Articles | Volume 1-osr7
https://doi.org/10.5194/sp-1-osr7-8-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-1-osr7-8-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-frequency radar-derived coastal upwelling index
Pablo Lorente
CORRESPONDING AUTHOR
Puertos del Estado, Madrid, 28042, Spain
Anna Rubio
AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, 20110, Spain
Emma Reyes
Balearic Islands Coastal Ocean Observing and Forecasting System (SOCIB), Palma, 07122, Spain
Lohitzune Solabarrieta
AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, 20110, Spain
Silvia Piedracoba
CETMAR (Centro Tecnológico del Mar), Vigo, 36208, Spain
Joaquín Tintoré
Balearic Islands Coastal Ocean Observing and Forecasting System (SOCIB), Palma, 07122, Spain
Mediterranean Institute for Advanced Studies (IMEDEA), Esporles, 07190, Spain
Julien Mader
AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, 20110, Spain
Related authors
Pablo Lorente, Marta de Alfonso, Pilar Gil, Fernando Manzano, Anna Magdalena Matulka, Begoña Pérez-Gómez, Susana Pérez-Rubio, and M. Isabel Ruiz
State Planet, 4-osr8, 19, https://doi.org/10.5194/sp-4-osr8-19-2024, https://doi.org/10.5194/sp-4-osr8-19-2024, 2024
Short summary
Short summary
Over recent decades, extreme weather events have attracted growing public concern due to their widespread impact on the environment and human well-being. Their comprehensive monitoring is crucial to adopt prevention strategies and reduce coastal vulnerability. In this work, the record-breaking wave event that hit Melilla harbour (SW Mediterranean Sea) during early April 2022 was investigated to elucidate the meteorological drivers and evaluate the energetic response of Melilla harbour basins.
Baptiste Mourre, Emma Reyes, Pablo Lorente, Alex Santana, Jaime Hernández-Lasheras, Ismael Hernández-Carrasco, Maximo García-Jove, and Nikolaos D. Zarokanellos
State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023
Short summary
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Florian Volmer Martin Kokoszka, Mireno Borghini, Katrin Schroeder, Jacopo Chiggiato, Joaquín Tintoré, Nikolaos Zarokanellos, Albert Miralles, Patricia Rivera Rodríguez, Manuel Rubio, Miguel Charcos, Benjamín Casas, and Anneke Ten Doeschate
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-451, https://doi.org/10.5194/essd-2025-451, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a unique dataset of underwater measurements collected by an autonomous glider in the western Mediterranean Sea. It reveals how ocean layers mix over seasons and years. Using sensors to detect small scale water movements, we estimated how energy and heat are transferred in the ocean. These data help scientists better understand ocean circulation and climate effects. All files and methods are openly shared to support future research.
Susana Flecha, Mercedes de la Paz, Fiz Fernández Pérez, Núria Marbà, Carlos Morell, Eva Alou-Font, Joaquín Tintoré, and Iris E. Hendriks
Ocean Sci., 21, 1515–1532, https://doi.org/10.5194/os-21-1515-2025, https://doi.org/10.5194/os-21-1515-2025, 2025
Short summary
Short summary
Nitrous oxide (N2O), a potent greenhouse gas, is understudied in coastal zones. We present N2O concentrations and air–sea fluxes from the Balearic coast (2018–2023). Concentrations varied slightly across sites, with areas acting as weak sources or being near equilibrium. Temperature was the main driver of seasonal changes. These findings improve our understanding of coastal N2O emissions.
Pablo Lorente, Marta de Alfonso, Pilar Gil, Fernando Manzano, Anna Magdalena Matulka, Begoña Pérez-Gómez, Susana Pérez-Rubio, and M. Isabel Ruiz
State Planet, 4-osr8, 19, https://doi.org/10.5194/sp-4-osr8-19-2024, https://doi.org/10.5194/sp-4-osr8-19-2024, 2024
Short summary
Short summary
Over recent decades, extreme weather events have attracted growing public concern due to their widespread impact on the environment and human well-being. Their comprehensive monitoring is crucial to adopt prevention strategies and reduce coastal vulnerability. In this work, the record-breaking wave event that hit Melilla harbour (SW Mediterranean Sea) during early April 2022 was investigated to elucidate the meteorological drivers and evaluate the energetic response of Melilla harbour basins.
