Articles | Volume 1-osr7
https://doi.org/10.5194/sp-1-osr7-4-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-1-osr7-4-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
South Atlantic overturning and heat transport variations in ocean reanalyses and observation-based estimates
Jonathan Andrew Baker
CORRESPONDING AUTHOR
Met Office, Exeter, UK
Richard Renshaw
Met Office, Exeter, UK
Laura Claire Jackson
Met Office, Exeter, UK
Clotilde Dubois
Mercator Ocean International, Toulouse, France
Doroteaciro Iovino
Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy
European Centre for Medium-Range Weather Forecasts, Reading, UK
Renellys C. Perez
Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, USA
Shenfu Dong
Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, USA
Marion Kersalé
Direction Générale de l'Armement, Ingénierie des projets, Paris, France
Michael Mayer
University of Vienna, Vienna, Austria
European Centre for Medium-Range Weather Forecasts, Reading, UK
Johannes Mayer
University of Vienna, Vienna, Austria
Sabrina Speich
Laboratoire de Météorologie Dynamique–IPSL, Ecole Normale Supérieure, Paris, France
Tarron Lamont
University of Cape Town, Cape Town, South Africa
Department of Environment, Forestry and Fisheries, Oceans and Coasts Research Branch, Cape Town, South Africa
Bayworld Centre for Research and Education, Cape Town, South Africa
Related authors
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc’h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-3143, https://doi.org/10.5194/egusphere-2024-3143, 2024
Short summary
Short summary
We describe major improvements of the Met Office's global ocean-sea ice forecasting system. The models and the way observations are used to improve the forecasts were changed, which led to a significant error reduction of 1-day forecasts. The new system performance in past conditions, where sub-surface observations are scarce, was improved with more consistent ocean heat content estimates. The new system will be of better use for climate studies and will provide improved forecasts for end users.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Luisa Chiara Meiritz, Tim Rixen, Anja Karin van der Plas, Tarron Lamont, and Niko Lahajnar
Biogeosciences, 21, 5261–5276, https://doi.org/10.5194/bg-21-5261-2024, https://doi.org/10.5194/bg-21-5261-2024, 2024
Short summary
Short summary
Moored and drifting sediment trap experiments in the northern (nBUS) and southern (sBUS) Benguela Upwelling System showed that active carbon fluxes by vertically migrating zooplankton were about 3 times higher in the sBUS than in the nBUS. Despite these large variabilities, the mean passive particulate organic carbon (POC) fluxes were almost equal in the two subsystems. The more intense near-bottom oxygen minimum layer seems to lead to higher POC fluxes and accumulation rates in the nBUS.
Yawouvi Dodji Soviadan, Miriam Beck, Joelle Habib, Alberto Baudena, Laetitia Drago, Alexandre Accardo, Remi Laxenaire, Sabrina Speich, Peter Brandt, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3302, https://doi.org/10.5194/egusphere-2024-3302, 2024
Short summary
Short summary
Key parameters representing the gravity flux in global models are the sinking speed and the vertical attenuation of the exported material. We calculate for the first time, these parameters in situ for 6 intermittent blooms followed by export events using high-resolution (3 days) time series of 0–1000 m depth profiles from imaging sensor mounted on an Argo float. We show that sinking speed depends not only on size but also on the morphology of the particles, density being an important property.
Francesco Cocetta, Lorenzo Zampieri, Julia Selivanova, and Doroteaciro Iovino
The Cryosphere, 18, 4687–4702, https://doi.org/10.5194/tc-18-4687-2024, https://doi.org/10.5194/tc-18-4687-2024, 2024
Short summary
Short summary
Arctic sea ice is thinning and retreating because of global warming. Thus, the region is transitioning to a new state featuring an expansion of the marginal ice zone, a region where mobile ice interacts with waves from the open ocean. By analyzing 30 years of sea ice reconstructions that combine numerical models and observations, this paper proves that an ensemble of global ocean and sea ice reanalyses is an adequate tool for investigating the changing Arctic sea ice cover.
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc’h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-3143, https://doi.org/10.5194/egusphere-2024-3143, 2024
Short summary
Short summary
We describe major improvements of the Met Office's global ocean-sea ice forecasting system. The models and the way observations are used to improve the forecasts were changed, which led to a significant error reduction of 1-day forecasts. The new system performance in past conditions, where sub-surface observations are scarce, was improved with more consistent ocean heat content estimates. The new system will be of better use for climate studies and will provide improved forecasts for end users.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Yan Barabinot, Sabrina Speich, and Xavier Carton
EGUsphere, https://doi.org/10.22541/essoar.169833426.64842571/v1, https://doi.org/10.22541/essoar.169833426.64842571/v1, 2024
Short summary
Short summary
Mesoscale eddies are ubiquitous rotating currents in the ocean. Some eddies called "Materially Coherent" are able to transport a different water mass from the surrounding water. By analyzing 3D eddies structures sampled during oceanographic cruises, we found that eddies can be nonmaterially coherent accounting only for their surface properties, but materially coherent considering their properties at depth. Future studies cannot rely solely on satellite data to evaluate heat and salt transport.
