Articles | Volume 1-osr7
https://doi.org/10.5194/sp-1-osr7-5-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-1-osr7-5-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Satellite monitoring of surface phytoplankton functional types in the Atlantic Ocean over 20 years (2002–2021)
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Marine Bretagnon
ACRI-ST, Sophia Antipolis CEDEX, France
Svetlana N. Losa
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
Vanda Brotas
MARE/ARNET – Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, Portugal
Mara Gomes
MARE/ARNET – Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, Portugal
Ilka Peeken
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Leonardo M. A. Alvarado
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Antoine Mangin
ACRI-ST, Sophia Antipolis CEDEX, France
Astrid Bracher
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Related authors
Hongyan Xi, Marine Bretagnon, Ehsan Mehdipour, Julien Demaria, Antoine Mangin, and Astrid Bracher
State Planet Discuss., https://doi.org/10.5194/sp-2024-15, https://doi.org/10.5194/sp-2024-15, 2024
Preprint under review for SP
Short summary
Short summary
To better understand the marine phytoplankton variability on different scales in both space and time, this study proposed a machine learning based scheme to provide continuous and consistent long-term observations of various phytoplankton groups from space on a global scale, which enables time series analysis for further trend and anomaly investigations. This study provides an essential ocean variable to help assess the ocean health in the biogeochemical aspect.
Wilken-Jon von Appen, Volker H. Strass, Astrid Bracher, Hongyan Xi, Cora Hörstmann, Morten H. Iversen, and Anya M. Waite
Ocean Sci., 16, 253–270, https://doi.org/10.5194/os-16-253-2020, https://doi.org/10.5194/os-16-253-2020, 2020
Short summary
Short summary
Nutrient-rich water is moved to the surface near continental margins. Then it forms rich but difficult to observe spatial structures of physical and biological/biogeochemical properties. Here we present a high resolution (2.5 km) section through such features obtained in May 2018 with a vehicle towed behind a ship. Considering that such interactions of physics and biology are common in the ocean, they likely strongly influence the productivity of such systems and their role in CO2 uptake.
Svetlana N. Losa, Stephanie Dutkiewicz, Martin Losch, Julia Oelker, Mariana A. Soppa, Scarlett Trimborn, Hongyan Xi, and Astrid Bracher
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-289, https://doi.org/10.5194/bg-2019-289, 2019
Manuscript not accepted for further review
Short summary
Short summary
This study highlights recent advances and challenges of applying coupled physical-biogeochemical modeling for investigating the distribution of the key phytoplankton groups in the Southern Ocean. By leveraging satellite and in situ observations we define numerical ecological model requirements in the phytoplankton trait specification and level of physiological and morphological differentiation for capturing and explaining the observed biogeography of diatoms, coccolithophores and Phaeocystis.
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2917, https://doi.org/10.5194/egusphere-2024-2917, 2024
Short summary
Short summary
This study represents the Primary marine organic aerosols (PMOA) emission, focusing on their sea-atmosphere transfer. Using the FESOM2.1-REcoM3 model, concentrations of key organic biomolecules were estimated and integrated into the ECHAM6.3–HAM2.3 aerosol-climate model. Results highlight the influence of marine biological activity and surface winds on PMOA emissions, with reasonably good agreement with observations improving aerosol representation in the Southern Oceans.
Hongyan Xi, Marine Bretagnon, Ehsan Mehdipour, Julien Demaria, Antoine Mangin, and Astrid Bracher
State Planet Discuss., https://doi.org/10.5194/sp-2024-15, https://doi.org/10.5194/sp-2024-15, 2024
Preprint under review for SP
Short summary
Short summary
To better understand the marine phytoplankton variability on different scales in both space and time, this study proposed a machine learning based scheme to provide continuous and consistent long-term observations of various phytoplankton groups from space on a global scale, which enables time series analysis for further trend and anomaly investigations. This study provides an essential ocean variable to help assess the ocean health in the biogeochemical aspect.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2491, https://doi.org/10.5194/egusphere-2024-2491, 2024
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere, 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability and extreme events. The 10-year-long high resolution simulations for the 2000s, 2030s, 2060s, 2090s were initialized from a coarser resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Matías Osorio, Alejandro Agesta, Tim Bösch, Nicolás Casaballe, Andreas Richter, Leonardo M. A. Alvarado, and Erna Frins
Atmos. Chem. Phys., 24, 7447–7465, https://doi.org/10.5194/acp-24-7447-2024, https://doi.org/10.5194/acp-24-7447-2024, 2024
Short summary
Short summary
This study concerns the detection and quantification of long-transport emissions of a biomass burning event, which represents a major source of air pollutants, due to the release of large amounts of aerosols and chemical species into the atmosphere. The quantification was done using ground-based observations (which play an important role in assessing the abundance of trace gases and aerosols) over Montevideo (Uruguay) and using satellite observations.
Sebastian Zeppenfeld, Manuela van Pinxteren, Markus Hartmann, Moritz Zeising, Astrid Bracher, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 15561–15587, https://doi.org/10.5194/acp-23-15561-2023, https://doi.org/10.5194/acp-23-15561-2023, 2023
Short summary
Short summary
Marine carbohydrates are produced in the surface of the ocean, enter the atmophere as part of sea spray aerosol particles, and potentially contribute to the formation of fog and clouds. Here, we present the results of a sea–air transfer study of marine carbohydrates conducted in the high Arctic. Besides a chemo-selective transfer, we observed a quick atmospheric aging of carbohydrates, possibly as a result of both biotic and abiotic processes.
Aleksandra Cherkasheva, Rustam Manurov, Piotr Kowalczuk, Alexandra N. Loginova, Monika Zabłocka, and Astrid Bracher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2495, https://doi.org/10.5194/egusphere-2023-2495, 2023
Preprint archived
Short summary
Short summary
We aimed to improve the quality of regional Greenland Sea primary production estimates. Seventy two versions of primary production model setups were tested against field data. Best performing models had local biomass and light absorption profiles. Thus by using local parametrizations for these parameters we can improve Arctic primary production model performance. Annual Greenland Sea basin estimates are larger than previously reported.