Baptiste Mourre, Emma Reyes, Pablo Lorente, Alex Santana, Jaime Hernández-Lasheras, Ismael Hernández-Carrasco, Maximo García-Jove, and Nikolaos D. Zarokanellos
State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023
Short summary
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
Irene Ruiz, Anna Rubio, Ana J. Abascal, and Oihane C. Basurko
Ocean Sci., 18, 1703–1724, https://doi.org/10.5194/os-18-1703-2022, https://doi.org/10.5194/os-18-1703-2022, 2022
Short summary
Short summary
The south-eastern Bay of Biscay is an accumulation zone for marine litter. Yet, the behaviour of the riverine litter fraction reaching the sea is poorly understood. We resolve this by studying litter buoyancy and transport, based on high-frequency radar observations and Lagrangian simulations. We show large seasonal and regional differences between items' behaviour, particularly in summer when highly buoyant litter beaches faster and Gipuzkoa and Pyrénées-Atlantiques regions are mostly affected.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Jaime Hernandez-Lasheras, Baptiste Mourre, Alejandro Orfila, Alex Santana, Emma Reyes, and Joaquín Tintoré
Ocean Sci., 17, 1157–1175, https://doi.org/10.5194/os-17-1157-2021, https://doi.org/10.5194/os-17-1157-2021, 2021
Short summary
Short summary
Correct surface ocean circulation forecasts are highly relevant to search and rescue, oil spills, and ecological processes, among other things. High-frequency radar (HFR) is a remote sensing technology that measures surface currents in coastal areas with high temporal and spatial resolution. We performed a series of experiments in which we use HFR observations from the Ibiza Channel to improve the forecasts provided by a regional ocean model in the western Mediterranean.
Xabier Davila, Anna Rubio, Luis Felipe Artigas, Ingrid Puillat, Ivan Manso-Narvarte, Pascal Lazure, and Ainhoa Caballero
Ocean Sci., 17, 849–870, https://doi.org/10.5194/os-17-849-2021, https://doi.org/10.5194/os-17-849-2021, 2021
Short summary
Short summary
The ocean is a turbulent system, full of meandering currents and fronts of various scales. These processes can influence the distribution of microscopic algae or phytoplankton by upwelling deep, nutrient-rich waters to the sunlit surface or by actively gathering and accumulating them. Our results suggest that, at the surface, salinity is the main conditioning factor for phytoplankton distribution. However, at the subsurface, oceanic currents influence phytoplankton distribution the most.
Lohitzune Solabarrieta, Ismael Hernández-Carrasco, Anna Rubio, Michael Campbell, Ganix Esnaola, Julien Mader, Burton H. Jones, and Alejandro Orfila
Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, https://doi.org/10.5194/os-17-755-2021, 2021
Short summary
Short summary
High-frequency radar technology measures coastal ocean surface currents. The use of this technology is increasing as it provides near-real-time information that can be used in oil spill or search-and-rescue emergencies to forecast the trajectories of floating objects. In this work, an analog-based short-term prediction methodology is presented, and it provides surface current forecasts of up to 48 h. The primary advantage is that it is easily implemented in real time.
Cited articles
Abrahams, A., Schlegel, R. W., and Smit, A. J.: Variation and change of
upwelling dynamics detected in the world's eastern boundary upwelling systems, Frontiers in Marine Science, 8, 626411, https://doi.org/10.3389/fmars.2021.626411, 2021a.
Abrahams, A., Schlegel, R. W., and Smit, A. J.: A novel approach to quantify
metrics of upwelling intensity, frequency, and duration, PLoS ONE, 16, e0254026, https://doi.org/10.1371/journal.pone.0254026, 2021b.
Alvarez, I., Lorenzo, M. N., and deCastro, M.: Analysis of chlorophyll a concentration along the Galician coast: seasonal variability and trends,
ICES J. Mar. Sci., 69, 728–738, https://doi.org/10.1093/icesjms/fss045, 2012.
Bakun, A.: Coastal upwelling indices, west coast of North America, 1946-71, NOAA technical report NMFS SSRF; 671, https://repository.library.noaa.gov/view/noaa/9041 (last access: 29 June 2023), 1973.