Alexandre Accardo, Rémi Laxenaire, Alberto Baudena, Sabrina Speich, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1558, https://doi.org/10.5194/egusphere-2024-1558, 2024
Short summary
Short summary
The open ocean helps mitigate climate change by storing CO2 through the biological carbon pump (BCP). The BCP involves processes like phytoplankton capturing CO2 and sequestering it in the deep ocean via marine snow production. We found significant marine snow accumulation from the surface to 600 meters deep in frontal regions between eddies. We suggest that the coupling of hydrodynamics at eddy edges and biological activity (via planktonic organisms) may enhanced this process.
Jozef Skakala, David Ford, Keith Haines, Amos Lawless, Matthew Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Mike Bell, Davi Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
EGUsphere, https://doi.org/10.5194/egusphere-2024-1737, https://doi.org/10.5194/egusphere-2024-1737, 2024
Short summary
Short summary
In this paper we review marine data assimilation (MDA) in the UK, its stakeholders, needs, past and present developments in different areas of UK MDA, and offer a vision for their longer future. The specific areas covered are ocean physics and sea ice, marine biogeochemistry, coupled MDA, MDA informing observing network design and MDA theory. We also discuss future vision for MDA resources: observations, software, hardware and people skills.
Julia Selivanova, Doroteaciro Iovino, and Francesco Cocetta
The Cryosphere, 18, 2739–2763, https://doi.org/10.5194/tc-18-2739-2024, https://doi.org/10.5194/tc-18-2739-2024, 2024
Short summary
Short summary
Climate models show differences in sea ice representation in comparison to observations. Increasing the model resolution is a recognized way to improve model realism and obtain more reliable future projections. We find no strong impact of resolution on sea ice representation; it rather depends on the analysed variable and the model used. By 2050, the marginal ice zone (MIZ) becomes a dominant feature of the Arctic ice cover, suggesting a shift to a new regime similar to that in Antarctica.
Susanna Winkelbauer, Michael Mayer, and Leopold Haimberger
Geosci. Model Dev., 17, 4603–4620, https://doi.org/10.5194/gmd-17-4603-2024, https://doi.org/10.5194/gmd-17-4603-2024, 2024
Short summary
Short summary
Oceanic transports shape the global climate, but the evaluation and validation of this key quantity based on reanalysis and model data are complicated by the distortion of the used modelling grids and the large number of different grid types. We present two new methods that allow the calculation of oceanic fluxes of volume, heat, salinity, and ice through almost arbitrary sections for various models and reanalyses that are independent of the used modelling grids.
Elena Bianco, Doroteaciro Iovino, Simona Masina, Stefano Materia, and Paolo Ruggieri
The Cryosphere, 18, 2357–2379, https://doi.org/10.5194/tc-18-2357-2024, https://doi.org/10.5194/tc-18-2357-2024, 2024
Short summary
Short summary
Changes in ocean heat transport and surface heat fluxes in recent decades have altered the Arctic Ocean heat budget and caused warming of the upper ocean. Using two eddy-permitting ocean reanalyses, we show that this has important implications for sea ice variability. In the Arctic regional seas, upper-ocean heat content acts as an important precursor for sea ice anomalies on sub-seasonal timescales, and this link has strengthened since the 2000s.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Doroteaciro Iovino, Pier Giuseppe Fogli, and Simona Masina
Geosci. Model Dev., 16, 6127–6159, https://doi.org/10.5194/gmd-16-6127-2023, https://doi.org/10.5194/gmd-16-6127-2023, 2023
Short summary
Short summary
This paper describes the model performance of three global ocean–sea ice configurations, from non-eddying (1°) to eddy-rich (1/16°) resolutions. Model simulations are obtained following the Ocean Model Intercomparison Project phase 2 (OMIP2) protocol. We compare key global climate variables across the three models and against observations, emphasizing the relative advantages and disadvantages of running forced ocean–sea ice models at higher resolution.
Johannes Mayer, Leopold Haimberger, and Michael Mayer
Earth Syst. Dynam., 14, 1085–1105, https://doi.org/10.5194/esd-14-1085-2023, https://doi.org/10.5194/esd-14-1085-2023, 2023
Short summary
Short summary
This study investigates the temporal stability and reliability of winter-month trends of air–sea heat fluxes from ERA5 forecasts over the North Atlantic basin for the period 1950–2019. Driving forces of trends and the impact of modes of climate variability and analysis increments on air–sea heat fluxes are investigated. Finally, a new and independent estimate of the Atlantic Meridional Overturning Circulation weakening is provided and associated with a decrease in air–sea heat fluxes.