Hubert Loisel, Lucile Duforêt-Gaurier, Trung Kien Tran, Daniel Schaffer Ferreira Jorge, François Steinmetz, Antoine Mangin, Marine Bretagnon, and Odile Hembise Fanton d'Andon
State Planet, 1-osr7, 11, https://doi.org/10.5194/sp-1-osr7-11-2023, https://doi.org/10.5194/sp-1-osr7-11-2023, 2023
Short summary
Short summary
In this paper, we will show how a proxy for particulate composition (PPC), classifying the suspended particulate matter into its organic, mineral, or mixed fractions, can be estimated from remote-sensing observations. The selected algorithm will then be applied to MERIS observations (2002–2012) over global coastal waters to discuss the significance of this new product. A specific focus will be on the English Channel and the southern North Sea.
Valérie Gros, Bernard Bonsang, Roland Sarda-Estève, Anna Nikolopoulos, Katja Metfies, Matthias Wietz, and Ilka Peeken
Biogeosciences, 20, 851–867, https://doi.org/10.5194/bg-20-851-2023, https://doi.org/10.5194/bg-20-851-2023, 2023
Short summary
Short summary
The oceans are both sources and sinks for trace gases important for atmospheric chemistry and marine ecology. Here, we quantified selected trace gases (including the biological metabolites dissolved dimethyl sulfide, methanethiol and isoprene) along a 2500 km transect from the North Atlantic to the Arctic Ocean. In the context of phytoplankton and bacterial communities, our study suggests that methanethiol (rarely measured before) might substantially influence ocean–atmosphere cycling.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Hanna M. Kauko, Philipp Assmy, Ilka Peeken, Magdalena Różańska-Pluta, Józef M. Wiktor, Gunnar Bratbak, Asmita Singh, Thomas J. Ryan-Keogh, and Sebastien Moreau
Biogeosciences, 19, 5449–5482, https://doi.org/10.5194/bg-19-5449-2022, https://doi.org/10.5194/bg-19-5449-2022, 2022
Short summary
Short summary
This article studies phytoplankton (microscopic
plantsin the ocean capable of photosynthesis) in Kong Håkon VII Hav in the Southern Ocean. Different species play different roles in the ecosystem, and it is therefore important to assess the species composition. We observed that phytoplankton blooms in this area are formed by large diatoms with strong silica armors, which can lead to high silica (and sometimes carbon) export to depth and be important prey for krill.
M. A. Soppa, D. A. Dinh, B. Silva, F. Steinmetz, L. Alvarado, and A. Bracher
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 69–72, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-69-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-69-2022, 2022
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Christophe Lerot, François Hendrick, Michel Van Roozendael, Leonardo M. A. Alvarado, Andreas Richter, Isabelle De Smedt, Nicolas Theys, Jonas Vlietinck, Huan Yu, Jeroen Van Gent, Trissevgeni Stavrakou, Jean-François Müller, Pieter Valks, Diego Loyola, Hitoshi Irie, Vinod Kumar, Thomas Wagner, Stefan F. Schreier, Vinayak Sinha, Ting Wang, Pucai Wang, and Christian Retscher
Atmos. Meas. Tech., 14, 7775–7807, https://doi.org/10.5194/amt-14-7775-2021, https://doi.org/10.5194/amt-14-7775-2021, 2021
Short summary
Short summary
Global measurements of glyoxal tropospheric columns from the satellite instrument TROPOMI are presented. Such measurements can contribute to the estimation of atmospheric emissions of volatile organic compounds. This new glyoxal product has been fully characterized with a comprehensive error budget, with comparison with other satellite data sets as well as with validation based on independent ground-based remote sensing glyoxal observations.
Stefanie Arndt, Christian Haas, Hanno Meyer, Ilka Peeken, and Thomas Krumpen
The Cryosphere, 15, 4165–4178, https://doi.org/10.5194/tc-15-4165-2021, https://doi.org/10.5194/tc-15-4165-2021, 2021
Short summary
Short summary
We present here snow and ice core data from the northwestern Weddell Sea in late austral summer 2019, which allow insights into possible reasons for the recent low summer sea ice extent in the Weddell Sea. We suggest that the fraction of superimposed ice and snow ice can be used here as a sensitive indicator. However, snow and ice properties were not exceptional, suggesting that the summer surface energy balance and related seasonal transition of snow properties have changed little in the past.
Manuela van Pinxteren, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, Jens Voigtländer, Heike Wex, Tiera-Brandy Robinson, Stefan Barthel, Sebastian Zeppenfeld, Erik Hans Hoffmann, Marie Roveretto, Chunlin Li, Benoit Grosselin, Veronique Daële, Fabian Senf, Dominik van Pinxteren, Malena Manzi, Nicolás Zabalegui, Sanja Frka, Blaženka Gašparović, Ryan Pereira, Tao Li, Liang Wen, Jiarong Li, Chao Zhu, Hui Chen, Jianmin Chen, Björn Fiedler, Wolf von Tümpling, Katie Alana Read, Shalini Punjabi, Alastair Charles Lewis, James Roland Hopkins, Lucy Jane Carpenter, Ilka Peeken, Tim Rixen, Detlef Schulz-Bull, María Eugenia Monge, Abdelwahid Mellouki, Christian George, Frank Stratmann, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020, https://doi.org/10.5194/acp-20-6921-2020, 2020
Short summary
Short summary
An introduction to a comprehensive field campaign performed at the Cape Verde Atmospheric Observatory regarding ocean–atmosphere interactions is given. Chemical, physical, biological and meteorological techniques were applied, and measurements of bulk water, the sea surface microlayer, cloud water and ambient aerosol particles took place. Oceanic compounds were found to be transferred to atmospheric aerosol and to the cloud level; however, sea spray contributions to CCN and INPs were limited.
Jutta E. Wollenburg, Morten Iversen, Christian Katlein, Thomas Krumpen, Marcel Nicolaus, Giulia Castellani, Ilka Peeken, and Hauke Flores
The Cryosphere, 14, 1795–1808, https://doi.org/10.5194/tc-14-1795-2020, https://doi.org/10.5194/tc-14-1795-2020, 2020
Short summary
Short summary
Based on an observed omnipresence of gypsum crystals, we concluded that their release from melting sea ice is a general feature in the Arctic Ocean. Individual gypsum crystals sank at more than 7000 m d−1, suggesting that they are an important ballast mineral. Previous observations found gypsum inside phytoplankton aggregates at 2000 m depth, supporting gypsum as an important driver for pelagic-benthic coupling in the ice-covered Arctic Ocean.