Bakun, A.: Daily and weekly upwelling indices, west coast of North America, 1967-73, NOAA technical report NMFS SSRF; 693, https://repository.library.noaa.gov/view/noaa/15387 (last access: 29 June 2023), 1975.
Bakun, A., Black, B. A., Bograd, S. J., García-Reyes, M., Miller, A. J., Rykaczewski, R. R., and Sydeman, W. J.: Anticipated effects of climate
change on coastal upwelling ecosystems, Current Climate Change Reports, 1, 85–93, https://doi.org/10.1007/s40641-015-0008-4, 2015.
Barrick, D.: Geometrical Dilution of Statistical Accuracy (GDOSA) in
Multi-Static HF Radar Networks, CODAR Ocean Sensors Ltd., Mountain View, CA,
USA, http://www.codar.com/images/about/2006Barrick_GDOSA.pdf (last access: 29 June 2023), 2006.
Barton, E. D., Field, D. B., and Roy, C.: Canary current upwelling: More or
less?, Prog. Oceanogr., 116, 167–178, 2013.
Benazzouz, A., Mordane, S., Orbi, A., Chagdali, M., Hilmi, K., Atillah, A.,
Pelegrí, J. L., and Hervé, D.: An improved coastal upwelling index
from sea surface temperature using satellite-based approach – The case of
the Canary Current upwelling system, Cont. Shelf Res., 81, 38–54,
https://doi.org/10.1016/j.csr.2014.03.012, 2014.
Bjorkstedt, E. and Roughgarden, J.: Larval transport and coastal upwelling:
An application of HF radar in ecological research, Oceanography, 10, 64–67,
1997.
Borja, A., Uriarte, A., Valencia, V., Motos, I., and Uriarte, A.: Relationship between anchovy (Engraulis encrasicolus L.) recruitment and the environment in the Bay of Biscay, Sci. Mar., 60, 179–192, 1996.
Borja, A., Fontán, A., Sáenz, J., and Valencia, V.: Climate,
oceanography, and recruitment: the case of the Bay of Biscay anchovy
(Engraulis encrasicolus), Fish. Oceanogr., 17, 477–493, https://doi.org/10.1111/j.1365-2419.2008.00494.x, 2008.
Botas, J. A., Fernández, E., Bode, A., and Anadón, R.: A persistent
upwelling off the Central Cantabrian coast (Bay of Biscay), Estuar. Coast. Shelf S., 30, 185–199, 1990.
Caballero, A., Rubio, A., and Manso, I.: Exploring the potential of HF radar
data to monitor upwelling events in the SE Bay of Biscay, EGU General Assembly, Vienna, Austria, 4–13 April 2018, EGU2018-13624, 2018.
Chapman, R. D., Shay, L. K., Graber, H. C., Edson, J. B., Karachintsev, A.,
Trump, C. L., and Ross, D. B.: On the accuracy of HF radar surface current
measurements: Intercomparisons with ship-based sensors, J. Geophys. Res.-Oceans, 102, 18737–18748, https://doi.org/10.1029/97JC00049, 1997.
Colella, S., Böhm, E., Cesarini, C., Garnesson, P., Netting, J., and Calton, B.: EU Copernicus Marine Service Product User Manual for the Global Ocean Colour (Copernicus-GlobColour), Bio-Geo-Chemical, L4 (monthly and
interpolated) from Satellite Observations (1997-ongoing), OCEANCOLOUR_GLO_BGC_L4_MY_009_104, Issue: 3.0, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-OC-PUM.pdf (last access: 2 June 2023), 2022.
Corgnati, L., Mantovani, C., Rubio, A., Reyes, E., Rotllan, P., Novellino, A., Gorringe, P., Solabarrieta, L., Griffa, A., and Mader, J.: The Eurogoos High Frequency radar task team: a success story of collaboration to be kept alive and made growing, in 9th EuroGOOS International conference, Shom, Ifremer, EuroGOOS AISBL, May 2021, Brest, France, 467–474, Brest, France, https://hal.archives-ouvertes.fr/hal-03328829 (last access: 27 June 2023), 2021.
Cropper, T. E., Hanna, E., and Bigg, G. R.: Spatial and temporal seasonal
trends in coastal upwelling off Northwest Africa, 1981-2012, Deep-Sea
Res. Pt. I, 86, 94–111, https://doi.org/10.1016/j.dsr.2014.01.007, 2014.
