Czerny, J., Achterberg, E. P., Hellemann, D., Trense, Y., Nausch, M., Sswat, M., and Riebesell, U.: Effect of elevated CO2 on organic matter pools and fluxes in a summer Baltic Sea plankton community, Biogeosciences, 12, 6181–6203, https://doi.org/10.5194/bg-12-6181-2015, 2015.
Paul, A. J., Achterberg, E. P., Bach, L. T., Boxhammer, T., Czerny, J., Haunost, M., Schulz, K.-G., Stuhr, A., and Riebesell, U.: No observed effect of ocean acidification on nitrogen biogeochemistry in a summer Baltic Sea plankton community, Biogeosciences, 13, 3901–3913, https://doi.org/10.5194/bg-13-3901-2016, 2016.
Pistevos, J. C. A., Nagelkerken, I., Rossi, T., and Connell, S. D.: Antagonistic effects of ocean acidification and warming on hunting sharks, Oikos, 126, oik.03182, https://doi.org/10.1111/oik.03182, 2017.
Place, S. P. and Hofmann, G. E.: Constitutive expression of a stress-inducible heat shock protein gene, hsp70, in phylogenetically distant Antarctic fish, Polar Biol., 28, 261–267, https://doi.org/10.1007/s00300-004-0697-y, 2005.
Pujo-Pay, M. and Raimbault, P.: Improvement of the wet-oxidation procedure for simultaneous determination of particulate organic nitrogen and phosphorus collected on filters, Mar. Ecol. Prog. Ser., 105, 203–203, 1994.
Ragg, N. L., Gale, S. L., Le, D. V., Hawes, N. A., Burritt, D. J., Young, T., Ericson, J. A., Hilton, Z., Watts, E., and Berry, J.: The effects of aragonite saturation state on hatchery-reared larvae of the Greenshell mussel Perna canaliculus, J. Shellfish Res., 38, 779–793, 2019.
Renforth, P. and Henderson, G.: Assessing ocean alkalinity for carbon sequestration, Rev. Geophys., 55, 636–674, 2017.
Reusch, T. B.: Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants, Evol. Appl., 7, 104–122, 2014.
Ridgwell, A., Schmidt, D. N., Turley, C., Brownlee, C., Maldonado, M. T., Tortell, P., and Young, J. R.: From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification, Biogeosciences, 6, 2611–2623, https://doi.org/10.5194/bg-6-2611-2009, 2009.
Ries, J., Ghazaleh, M., Connolly, B., Westfield, I., and Castillo, K.: Impacts of ocean acidification and warming on the dissolution kinetics of whole-shell biogenic carbonates, Geochim. Cosmochim. Ac., 192, 318–337, 2016.
Ries, J. B.: Effect of ambient Mg Ca ratio on Mg fractionation in calcareous marine invertebrates: a record of the oceanic Mg Ca ratio over the Phanerozoic, Geology, 32, 981–984, 2004.
Ries, J. B.: Mg fractionation in crustose coralline algae: geochemical, biological, and sedimentological implications of secular variation in the Mg Ca ratio of seawater, Geochim. Cosmochim. Ac., 70, 891–900, 2006.
Ries, J. B.: Review: geological and experimental evidence for secular variation in seawater Mg Ca (calcite-aragonite seas) and its effects on marine biological calcification, Biogeosciences, 7, 2795–2849, https://doi.org/10.5194/bg-7-2795-2010, 2010.
Ries, J. B., Cohen, A. L., and McCorkle, D. C.: Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification, Geology, 37, 1131–1134, 2009.
Saigusa, M.: Control of hatching in an estuarine terrestrial crab I. Hatching of embryos detached from the female and emergence of mature larvae, Biol. Bull., 183, 401–408, 1992.
Sala, M. M., Aparicio, F. L., Balagué, V., Boras, J. A., Borrull, E., Cardelús, C., Cros, L., Gomes, A., López-Sanz, A., Malits, A., Martínez, R. A., Mestre, M., Movilla, J., Sarmento, H., Vázquez-Domínguez, E., Vaqué, D., Pinhassi, J., Calbet, A., Calvo, E., Gasol, J. M., Pelejero, C., and Marrasé, C.: Contrasting effects of ocean acidification on the microbial food web under different trophic conditions, ICES J. Mar. Sci., 73, 670–679, https://doi.org/10.1093/icesjms/fsv130, 2016.
Sanders, T., Schmittmann, L., Nascimento-Schulze, J. C., and Melzner, F.: High calcification costs limit mussel growth at low salinity, Front. Mar. Sci., 5, 352, https://doi.org/10.3389/fmars.2018.00352, 2018.
Schulte, P. M.: What is environmental stress? Insights from fish living in a variable environment, J. Exp. Biol., 217, 23–34, https://doi.org/10.1242/jeb.089722, 2014.
Sharp, J. H., Benner, R., Bennett, L., Carlson, C. A., Fitzwater, S. E., Peltzer, E. T., and Tupas, L. M.: Analyses of dissolved organic carbon in seawater: the JGOFS EqPac methods comparison, Mar. Chem., 48, 91–108, 1995.