Wilken-Jon von Appen, Volker H. Strass, Astrid Bracher, Hongyan Xi, Cora Hörstmann, Morten H. Iversen, and Anya M. Waite
Ocean Sci., 16, 253–270, https://doi.org/10.5194/os-16-253-2020, https://doi.org/10.5194/os-16-253-2020, 2020
Short summary
Short summary
Nutrient-rich water is moved to the surface near continental margins. Then it forms rich but difficult to observe spatial structures of physical and biological/biogeochemical properties. Here we present a high resolution (2.5 km) section through such features obtained in May 2018 with a vehicle towed behind a ship. Considering that such interactions of physics and biology are common in the ocean, they likely strongly influence the productivity of such systems and their role in CO2 uptake.
Leonardo M. A. Alvarado, Andreas Richter, Mihalis Vrekoussis, Andreas Hilboll, Anna B. Kalisz Hedegaard, Oliver Schneising, and John P. Burrows
Atmos. Chem. Phys., 20, 2057–2072, https://doi.org/10.5194/acp-20-2057-2020, https://doi.org/10.5194/acp-20-2057-2020, 2020
Short summary
Short summary
We present CHOCHO and HCHO columns retrieved from measurements by TROPOMI. Elevated amounts of CHOCHO and HCHO are observed during the fire season in BC, Canada, where a large number of fires occurred in 2018. CHOCHO and HCHO plumes from individual fires are observed in air masses travelling over distances of up to 1500 km. Comparison with FLEXPART simulations with different lifetimes shows that effective lifetimes of 20 h and more are needed to explain the observations.
Sinikka T. Lennartz, Marc von Hobe, Dennis Booge, Henry C. Bittig, Tim Fischer, Rafael Gonçalves-Araujo, Kerstin B. Ksionzek, Boris P. Koch, Astrid Bracher, Rüdiger Röttgers, Birgit Quack, and Christa A. Marandino
Ocean Sci., 15, 1071–1090, https://doi.org/10.5194/os-15-1071-2019, https://doi.org/10.5194/os-15-1071-2019, 2019
Short summary
Short summary
The ocean emits the gases carbonyl sulfide (OCS) and carbon disulfide (CS2), which affect our climate. The goal of this study was to quantify the rates at which both gases are produced in the eastern tropical South Pacific (ETSP), one of the most productive oceanic regions worldwide. Both gases are produced by reactions triggered by sunlight, but we found that the amount produced depends on different factors. Our results improve numerical models to predict oceanic concentrations of both gases.
Lisa K. Behrens, Andreas Hilboll, Andreas Richter, Enno Peters, Leonardo M. A. Alvarado, Anna B. Kalisz Hedegaard, Folkard Wittrock, John P. Burrows, and Mihalis Vrekoussis
Atmos. Chem. Phys., 19, 10257–10278, https://doi.org/10.5194/acp-19-10257-2019, https://doi.org/10.5194/acp-19-10257-2019, 2019
Short summary
Short summary
MAX-DOAS measurements were conducted on the research vessel Maria S. Merian during a cruise from the Azores to South Africa in October 2016. The measurements indicate enhanced levels of HCHO and CHOCHO over the remote Atlantic Ocean, which is unexpected due to their short lifetime. Precursors of these gases or gas–aerosol combinations might be transported. Model simulations indicate potential source regions over the African continent, probably related to biomass burning or biogenic emissions.
Svetlana N. Losa, Stephanie Dutkiewicz, Martin Losch, Julia Oelker, Mariana A. Soppa, Scarlett Trimborn, Hongyan Xi, and Astrid Bracher
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-289, https://doi.org/10.5194/bg-2019-289, 2019
Manuscript not accepted for further review
Short summary
Short summary
This study highlights recent advances and challenges of applying coupled physical-biogeochemical modeling for investigating the distribution of the key phytoplankton groups in the Southern Ocean. By leveraging satellite and in situ observations we define numerical ecological model requirements in the phytoplankton trait specification and level of physiological and morphological differentiation for capturing and explaining the observed biogeography of diatoms, coccolithophores and Phaeocystis.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford B. Hooker, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Hubert Loisel, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, https://doi.org/10.5194/essd-11-1037-2019, 2019
Short summary
Short summary
A compiled set of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2018) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Philippe Garnesson, Antoine Mangin, Odile Fanton d'Andon, Julien Demaria, and Marine Bretagnon
Ocean Sci., 15, 819–830, https://doi.org/10.5194/os-15-819-2019, https://doi.org/10.5194/os-15-819-2019, 2019
Short summary
Short summary
This paper concerns the GlobColour chlorophyll α products disseminated by the Copernicus Marine Environmental Monitoring Service (CMEMS). The strategies for merging and flagging remote-sensing data are discussed. Results are illustrated by comparing the CMEMS GlobColour products provided by ACRI-ST with the OC-CCI/C3S products. This highlights the capability of GlobColour to obtain a better spatial coverage and to ingest the OLCI data in complement with SeaWiFS, MERIS, MODIS and VIIRS sensors.
Udo Frieß, Steffen Beirle, Leonardo Alvarado Bonilla, Tim Bösch, Martina M. Friedrich, François Hendrick, Ankie Piters, Andreas Richter, Michel van Roozendael, Vladimir V. Rozanov, Elena Spinei, Jan-Lukas Tirpitz, Tim Vlemmix, Thomas Wagner, and Yang Wang
Atmos. Meas. Tech., 12, 2155–2181, https://doi.org/10.5194/amt-12-2155-2019, https://doi.org/10.5194/amt-12-2155-2019, 2019
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a widely used measurement technique for the detection of a variety of atmospheric trace gases. It enables the retrieval of aerosol and trace gas vertical profiles in the atmospheric boundary layer using appropriate retrieval algorithms. In this study, the ability of eight profile retrieval algorithms to reconstruct vertical profiles is assessed on the basis of synthetic measurements.
Dennis Booge, Cathleen Schlundt, Astrid Bracher, Sonja Endres, Birthe Zäncker, and Christa A. Marandino
Biogeosciences, 15, 649–667, https://doi.org/10.5194/bg-15-649-2018, https://doi.org/10.5194/bg-15-649-2018, 2018
Short summary
Short summary
Our isoprene data from field measurements in the mixed layer from the Indian Ocean and the eastern Pacific Ocean show that the ability of different phytoplankton functional types to produce isoprene seems to be mainly influenced by light, ocean temperature, salinity, and nutrients. By calculating in-field isoprene production rates, we demonstrate that an additional loss is needed to explain the measured isoprene concentration, which is potentially due to degradation or consumption by bacteria.