Di Lorenzo, E.: The future of coastal ocean upwelling, Nature, 518, 310–311, https://doi.org/10.1038/518310a, 2015.
Ekman, W.: On the influence of the Earth's rotation on ocean currents,
Ark. Mat. Astr. Fys., 2, 1–52, 1905.
Enriquez, A. G. and Friehe, C. A.: Effects of wind stress and wind stress curl variability on coastal upwelling, J. Phys. Oceanogr., 25, 1651–1671, 1995.
Etienne, H., Boone, C., Verbrugge, N., Reyes, E., Rotllán, P., Rubio,
A., Solabarrieta, L., Corgnati, L., Mantovani, C., Mader, J., and Carval, T.:
EU Copernicus Marine Service Product User Manual for the Global
Ocean-Delayed Mode in-situ Observations of surface (drifters and HFR) and
subsurface (vessel-mounted ADCPs) water velocity, INSITU_GLO_PHY_UV_DISCRETE_MY_013_044, Issue: 3.3, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-INS-PUM-013-044.pdf
(last access: 2 June 2023), 2022.
Etienne, H., Verbrugge, N., Boone, C., Rubio, A., Solabarrieta, L.,
Corgnati, L., Mantovani, C., Reyes, E., Chifflet, M., Mader, J., and Carval,
T.: EU Copernicus Marine Service Quality Information Document for the Global
Ocean-Delayed Mode in-situ Observations of surface (drifters and HFR) and
subsurface (vessel-mounted ADCPs) water velocity, INSITU_GLO_PHY_UV_DISCRETE_MY_013_044, Issue: 3.4, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-INS-QUID-013-044.pdf
(last access: 2 June 2023), 2023.
EU Copernicus Marine Service Product: Global Ocean- in-situ Near real time
observations of ocean currents, Mercator Ocean International [data set],
https://doi.org/10.48670/moi-00041, 2022a.
EU Copernicus Marine Service Product: Atlantic Iberian Biscay Irish Ocean-
In-Situ Near Real Time Observations, Mercator Ocean International [data
set], https://doi.org/10.48670/moi-00043, 2022b.
EU Copernicus Marine Service Product: Global Ocean Physics Analysis and
Forecast, Mercator Ocean International [data set],
https://doi.org/10.48670/moi-00016, 2022c.
EU Copernicus Marine Service Product: Global Ocean Colour
(Copernicus-GlobColour), Bio-Geo-Chemical, L4 (monthly and interpolated)
from Satellite Observations (1997–ongoing), Mercator Ocean International
[data set], https://doi.org/10.48670/moi-00281, 2022d.
EU Copernicus Marine Service Product: Global Ocean-Delayed Mode in-situ
Observations of surface (drifters and HFR) and sub-surface (vessel-mounted
ADCPs) water velocity, Mercator Ocean International [data set],
https://doi.org/10.17882/86236, 2023a.
EU Copernicus Marine Service Product: Global Ocean OSTIA Sea Surface
Temperature and Sea Ice Reprocessed, Mercator Ocean International [data
set], https://doi.org/10.48670/moi-00168, 2023b.
Fontán, A., Valencia, V., Borja, A., and Goikoetxea, N.:
Oceano-meteorological conditions and coupling in the south-eastern Bay of
Biscay, for the period 2001-2005: A comparison with the past two decades,
J. Marine Syst., 72, 167–177, 2008.
Garnesson, P., Mangin, A., Bretagnon, M., and Jutard, Q.: EU Copernicus
Marine Service Quality Information Document for the Global Ocean Colour
(Copernicus-GlobColour), Bio-Geo-Chemical, L4 (monthly and interpolated)
from Satellite Observations (1997-ongoing), OCEANCOLOUR_GLO_BGC_L4_MY_009_104, Issue: 3.0, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-OC-QUID-009-101to104-111-113-116-118.pdf
(last access: 2 June 2023), 2022.
González-Nuevo, G., Gago, J., and Cabanas, J. M.: Upwelling Index: A
powerful tool for marine research in the NW Iberian upwelling system, J.
Oper. Oceanogr., 7, 47–57, 2014.