Stachowicz, J. J.: Mutualism, facilitation, and the structure of ecological communities, BioScience, 51, 235–246, https://doi.org/10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2, 2001.
Subhas, A. V., Marx, L., Reynolds, S., Flohr, A., Mawji, E. W., Brown, P. J., and Cael, B. B.: Microbial ecosystem responses to alkalinity enhancement in the North Atlantic Subtropical Gyre, Front. Clim., 4, 784997, https://doi.org/10.3389/fclim.2022.784997, 2022.
Thor, P. and Dupont, S.: Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod, Glob. Change Biol., 21, 2261–2271, 2015.
Trimborn, S., Thoms, S., Brenneis, T., Heiden, J. P., Beszteri, S., and Bischof, K.: Two Southern Ocean diatoms are more sensitive to ocean acidification and changes in irradiance than the prymnesiophyte Phaeocystis antarctica, Physiol. Plantarum, 160, 155–170, 2017.
Vandamme, D., Pohl, P. I., Beuckels, A., Foubert, I., Brady, P. V., Hewson, J. C., and Muylaert, K.: Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite, Bioresource Technol., 196, 656–661, 2015.
Vehmaa, A., Hogfors, H., Gorokhova, E., Brutemark, A., Holmborn, T., and Engström-Öst, J.: Projected marine climate change: effects on copepod oxidative status and reproduction, Ecol. Evol., 3, 4548–4557, https://doi.org/10.1002/ece3.839, 2013.
Verardo, D. J., Froelich, P. N., and McIntyre, A.: Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer, Deep-Sea Res. Pt. A, 37, 157–165, 1990.
Voigt, W., Perner, J., Davis, A. J., Eggers, T., Schumacher, J., Bährmann, R., Fabian, B., Heinrich, W., Köhler, G., Lichter, D., Marstaller, R., and Sander, F. W.: Trophic levels are differentially sensitive to climate, Ecology, 84, 2444–2453, https://doi.org/10.1890/02-0266, 2003.
Von Weissenberg, E., Jansson, A., Vuori, K. A., and Engström-Öst, J.: Copepod reproductive effort and oxidative status as responses to warming in the marine environment, Ecol. Evol., 12, e8594, https://doi.org/10.1002/ece3.8594, 2022.
Wang, H., Pilcher, D. J., Kearney, K. A., Cross, J. N., Shugart, O. M., Eisaman, M. D., and Carter, B. R.: Simulated impact of ocean alkalinity enhancement on atmospheric CO2 removal in the Bering Sea, Earth's Future, 11, e2022EF002816, https://doi.org/10.1029/2022EF002816, 2023.
Wernberg, T., Smale, D. A., and Thomsen, M. S.: A decade of climate change experiments on marine organisms: procedures, patterns and problems, Glob. Change Biol., 18, 1491–1498, https://doi.org/10.1111/j.1365-2486.2012.02656.x, 2012.
White, A. E., Granger, J., Selden, C., Gradoville, M. R., Potts, L., Bourbonnais, A., Fulweiler, R. W., Knapp, A. N., Mohr, W., Moisander, P. H., Tobias, C. R., Caffin, M., Wilson, S. T., Benavides, M., Bonnet, S., Mulholland, M. R., and Chang, B. X.: A critical review of the 15N2 tracer method to measure diazotrophic production in pelagic ecosystems, Limnol. Oceanogr. Meth., 18, 129–147, https://doi.org/10.1002/lom3.10353, 2020.
Worsfold, P. J., Clough, R., Lohan, M. C., Monbet, P., Ellis, P. S., Quétel, C. R., Floor, G. H., and McKelvie, I. D.: Flow injection analysis as a tool for enhancing oceanographic nutrient measurements – a review, Anal. Chim. Acta, 803, 15–40, 2013.
Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., Dokken, D. J., Stewart, B. C., and Maycock, T. K. (Eds.): USGCRP: Climate Science Special Report: Fourth National Climate Assessment, Volume I, U.S. Global Change Research Program, Washington, DC, USA, 470 pp., https://doi.org/10.7930/J0J964J6, 2017.
Yang, B., Leonard, J., and Langdon, C.: Seawater alkalinity enhancement with magnesium hydroxide and its implication for carbon dioxide removal, Mar. Chem., 253, 104251, https://doi.org/10.1016/j.marchem.2023.104251, 2023.
Short summary
Recent concern about the repercussions of rising atmospheric CO2 as a key heat-trapping agent have prompted ocean experts to discuss ocean alkalinity enhancement (OAE) as a CO2 removal approach but also as a potential way to mitigate ocean acidification. This chapter provides an overview of best practice in OAE laboratory experimentation by identifying key criteria to achieve high-quality results and providing recommendations to contrast results with other laboratories.
Recent concern about the repercussions of rising atmospheric CO2 as a key heat-trapping agent...
Altmetrics
Final-revised paper
Preprint