Cathleen Schlundt, Susann Tegtmeier, Sinikka T. Lennartz, Astrid Bracher, Wee Cheah, Kirstin Krüger, Birgit Quack, and Christa A. Marandino
Atmos. Chem. Phys., 17, 10837–10854, https://doi.org/10.5194/acp-17-10837-2017, https://doi.org/10.5194/acp-17-10837-2017, 2017
Short summary
Short summary
For the first time, oxygenated volatile organic carbon (OVOC) in the ocean and overlaying atmosphere in the western Pacific Ocean has been measured. OVOCs are important for atmospheric chemistry. They are involved in ozone production in the upper troposphere (UT), and they have a climate cooling effect. We showed that phytoplankton was an important source for OVOCs in the surface ocean, and when OVOCs are emitted into the atmosphere, they could reach the UT and might influence ozone formation.
Ruixiong Zhang, Yuhang Wang, Qiusheng He, Laiguo Chen, Yuzhong Zhang, Hang Qu, Charles Smeltzer, Jianfeng Li, Leonardo M. A. Alvarado, Mihalis Vrekoussis, Andreas Richter, Folkard Wittrock, and John P. Burrows
Atmos. Chem. Phys., 17, 3083–3095, https://doi.org/10.5194/acp-17-3083-2017, https://doi.org/10.5194/acp-17-3083-2017, 2017
Short summary
Short summary
We use short-lived reactive aromatics as proxies to diagnose transport of pollutants to Tibet. In situ observations of short-lived reactive aromatics across the Tibetan Plateau are analyzed using a regional chemistry and transport model. Our results suggest that the cut-off low system is a major pathway for long-range transport of pollutants such as black carbon. The modeling analysis reveals that even the state-of-the-science reanalysis cannot simulate this cut-off system accurately.
Sinikka T. Lennartz, Christa A. Marandino, Marc von Hobe, Pau Cortes, Birgit Quack, Rafel Simo, Dennis Booge, Andrea Pozzer, Tobias Steinhoff, Damian L. Arevalo-Martinez, Corinna Kloss, Astrid Bracher, Rüdiger Röttgers, Elliot Atlas, and Kirstin Krüger
Atmos. Chem. Phys., 17, 385–402, https://doi.org/10.5194/acp-17-385-2017, https://doi.org/10.5194/acp-17-385-2017, 2017
Short summary
Short summary
We present new sea surface and marine boundary layer measurements of carbonyl sulfide, the most abundant sulfur gas in the atmosphere, and calculate an oceanic emission estimate. Our results imply that oceanic emissions are very unlikely to account for the missing source in the atmospheric budget that is currently discussed for OCS.
Helmke Hepach, Birgit Quack, Susann Tegtmeier, Anja Engel, Astrid Bracher, Steffen Fuhlbrügge, Luisa Galgani, Elliot L. Atlas, Johannes Lampel, Udo Frieß, and Kirstin Krüger
Atmos. Chem. Phys., 16, 12219–12237, https://doi.org/10.5194/acp-16-12219-2016, https://doi.org/10.5194/acp-16-12219-2016, 2016
Short summary
Short summary
We present surface seawater measurements of bromo- and iodocarbons, which are involved in numerous atmospheric processes such as tropospheric and stratospheric ozone chemistry, from the highly productive Peruvian upwelling. By combining trace gas measurements, characterization of organic matter and phytoplankton species, and tropospheric modelling, we show that large amounts of iodocarbons produced from the pool of organic matter may contribute strongly to local tropospheric iodine loading.
Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Paul I. Palmer, Michael Schlundt, Elliot L. Atlas, Astrid Bracher, Eric S. Saltzman, and Douglas W. R. Wallace
Atmos. Chem. Phys., 16, 11807–11821, https://doi.org/10.5194/acp-16-11807-2016, https://doi.org/10.5194/acp-16-11807-2016, 2016
Short summary
Short summary
Isoprene, a biogenic trace gas, is an important precursor of secondary organic aerosol/cloud condensation nuclei. Here, we use isoprene and related field measurements from three different ocean data sets together with remotely sensed satellite data to model global marine isoprene emissions. Our findings suggest that there is at least one missing oceanic source of isoprene and possibly other unknown factors in the ocean or atmosphere influencing the atmospheric values.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Hervé Claustre, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford Hooker, Mati Kahru, Holger Klein, Susanne Kratzer, Hubert Loisel, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Alex J. Poulton, Michel Repecaud, Timothy Smyth, Heidi M. Sosik, Michael Twardowski, Kenneth Voss, Jeremy Werdell, Marcel Wernand, and Giuseppe Zibordi
Earth Syst. Sci. Data, 8, 235–252, https://doi.org/10.5194/essd-8-235-2016, https://doi.org/10.5194/essd-8-235-2016, 2016
Short summary
Short summary
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2012) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Qinghua Yang, Martin Losch, Svetlana N. Losa, Thomas Jung, Lars Nerger, and Thomas Lavergne
The Cryosphere, 10, 761–774, https://doi.org/10.5194/tc-10-761-2016, https://doi.org/10.5194/tc-10-761-2016, 2016
Short summary
Short summary
We assimilate the summer SICCI sea ice concentration data with an ensemble-based Kalman Filter. Comparing with the approach using a constant data uncertainty, the sea ice concentration estimates are further improved when the SICCI-provided uncertainty are taken into account, but the sea ice thickness cannot be improved. We find the data assimilation system cannot give a reasonable ensemble spread of sea ice concentration and thickness if the provided uncertainty are directly used.
B. Nechad, K. Ruddick, T. Schroeder, K. Oubelkheir, D. Blondeau-Patissier, N. Cherukuru, V. Brando, A. Dekker, L. Clementson, A. C. Banks, S. Maritorena, P. J. Werdell, C. Sá, V. Brotas, I. Caballero de Frutos, Y.-H. Ahn, S. Salama, G. Tilstone, V. Martinez-Vicente, D. Foley, M. McKibben, J. Nahorniak, T. Peterson, A. Siliò-Calzada, R. Röttgers, Z. Lee, M. Peters, and C. Brockmann
Earth Syst. Sci. Data, 7, 319–348, https://doi.org/10.5194/essd-7-319-2015, https://doi.org/10.5194/essd-7-319-2015, 2015
Short summary
Short summary
The CoastColour Round Robin (CCRR) project (European Space Agency) was designed to set up the first database for remote-sensing algorithm testing and accuracy assessment of water quality parameter retrieval in coastal waters, from satellite imagery. This paper analyses the CCRR database, which includes in situ bio-geochemical and optical measurements in various water types, match-up reflectance products from the MEdium Resolution Imaging Spectrometer (MERIS), and radiative transfer simulations.