Gunduz, M., Causio, S., Bonino, G., Vandenbulcle, L., Gtregorie, M., Lima,
L., Ciliberti, S., LLicak, M., Aydogdu, A., Masina, S., Coppini, G. H., and
Pinardi, N.: Coastal upwelling along the Turkish coast of the black Sea: its
role in the distribution of the hydrographic properties, J.
Oper. Oceanogr., Special Issue: Ocean State Report 6, Sect. 4.8, 205–210, 2022.
Hernandez-Lasheras, J., Mourre, B., Orfila, A., Santana, A., Reyes, E., and Tintoré, J.: Evaluating high-frequency radar data assimilation impact in coastal ocean operational modelling, Ocean Sci., 17, 1157–1175, https://doi.org/10.5194/os-17-1157-2021, 2021.
Herrera, J. L., Piedracoba, S., Varela, R., and Rosón, G.: Spatial analysis of the wind field on the western coast of Galicia (NW Spain) from in situ measurements, Cont. Shelf Res., 25, 1728–1748, 2005.
Holt, J., Hyder, P., Ashworth, M., Harle, J., Hewitt, H. T., Liu, H., New, A. L., Pickles, S., Porter, A., Popova, E., Allen, J. I., Siddorn, J., and Wood, R.: Prospects for improving the representation of coastal and shelf seas in global ocean models, Geosci. Model Dev., 10, 499–523, https://doi.org/10.5194/gmd-10-499-2017, 2017.
Copernicus Marine In Situ Tac Data Management Team: Product User Manual for multiparameter Copernicus In Situ TAC (PUM), https://doi.org/10.13155/43494, 2021.
IPCC, 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., https://doi.org/10.1017/9781009325844, 2022.
Jacox, M. G., Edwards, C. A., Hazen, E. L., and Bograd, S. J.: Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the U.S. West Coast, J. Geophys. Res.-Oceans, 123, 7332–7350, https://doi.org/10.1029/2018JC014187, 2018.
Kaplan, D. M. and Largier, J. L.: HF radar-derived origin and destination of
surface waters off Bodega Bay, California, Deep-Sea Res. Pt. II, 53, 2906–2930, 2006.
Lachkar, Z. and Gruber, N.: What controls biological production in coastal upwelling systems? Insights from a comparative modeling study, Biogeosciences, 8, 2961–2976, https://doi.org/10.5194/bg-8-2961-2011, 2011.
Le Galloudec, O., Law Chune, S., Nouel, L., Fernandez, E., Derval, C.,
Tressol, M., Dussurget, R., Biardeau, A., and Tonani, M.: EU Copernicus
Marine Service Product User Manual for the Global Ocean Physics Analysis and
Forecast, GLOBAL_ANALYSISFORECAST_PHY_001_024, Issue: 1.9, Mercator Ocean
International
https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-024.pdf
(last access: 2 June 2023), 2022.
Lellouche, J.-M., Le Galloudec, O., Regnier, C., Van Gennip, S., Law Chune,
S., Levier, B., Greiner, E., Drevillon, M., and Szczypta, C.: EU Copernicus
Marine Service Quality Information Document for the Global Ocean Physics
Analysis and Forecast, GLOBAL_ANALYSISFORECAST_PHY_001_024, Issue: 1.0,
https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-024.pdf
(last access: 2 June 2023), 2022.
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018.
Llope, M., Anadón, R., Viesca, L., Quevedo, M., González-Quirós,
R., and Stenseth, N. C.: Hydrography of the southern Bay of Biscay shelf-break region: Integrating the multiscale physical variability over the period 1993–2003, J. Geophys. Res., 111, C09021, https://doi.org/10.1029/2005JC002963, 2006.
Lorente, P., Piedracoba, S., and Álvarez-Fanjul, E.: Validation of
high-frequency radar ocean surface current observations in the NW of the
Iberian Peninsula, Cont. Shelf Res., 92, 1–15, 2015.
Lorente, P., Piedracoba, S., Montero, P., Sotillo, M.G., Ruiz, M.I. and
Álvarez-Fanjul, E.: Comparative analysis of summer upwelling and
downwelling events in NW Spain: a model-observations approach, Remote Sens.,
12, 2762, https://doi.org/10.3390/rs12172762, 2020.