H. Hepach, B. Quack, S. Raimund, T. Fischer, E. L. Atlas, and A. Bracher
Biogeosciences, 12, 6369–6387, https://doi.org/10.5194/bg-12-6369-2015, https://doi.org/10.5194/bg-12-6369-2015, 2015
Short summary
Short summary
This manuscript covers the first measurements of CHBr3, CH2Br2 and CH3I from the equatorial Atlantic during the Cold Tongue season, identifying this region and season as a source for these compounds. For the first time, we calculated diapycnal fluxes, and showed that the fluxes from below the mixed layer to the surface are not sufficient to balance the mixed layer budget. Hence, we conclude that mixed layer production has to take place despite a pronounced sub-mixed-layer-maximum.
T. Dinter, V. V. Rozanov, J. P. Burrows, and A. Bracher
Ocean Sci., 11, 373–389, https://doi.org/10.5194/os-11-373-2015, https://doi.org/10.5194/os-11-373-2015, 2015
A. Bracher, M. H. Taylor, B. Taylor, T. Dinter, R. Röttgers, and F. Steinmetz
Ocean Sci., 11, 139–158, https://doi.org/10.5194/os-11-139-2015, https://doi.org/10.5194/os-11-139-2015, 2015
Short summary
Short summary
We have developed a method to assess pigment concentrations from continuous optical measurements by applying an empirical orthogonal function analysis to remote-sensing reflectance data derived from hyperspectral ship-based and multispectral satellite measurements in the Atlantic Ocean. The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study phytoplankton composition and photophysiology.
E. Peters, F. Wittrock, A. Richter, L. M. A. Alvarado, V. V. Rozanov, and J. P. Burrows
Atmos. Meas. Tech., 7, 4203–4221, https://doi.org/10.5194/amt-7-4203-2014, https://doi.org/10.5194/amt-7-4203-2014, 2014
Short summary
Short summary
In this study, a correction spectrum accounting for insufficiencies in commonly used liquid water absorption spectra in DOAS applications is retrieved from ship-borne field measurements. The correction spectrum compensates at the same time for broadband parts of vibrational Raman scattering. With this, an entire compensation of liquid water spectral effects in DOAS applications was achieved.
L. M. A. Alvarado, A. Richter, M. Vrekoussis, F. Wittrock, A. Hilboll, S. F. Schreier, and J. P. Burrows
Atmos. Meas. Tech., 7, 4133–4150, https://doi.org/10.5194/amt-7-4133-2014, https://doi.org/10.5194/amt-7-4133-2014, 2014
Short summary
Short summary
An improved glyoxal retrieval for OMI measurements using the DOAS method has been developed. The retrieval is based on sensitivity tests for the selection of most appropriate retrieval parameters. Also, corrections for reduction of interferences with other species have been applied. In addition, the link between pyrogenic emissions and glyoxal over regions with large wildfires have been investigated, and showed that fires are an important source of glyoxal.
H. Hepach, B. Quack, F. Ziska, S. Fuhlbrügge, E. L. Atlas, K. Krüger, I. Peeken, and D. W. R. Wallace
Atmos. Chem. Phys., 14, 1255–1275, https://doi.org/10.5194/acp-14-1255-2014, https://doi.org/10.5194/acp-14-1255-2014, 2014
W. Cheah, B. B. Taylor, S. Wiegmann, S. Raimund, G. Krahmann, B. Quack, and A. Bracher
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-12115-2013, https://doi.org/10.5194/bgd-10-12115-2013, 2013
Revised manuscript not accepted
G. Wetzel, H. Oelhaf, G. Berthet, A. Bracher, C. Cornacchia, D. G. Feist, H. Fischer, A. Fix, M. Iarlori, A. Kleinert, A. Lengel, M. Milz, L. Mona, S. C. Müller, J. Ovarlez, G. Pappalardo, C. Piccolo, P. Raspollini, J.-B. Renard, V. Rizi, S. Rohs, C. Schiller, G. Stiller, M. Weber, and G. Zhang
Atmos. Chem. Phys., 13, 5791–5811, https://doi.org/10.5194/acp-13-5791-2013, https://doi.org/10.5194/acp-13-5791-2013, 2013
C. Zindler, A. Bracher, C. A. Marandino, B. Taylor, E. Torrecilla, A. Kock, and H. W. Bange
Biogeosciences, 10, 3297–3311, https://doi.org/10.5194/bg-10-3297-2013, https://doi.org/10.5194/bg-10-3297-2013, 2013
A. Cherkasheva, E.-M. Nöthig, E. Bauerfeind, C. Melsheimer, and A. Bracher
Ocean Sci., 9, 431–445, https://doi.org/10.5194/os-9-431-2013, https://doi.org/10.5194/os-9-431-2013, 2013
Cited articles
Aiken, J., Pradhan, Y., Barlow, R., Lavender, S., Poulton, A., Holligan, P.,
and Hardman-Mountford, N.: Phytoplankton pigments and functional types in
the Atlantic Ocean: A decadal assessment, 1995–2005, Deep-Sea Res. Pt. II, 56, 899–917, https://doi.org/10.1016/j.dsr2.2008.09.017, 2009.
Alvarado, L. M. A., Soppa, M. A., Gege, P., Losa, S. N., Dröscher, I., Xi, H., and Bracher, A.: Retrievals of the main phytoplankton groups at Lake
Constance using OLCI, DESIS, and evaluated with field observations, 12th
EARSeL Workshop on Imaging Spectroscopy, Potsdam, Germany, 22–24 June 2022,
https://elib.dlr.de/189789, 2022.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model:
Procedures, data sources and analysis, NOAA technical memorandum NESDIS
NGDC-24, National Geophysical Data Center, NOAA [data set],
https://doi.org/10.7289/V5C8276M, 2009.
Antoine, D., Morel, A., Gordon, H. R., Banzon, V. F., and Evans, R. H.:
Bridging ocean color observations of the 1980s and 2000s in search of
long-term trends, J. Geophys. Res.-Oceans, 110, C06009,
https://doi.org/10.1029/2004JC002620, 2005.
Behrenfeld, M. J., O'Malley R. T., Boss, E. S., Westberry, T. K., Graff, J.
R., Halsey, K. H., Milligan, A. J., Siegel, D. A., and Brown, M. B.:
Revaluating ocean warming impacts on global phytoplankton, Nat. Clim.
Change, 6, 3223–3330, https://doi.org/10.1038/nclimate2838, 2016.
Bindoff, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder,
V. A., Hallberg, R., Hilmi, N., Jiao, N., Karim, M. S., Levin, L., O'Donoghue, S., Purca Cuicapusa, S. R., Rinkevich, B., Suga, T., Tagliabue,
A., and Williamson, P.: Changing Ocean, Marine Ecosystems, and Dependent
Communities, in: IPCC Special Report on the Ocean and Cryosphere in a
Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P, Tignor, M., Poloczanska, E., Mintenbeck, K.,
Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N.
M., Cambridge University Press, Cambridge, UK and New York, NY, USA,
447–587, https://doi.org/10.1017/9781009157964.007, 2019.
Bolaños, L. M., Karp-Boss, L., Choi, C. J., Worden, A. Z., Graff., J.
R., Haëntjens, N., Chase, A. P., Della Penna, A., Gaube, P., Morison,
F., Menden-Deuer, S., Westberry, T. K., O'Malley, R. T., Boss, E.,
Behrenfeld, M. J., and Glovannoni, S. J.: Small phytoplankton dominate
western North Atlantic biomass, The ISME Journal, 14, 1663–1674,
https://doi.org/10.1038/s41396-020-0636-0, 2020.
Bracher, A., Bouman, H. A., Brewin, R. J. W., Bricaud, A., Brotas, V.,
Ciotti, A. M., Clementson, L., Devred, E., Di Cicco, A., Dutkiewicz, S.,
Hardman-Mountford, N. J., Hickman, A. E., Hieronymi, M., Hirata, T., Losa,
S. N., Mouw, C. B., Organelli, E., Raitsos, D. E., Uitz, J., Vogt, M., and
Wolanin, A.: Obtaining phytoplankton diversity from ocean color: a
scientific roadmap for future development, Front. Mar. Sci., 4, 1–15,
https://doi.org/10.3389/fmars.2017.00055, 2017.
Bracher, A., Xi, H., Dinter, T., Mangin, A., Strass, V. H., von Appen, W.-J., and Wiegmann, S.: High resolution water column phytoplankton composition across the Atlantic Ocean from ship-towed vertical undulating radiometry, Front. Mar. Sci., 7, 235, https://doi.org/10.3389/fmars.2020.00235, 2020.
Bracher, A., Brewin, R. J. W., Ciotti, A. M., Clementson, L. A., Hirata, T., Kostadinov, T., Mouw, C. B., and Organelli, E.: Applications of satellite
remote sensing technology to the analysis of phytoplankton community
structure on large scales, in: Advances in Phytoplankton Ecology, edited by: Clementson, L. A., Eriksen, R. S., and Willis, A., Elsevier, 217–244,
https://doi.org/10.1016/B978-0-12-822861-6.00015-7, 2022.
Brewin, R. J. W., Sathyendranath, S., Jackson, T., Barlow, R., Brotas, V.,
Airs, R., and Lamont, T.: Influence of light in the mixed-layer on the
parameters of a three-component model of phytoplankton size class, Remote
Sens. Environ., 168, 437–450, https://doi.org/10.1016/j.rse.2015.07.004, 2015.
Brewin, R. J. W., Tilstone, G. H., Jackson, T., Cain, T., Miller, P. I.,
Lange, P. K., Misra, A., and Airs, R. L.: Modelling size-fractionated
primary production in the Atlantic Ocean from remote sensing, Prog.
Oceanogr., 158, 130–149, https://doi.org/10.1016/j.pocean.2017.02.002, 2017.
Brotas, V., Brewin, R. J. W., Sa, C., Brito, A. C., Silva, A., Mendes, C. R., Diniz, T., Kaufmann, M., Tarran, G., Groom, S. B., Platt, T., and Sathyendranath, S.: Deriving phytoplankton size classes from satellite data:
Validation along a trophic gradient in the eastern Atlantic Ocean, Remote
Sens. Environ., 134, 66–77, https://doi.org/10.1016/j.rse.2013.02.013, 2013.
Brotas, V., Tarran, G. A., Veloso, V., Brewin, R. J. W., Woodward, E. M. S.,
Airs, R., Beltran, C., Ferreira, A., and Groom, S. B.: Complementary Approaches to Assess Phytoplankton Groups and Size Classes on a Long
Transect in the Atlantic Ocean, Front. Mar. Sci., 8, 682621,
https://doi.org/10.3389/fmars.2021.682621, 2022.
Colella, S., Böhm, E., Cesarini, C., Garnesson, P., Netting, J., and Calton, B.: EU Copernicus Marine Service Product User Manual for Ocean Colour Products, Issue 3.0, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-OC-PUM.pdf (last access: 22 March 2023), 2022.
Deppeler, S. L. and Davidson, A. T.: Southern Ocean Phytoplankton in a
Changing Climate, Front. Mar. Sci., 4, 40, https://doi.org/10.3389/fmars.2017.00040, 2017.
EU Copernicus Marine Service Product: Global Ocean Colour (Copernicus-GlobColour), Bio-Geo-Chemical, L4 (monthly and interpolated) from Satellite Observations (1997-ongoing), Mercator Ocean International [data set], https://doi.org/10.48670/moi-00281, 2022.
Flanders Marine Institute: Longhurst Provinces, Marine Regions, Flanders Marine Institute [data set],
https://www.marineregions.org/sources.php#longhurst (last access: 5 May 2022), 2009.
Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincon, J., Zabala, L. L.,
Jiao, N., Karl, D. M., Li, W. K. W., Lomas, M. W., Veneziano, D., Vera, C.
S., Vrugt, J. A., and Martiny, A. C.: Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus, P. Natl. Acad. Sci. USA, 110, 9824–9829, https://doi.org/10.1073/pnas.1307701110, 2013.
Garnesson, P., Mangin, A., Bretagnon, M., and Jutard, Q.: EU Copernicus Marine Service Quality Information Document (QUID) for OC TAC Products OCEANCOLOUR OBSERVATIONS GlobColour, Issue 3.0, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-OC-QUID-009-101to104-111-113-116-118.pdf (last access: 22 March 2023), 2022.