Lorente, P., Aguiar, E., Bendoni, M., Berta, M., Brandini, C., Cáceres-Euse, A., Capodici, F., Cianelli, D., Ciraolo, G., Corgnati, L., Dadić, V., Doronzo, B., Drago, A., Dumas, D., Falco, P., Fattorini, M., Gauci, A., Gómez, R., Griffa, A., Guérin, C.-A., Hernández-Carrasco, I., Hernández-Lasheras, J., Ličer, M., Magaldi, M. G., Mantovani, C., Mihanović, H., Molcard, A., Mourre, B., Orfila, A., Révelard, A., Reyes, E., Sánchez, J., Saviano, S., Sciascia, R., Taddei, S., Tintoré, J., Toledo, Y., Ursella, L., Uttieri, M., Vilibić, I., Zambianchi, E., and Cardin, V.: Coastal high-frequency radars in the Mediterranean – Part 1: Status of operations and a framework for future development, Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, 2022.
Madec, G. and the NEMO team: NEMO ocean engine, Note du Pôlede modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN 1288-1619, 2008.
Manso-Narvarte, I., Caballero, A., Rubio, A., Dufau, C., and Birol, F.: Joint analysis of coastal altimetry and high-frequency (HF) radar data: observability of seasonal and mesoscale ocean dynamics in the Bay of Biscay, Ocean Sci., 14, 1265–1281, https://doi.org/10.5194/os-14-1265-2018, 2018.
Mantovani, C., Corgnati, L., Horstmann, J., Rubio, A., Reyes, E., Quentin,
C., Cosoli, S., Asensio, J. L., Mader, J., and Griffa, A.: Best practices on
High Frequency Radar deployment and operation for ocean current measurement,
Frontiers in Marine Science, 7, 210, https://doi.org/10.3389/fmars.2020.00210, 2020.
Mourre, B., Reyes, E., Lorente, P., Santana, A., Hernández-Lasheras, J., Hernández-Carrasco, I., Garcia-Jove, M., and Zarokanellos, N. D.: Intense wind-driven coastal upwelling in the Balearic Islands in response to Storm Blas (November 2021), in: 7th edition of the Copernicus Ocean State Report (OSR7), edited by: von Schuckmann, K., Moreira, L., Le Traon, P.-Y., Grégoire, M., Marcos, M., Staneva, J., Brasseur, P., Garric, G., Lionello, P., Karstensen, J., and Neukermans, G., Copernicus Publications, State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023.
Paduan, J. D., Cook, M. S., and Tapia, V. M.: Patters of upwelling and
relaxation around Monterrey Bay based on long-term observations of surface
currents from High Frequency radar, Deep-Sea Res. Pt. II, 151, 129–136, 2018.
Picado, A., Álvarez, I., Vaz, N., and Dias, J. M.: Chlorophyll
concentration along the north-western coast of the Iberian Peninsula vs.
atmosphere-ocean-land conditions, J. Coast. Res., 65, 2047–2052, 2013.
Pitcher, G. C., Figueiras, F. G., Hickey, B. M., and Moita, M. T.: The physical oceanography of upwelling systems and the development of harmful algal blooms, Prog. Oceanogr., 85, 5–32, 2010.
Prego, R., Varela, M., deCastro, M., Ospina-Alvarez, N., Garcia-Soto, C., and
Gómez-Gesteira, M.: The influence of summer upwelling at the western
boundary of the Cantabrian coast. Estuarine, Coast. Shelf Sci., 98, 138–144, 2012.
Reyes, E., Aguiar, E., Bendoni, M., Berta, M., Brandini, C., Cáceres-Euse, A., Capodici, F., Cardin, V., Cianelli, D., Ciraolo, G., Corgnati, L., Dadić, V., Doronzo, B., Drago, A., Dumas, D., Falco, P., Fattorini, M., Fernandes, M. J., Gauci, A., Gómez, R., Griffa, A., Guérin, C.-A., Hernández-Carrasco, I., Hernández-Lasheras, J., Ličer, M., Lorente, P., Magaldi, M. G., Mantovani, C., Mihanović, H., Molcard, A., Mourre, B., Révelard, A., Reyes-Suárez, C., Saviano, S., Sciascia, R., Taddei, S., Tintoré, J., Toledo, Y., Uttieri, M., Vilibić, I., Zambianchi, E., and Orfila, A.: Coastal high-frequency radars in the Mediterranean – Part 2: Applications in support of science priorities and societal needs, Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, 2022.