Gregg, W. W. and Rousseaux, C. S.: Decadal trends in global pelagic ocean
chlorophyll: A new assessment integrating multiple satellites, in situ data,
and models, J. Geophys. Res.-Oceans, 119, 5921–5933,
https://doi.org/10.1002/2014JC010158, 2014.
Gruber, N.: Warming up, turning sour, losing breath: Ocean biogeochemistry
under global change, Philos. T. Roy. Soc. A, 369, 1980–1996, https://doi.org/10.1098/rsta.2011.0003, 2011.
Gruber, N., Boyd, P. W., Frölicher T. L., and Vogt, M.: Biogeochemical
extremes and compound events in the ocean, Nature, 600, 395–407,
https://doi.org/10.1038/s41586-021-03981-7, 2021.
Head, E. J. H. and Pepin, P.: Monitoring changes in phytoplankton abundance
and composition in the Northwest Atlantic: a comparison of results obtained
by continuous plankton recorder sampling and colour satellite imagery, J.
Plankton Res., 32, 1649–1660, https://doi.org/10.1093/plankt/fbq120, 2010.
Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., John, J., and Beaulieu, C.: Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity, Biogeosciences, 7, 621–640, https://doi.org/10.5194/bg-7-621-2010, 2010.
Henson, S. A., Beaulieu, C., and Lampitt, R.: Observing climate change
trends in ocean biogeochemistry: when and where, Glob. Change Biol., 22,
1561–1571, https://doi.org/10.1111/gcb.13152, 2016.
Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken, J., Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., and Yamanaka, Y.: Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types, Biogeosciences, 8, 311–327, https://doi.org/10.5194/bg-8-311-2011, 2011.
IOCCG: Phytoplankton Functional Types from Space, in: Reports of International Ocean Colour Coordinating Group (IOCCG), Report Number 15, edited by: Sathyendranath, S., IOCCG, Dartmouth, Nova Scotia, Canada, 154 pp., https://doi.org/10.25607/OBP-106, 2014.
Jackson, T.: ESA Ocean Colour Climate Change Initiative – Phase 3 Product, User Guide for v5.0 Dataset, Issue 1.0, ESA/ESRIN, https://docs.pml.space/share/s/okB2fOuPT7Cj2r4C5sppDg (last access: 30 March 2023), 2020.
Käse, L. and Geuer, J. K.: Phytoplankton Responses to Marine Climate
Change – An Introduction, in: YOUMARES 8 – Oceans Across Boundaries:
Learning from each other, edited by: Jungblut, S., Liebich, V., and Bode B.,
SpringerOpen, Cham, Switzerland, 55–71, https://doi.org/10.1007/978-3-319-93284-2, 2018.
Kulk, G., Platt, T., Dingle, J., Jackson, T., Jönsson, B. F., Bouman, H.
A., Babin, M., Brewin, R. J. W., Doblin, M., Estrada, M., Figueiras, F. G.,
Furuya, K., González-Benítez, N., Gudfinnsson, H. G., Gudmundsson, K., Huang, B., Isada, T., Kovac, Z., Lutz, V. A., Maranon, E., Raman, M., Richardson, K., Rozema, P. D., van de Poll, W. H., Segura, V., Tilstone, G. H., Uitz, J., van Dongen-Vogels, V., Yoshikawa, T., and Sathyendranath, S.: Primary Production, an Index of Climate Change in the Ocean: Satellite-Based Estimates over Two Decades, Remote Sens.-Basel, 12, 826,
https://doi.org/10.3390/rs12050826, 2020.
Lange, P. K., Werdell, P. J., Erickson, Z. K., Dall'Olmo, G., Brewin, R. J. W., Zubkov, M. V., Tarran, G. A., Bouman, H. A., Slade, W. H., Craig, S. E.,
Poulton, N. J., Bracher, A., Lomas, M. W., and Cetinić, I.: Radiometric
approach for the detection of picophytoplankton assemblages across oceanic
fronts, Opt. Express, 28, 25682–25705, https://doi.org/10.1364/OE.398127, 2020.
Longhurst, A. R.: Ecological Geography of the Sea, Academic Press,
Cambridge, Massachusetts, U.S.A., 542 pp.,
https://doi.org/10.1016/B978-0-12-455521-1.X5000-1, 2007.
Losa, S. N., Soppa, M. A., Dinter, T., Wolanin, A., Brewin, R. J. W., Bricaud, A., Oelker, J., Peeken, I., Gentili, B., Rozanov, V., and Bracher, A.: Synergistic Exploitation of Hyper- and Multi-Spectral Precursor Sentinel
Measurements to Determine Phytoplankton Functional Types (SynSenPFT), Front.
Mar. Sci., 4, 1–22, https://doi.org/10.3389/fmars.2017.00203, 2017.
McClain, C. R.: A decade of satellite ocean color observations, Annu. Rev.
Mar. Sci., 1, 19–42, https://doi.org/10.1146/annurev.marine.010908.163650, 2009.
Mélin, F. and Franz, B. A.: Chapter 6.1 – Assessment of satellite ocean colour radiometry and derived geophysical products, Experimental Methods in the Physical Sciences, 47, 609–638, https://doi.org/10.1016/B978-0-12-417011-7.00020-9, 2014.
Moisan, T. A., Rufty, K. M., Moisan, J. R., and Linkswiler, M. A.: Satellite
Observations of Phytoplankton Functional Type Spatial Distributions,
Phenology, Diversity, and Ecotones, Front. Mar. Sci., 4, 189,
https://doi.org/10.3389/fmars.2017.00189, 2017.
Neukermans, G., Oziel, L., and Babin, M.: Increased intrusion of warming
Atlantic water leads to rapid expansion of temperate phytoplankton in the
Arctic, Glob. Change Biol., 24, 2545–2553, https://doi.org/10.1111/gcb.14075, 2018.
Nöthig, E. M., Bracher, A., Engel, A., Metfies, K., Niehoff, B., Peeken,
I., Bauerfeind, E., Cherkasheva, A., Gäbler-Schwarz, S., Hardge, K.,
Kilias, E., Kraft, A., Kidane, Y. M., Lalande, C., Piontek, J., Thomisch, K.,
and Wurst, M.: Summertime plankton ecology in Fram Strait – a compilation
of long- and short-term observations, Polar Res., 34, 23349,
https://doi.org/10.3402/polar.v34.23349, 2015.
Nöthig, E. M., Ramondenc, S., Haas, A., Hehemann, L., Walter, A., Bracher, A., Lalande, C., Metfies, K., Peeken, I., Bauerfeind, E., and Boetius, A.: Summertime Chlorophyll a and Particulate Organic Carbon Standing Stocks in Surface Waters of the Fram Strait and the Arctic Ocean (1991–2015), Front. Mar. Sci., 7, 350, https://doi.org/10.3389/fmars.2020.00350, 2020.
Oziel, L., Baudena, A., Ardyna, M., Massicotte, P., Randelhoff, A., Sallée, J.-B., Ingvaldsen, R. B., Devred, E., and Babin, M.: Faster Atlantic currents drive poleward expansion of temperate phytoplankton in the Arctic Ocean, Nat. Commun., 11, 1705, https://doi.org/10.1038/s41467-020-15485-5, 2020.
Pardo, S., Jackson, T., Taylor, B., Netting, J., Calton, B., and Howey, B.: EU Copernicus Marine Service Quality Information Document (QUID) for OC TAC Products – Atlantic and Arctic Observation Products, Issue 2.2, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-OC-QUID-009-066-067-068-069-088-091.pdf (last access: 22 March 2022), 2020.
Quéré, C. L., Harrison, S. P., Colin Prentice, I., Buitenhuis, E. T., Aumont, O., Bopp, L., Claustre, H., Cotrim Da Cunha, L., Geider, R., Giraud, X., Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz, J., Watson, A. J., and Wolf-Gladrow, D.: Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models, Glob. Change Biol., 11, 2016–2040, https://doi.org/10.1111/j.1365-2486.2005.1004.x, 2005.
Reyes-Prieto, A., Yoon, H. S., and Bhattacharya, D.: Marine Algal Genomics
and Evolution, in: Encyclopedia of Ocean Sciences, 2nd edn., edited by: Steele, J. H., Academic Press, 552–559, https://doi.org/10.1016/B978-012374473-9.00779-7, 2009.
Sathyendranath, S., Brewin, R. J. W., Brockmann, C., Brotas, V., Calton, B.,
Chuprin, A., Cipollini, P., Couto, A. B., Dingle, J., Doerffer, R., Donlon,
C., Dowell, M., Farman, A., Grant, M., Groom, S., Horseman, A., Jackson, T.,
Krasemann, H., Lavender, S., Martinez-Vicente, V., Mazeran, C., Mélin,
F., Moore, T. S., Müller, D., Regner, P., Roy, S., Steele, C., Steinmetz, F., Swinton, J., Taberner, M., Thompson, A., Valente, A., Zühlke, M., Brando, V. E., Feng, H., Feldman, G., Franz, B. A., Frouin, R., Gould, R. W., Hooker, S. B., Kahru, M., Kratzer, S., Mitchell, B. G., Muller-Karger, F. E., Sosik, H. M., Voss, K. J., Werdell, J., and Platt, T.: An ocean-colour time series for use in climate studies: The experience of the Ocean-Colour Climate Change Initiative (OC-CCI), Sensors, 19, 4285, https://doi.org/10.3390/s19194285, 2019.
Soppa, M. A., Völker, C., and Bracher, A.: Diatom Phenology in the
Southern Ocean: Mean Patterns, Trends and the Role of Climate Oscillations,
Remote Sens.-Basel, 8, 420, https://doi.org/10.3390/rs8050420, 2016.
Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical distribution
of phytoplankton communities in open ocean: An assessment based on surface
chlorophyll, J. Geophys. Res.-Oceans, 111, C08005,
https://doi.org/10.1029/2005JC003207, 2006.
van Oostende, M., Hieronymi, M., Krasemann, H., Baschek, B., and
Röttgers, R.: Correction of inter-mission inconsistencies in merged
ocean colour satellite data, Front. Remote Sens., 3, 1–17,
https://doi.org/10.3389/frsen.2022.882418, 2022.
Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A., and Marty, J.-C.:
Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter, J. Geophys. Res.-Oceans, 106, 19939–19956, https://doi.org/10.1029/1999JC000308, 2001.
von Schuckmann, K., Le Traon, P.., Smith, N., Pascual, N., Samuel Djavidnia,
S., Gattuso, J., and Grégoire, M. (Eds.): Copernicus Marine Service
Ocean State Report, Issue 5 Supplement, J. Oper. Oceanogr., 14, 1–185,
https://doi.org/10.1080/1755876X.2021.1946240, 2021.
Xi, H., Losa, S. N., Mangin, A., Soppa, M. A., Garnesson, P., Demaria, J.,
Liu, Y., d'Andon, O. H. F., and Bracher, A.: A global retrieval algorithm of
phytoplankton functional types: Towards the applications to CMEMS GlobColour
merged products and OLCI data, Remote Sens. Environ., 240, 111704,
https://doi.org/10.1016/j.rse.2020.111704?, 2020.
Xi, H., Losa, S. N., Mangin, A., Garnesson, P., Bretagnon, M., Demaria, J.,
Soppa, M. A., d'Andon, O. H. F., and Bracher, A.: Global chlorophyll a
concentrations of phytoplankton functional types with detailed uncertainty
assessment using multi-sensor ocean color and sea surface temperature
satellite products, J. Geophys. Res.-Oceans, 126, e2020JC017127,
https://doi.org/10.1029/2020JC017127, 2021.
Xi, H., Peeken, I., Gomes, M., Brotas, V., Tilstone, G., Brewin, R. J. W.,
Dall'Olmo, G., Tracana, A., Alvarado, L. M. A., Murawski, S., Wiegmann, S.,
and Bracher, A.: Phytoplankton pigment concentrations and phytoplankton
groups measured on water samples collected from various expeditions in the
Atlantic Ocean from 71∘ S to 84∘ N, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.954738, 2023.
Yang, B., Boss, E. S., Haëntjens, N., Long, M. C., Behrenfeld, M. J.,
Eveleth, R., and Doney, S. C.: Phytoplankton phenology in the North Atlantic: Insights from profiling float measurements, Front. Mar. Sci., 7, 139, https://doi.org/10.3389/fmars.2020.00139, 2020.
Short summary
Continuous monitoring of phytoplankton groups using satellite data is crucial for understanding global ocean phytoplankton variability on different scales in both space and time. This study focuses on four important phytoplankton groups in the Atlantic Ocean to investigate their trend, anomaly and phenological characteristics both over the whole region and at subscales. This study paves the way to promote potentially important ocean monitoring indicators to help sustain the ocean health.
Continuous monitoring of phytoplankton groups using satellite data is crucial for understanding...
Altmetrics
Final-revised paper
Preprint