Roarty, H., Cook, T., Hazard, L., Harlan, J., Cosoli, S., Wyatt, L., Fanjul,
E. A., Terrill, E., Otero, M., Largier, J., Glenn, S., Ebuchi, N.,
Whitehouse, B., Bartlett, K., Mader, J., Rubio, A., Corgnati, L. P.,
Mantovani, C., Griffa, A., Reyes, E., Lorente, P., Flores-Vidal, X.,
Rogowski, P., Prukpitikul, S., Lee, S. H., Lai, J. W., Guerin, C., Sanchez,
J., Hansen, B., Grilli, S., and Matta, K. S.: The Global High Frequency Radar
Network, Frontiers in Marine Science, 6, 164, https://doi.org/10.3389/fmars.2019.00164, 2019.
Roughan, M., Terril, E. J., Largier, J. L., and Otero, M.: Observations of
divergence and upwelling around Point Loma, California, J. Geophys. Res., 110, C04011, https://doi.org/10.1029/2004JC002662, 2005.
Rubio, A., Reverdin, G., Fontán, A., González, M., and Mader, J.:
Mapping near-inertial variability in the SE Bay of Biscay from HF radar data
and two offshore moored buoys, Geophys. Res. Lett., 38, L19607,
https://doi.org/10.1029/2011GL048783, 2011.
Rubio, A., Mader, J., Corgnati, L., Mantovani, C., Griffa, A., Novellino,
A., Quentin, C., Wyatt, L., Schulz-Stellenfleth, J., Horstmann, J., Lorente,
P., Zambianchi, E., Hartnett, M., Fernandes, C., Zervakis, V., Gorringe, P.,
Melet, A., and Puillat, I.: HF radar activity in European coastal seas: next
steps towards a pan-European HF radar network, Frontiers in Marine Science, 4, 8, https://doi.org/10.3389/fmars.2017.00008, 2017.
Rubio, A., Caballero, A., Orfila, A., Hernández-Carrasco, I., Ferrer,
L., González, M., Solabarrieta, L., and Mader, J.: Eddy-induced
cross-shelf export of high Chl-a coastal waters in the SE Bay of Biscay,
Remote Sens. Environ., 205, 290–304, https://doi.org/10.1016/j.rse.2017.10.037, 2018.
Solabarrieta, L., Rubio, A., Castanedo, S., Medina, R., Charria, G., and
Hernández, C.: Surface water circulation patterns in the southeastern
Bay of Biscay: New evidences from HF radar data, Cont. Shelf Res., 74, 60–76, https://doi.org/10.1016/j.csr.2013.11.022, 2014.
Solabarrieta, L., Rubio, A., Cárdenas, M., Castanedo, S., Esnaola, G.,
Méndez, F. J., Medina, R., and Ferrer, L.: Probabilistic relationships
between wind and surface water circulation patterns in the SE Bay of Biscay,
Ocean Dynam., 65, 1289–1303, https://doi.org/10.1007/s10236-015-0871-5, 2015.
Solabarrieta, L., Frolov, S., Cook, M., Paduan, J., Rubio, A., González,
M., Mader, J., and Charria, G.: Skill assessment of HF radar–derived
products for lagrangian simulations in the Bay of Biscay, J. Atmos. Ocean.
Tech., 33, 2585–2597, https://doi.org/10.1175/JTECH-D-16-0045.1, 2016.
Torres, R. and Barton, E. D.: Onset and development of the Iberian poleward
flow along the Galician coast, Cont. Shelf Res., 26, 1134–1153, 2006.
Torres, R., Barton, E. D., Miller, P., and Álvarez-Fanjul, E.: Spatial
patterns of wind and sea surface temperature in the Galician upwelling
region, J. Geophys. Res., 108, 3130, https://doi.org/10.1029/2002JC001361, 2003.
Trincardi, F., Cappelletto, M., Barvanti, A., Cadiou, J.-F., Bataille, A.,
Campillos Llanos, M., Chacón Campollo, E., and Trujillo Quintela, A.:
BlueMED, Preliminary implementation plan D2.9 (Core Document), European
Union's Horizon 2020, https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5d180fcbd&appId=PPGMS (last access: 28 June 2023), 2020.
Varela, R., Álvarez, I., Santos, F., deCastro, M., and
Gómez-Gesteira, M.: Has upwelling strengthened along worldwide coasts
over 1982–2010?, Scientific Reports, 5, 10016, https://doi.org/10.1038/srep10016, 2015.
Verbrugge, N., Etienne, H., Boone, C., Corgnati, L., Mantovani, C., Reyes,
E., Solabarrieta, L., Rubio, A., Rotllán, P., Carval, T., Mader, J., and
Drouineau, L.: EU Copernicus Marine Service Product User Manual for the
Global Ocean- in-situ Near real time observations of ocean currents,
INSITU_GLO_PHY_UV_DISCRETE_NRT_013_048, Issue: 2.2, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-INS-PUM-013-048.pdf
(last access: 2 June 2023), 2022a.
Verbrugge, N., Etienne, H., Corgnati, L., Mantovani, C., Reyes, E.,
Solabarrieta, L., Rubio, A., Carval, T., Mader, J., and Drouineau, L.: EU
Copernicus Marine Service Quality Information Document for the Global Ocean-
in-situ Near real time observations of ocean currents, INSITU_GLO_PHY_UV_DISCRETE_NRT_013_048, Issue: 2.2, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-INS-QUID-013-048.pdf
(last access: 2 June 2023), 2022b.
Wang, D., Gouhier, T., Menge, B., and Ganguly, A. R.: Intensification and spatial homogenization of coastal upwelling under climate change, Nature, 518, 390–394, https://doi.org/10.1038/nature14235, 2015.
Wehde, H., Schuckmann, K. V., Pouliquen, S., Grouazel, A., Bartolome, T.,
Tintore, J., De Alfonso Alonso-Munoyerro, M., Carval, T., Racapé, V., and
the INSTAC team: EU Copernicus Marine Service Quality Information Document
for the Atlantic Iberian Biscay Irish Ocean- In-Situ Near Real Time
Observations, INSITU_IBI_PHYBGCWAV_DISCRETE_MYNRT_013_033, Issue 2.2, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-INS-QUID-013-030-036.pdf
(last access: 2 June 2023), 2022.
Wilczak, J. M., Olson, J. B., Djalalova, I., Bianco, L., Berg, L. K., Shaw, W. J., Coulter, R. L., Eckman, R. M., Freedman, J., Finley, C., and Cline, J.: Data assimilation impact of in situ and remote sensing meteorological observations on wind power forecasts during the first Wind Forecast Improvement Project (WFIP), Wind Energy, 22, 932–944, https://doi.org/10.1002/we.2332, 2019.
Wooster, W. S., Bakun, A., and McLain, D. R.: Seasonal upwelling cycle along
eastern boundary of North-Atlantic, J. Mar. Res., 34, 131–141, 1976.
Worsfold, M., Good, S., Martin, M., McLaren, A., Roberts-Jones, J., and Fiedler, E.: EU Copernicus Marine Service Product User Manual for the Global Ocean OSTIA Sea Surface Temperature Reprocessing, SST-GLO-SST-L4-REP-OBSERVATIONS-010-011, Issue: 1.4, Mercator Ocean
International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-SST-PUM-010-011.pdf
(last access: 2 June 2023), 2022.
Worsfold, M., Good, S., McLaren, A., Fiedler, E., Roberts-Jones, J., and
Martin, M.: EU Copernicus Marine Service Quality Information Document for
the Global Ocean OSTIA Sea Surface Temperature Reprocessing,
SST-GLO-SST-L4-REP-OBSERVATIONS-010-011, Issue: 3.0, Mercator Ocean
International,
https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-SST-QUID-010-011.pdf
(last access: 2 June 2023), 2023.
Xiu, P., Chai, F., Curchitser, E. N., and Castruccio, F. S.: Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System, Scientific Reports, 8, 2866, https://doi.org/10.1038/s41598-018-21247-7, 2018.
Short summary
Upwelling is an important process that impacts water quality and aquaculture production in coastal areas. In this work we present a new methodology to monitor this phenomenon in two different regions by using surface current estimations provided by remote sensing technology called high-frequency radar.
Upwelling is an important process that impacts water quality and aquaculture production in...
Altmetrics
Final-revised paper
Preprint