Michael Mayer, Takamasa Tsubouchi, Susanna Winkelbauer, Karin Margretha H. Larsen, Barbara Berx, Andreas Macrander, Doroteaciro Iovino, Steingrímur Jónsson, and Richard Renshaw
State Planet, 1-osr7, 14, https://doi.org/10.5194/sp-1-osr7-14-2023, https://doi.org/10.5194/sp-1-osr7-14-2023, 2023
Short summary
Short summary
This paper compares oceanic fluxes across the Greenland–Scotland Ridge (GSR) from ocean reanalyses to largely independent observational data. Reanalyses tend to underestimate the inflow of warm waters of subtropical Atlantic origin and hence oceanic heat transport across the GSR. Investigation of a strong negative heat transport anomaly around 2018 highlights the interplay of variability on different timescales and the need for long-term monitoring of the GSR to detect forced climate signals.
Richard Renshaw, Eileen Bresnan, Susan Kay, Robert McEwan, Peter I. Miller, and Paul Tett
State Planet, 1-osr7, 13, https://doi.org/10.5194/sp-1-osr7-13-2023, https://doi.org/10.5194/sp-1-osr7-13-2023, 2023
Short summary
Short summary
There were two unusual blooms in Scottish waters in summer 2021. Both turned the sea a turquoise colour visible from space, typical of coccolithophore blooms. We use reanalysis and satellite data to examine the environment that led to these blooms. We suggest unusual weather was a contributory factor in both cases.
Andrea Cipollone, Deep Sankar Banerjee, Doroteaciro Iovino, Ali Aydogdu, and Simona Masina
Ocean Sci., 19, 1375–1392, https://doi.org/10.5194/os-19-1375-2023, https://doi.org/10.5194/os-19-1375-2023, 2023
Short summary
Short summary
Sea-ice volume is characterized by low predictability compared to the sea ice area or the extent. A joint initialization of the thickness and concentration using satellite data could improve the predictive power, although it is still absent in the present global analysis–reanalysis systems. This study shows a scheme to correct the two features together that can be easily extended to include ocean variables. The impact of such a joint initialization is shown and compared among different set-ups.
Magdalena Fritz, Michael Mayer, Leopold Haimberger, and Susanna Winkelbauer
Ocean Sci., 19, 1203–1223, https://doi.org/10.5194/os-19-1203-2023, https://doi.org/10.5194/os-19-1203-2023, 2023
Short summary
Short summary
The interaction between the Indonesian Throughflow (ITF) and regional climate phenomena indicates the high relevance for monitoring the ITF. Observations remain temporally and spatially limited; hence near-real-time monitoring is only possible with reanalyses. We assess how well ocean reanalyses depict the intensity of the ITF via comparison to observations. The results show that reanalyses agree reasonably well with in situ observations; however, some aspects require higher-resolution products.
Saeed Hariri, Sabrina Speich, Bruno Blanke, and Marina Lévy
Ocean Sci., 19, 1183–1201, https://doi.org/10.5194/os-19-1183-2023, https://doi.org/10.5194/os-19-1183-2023, 2023
Short summary
Short summary
This work presents a series of studies conducted by the authors on the application of the Lagrangian approach for the connectivity analysis between different ocean locations in an idealized open-ocean model. We assess how the connectivity properties of typical oceanic flows are affected by the fine-scale circulation and discuss the challenges facing ocean connectivity estimates related to the spatial resolution. Our results are important to improve the understanding of marine ecosystems.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Laura C. Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev., 16, 1975–1995, https://doi.org/10.5194/gmd-16-1975-2023, https://doi.org/10.5194/gmd-16-1975-2023, 2023
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult; however, it is unclear whether TPs exist in global climate models. Here, we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic Hosing Model Intercomparison Project (NAHosMIP).
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Denis L. Volkov, Claudia Schmid, Leah Chomiak, Cyril Germineaud, Shenfu Dong, and Marlos Goes
Ocean Sci., 18, 1741–1762, https://doi.org/10.5194/os-18-1741-2022, https://doi.org/10.5194/os-18-1741-2022, 2022
Short summary
Short summary
Ocean and atmosphere dynamics redistribute heat and freshwater, which drives regional sea level changes. This study reports on the east-to-west propagation of sea level anomalies in the subpolar North Atlantic as an important component of the interannual to decadal regional sea level variability. It is demonstrated that this variability is the result of a complex interplay between the local wind forcing, surface heat fluxes, and the advection of heat and freshwater by ocean currents.
Giulia Bonino, Doroteaciro Iovino, Laurent Brodeau, and Simona Masina
Geosci. Model Dev., 15, 6873–6889, https://doi.org/10.5194/gmd-15-6873-2022, https://doi.org/10.5194/gmd-15-6873-2022, 2022
Short summary
Short summary
The sea surface temperature (SST) is highly influenced by the transfer of energy driven by turbulent air–sea fluxes (TASFs). In the NEMO ocean general circulation model, TASFs are computed by means of bulk formulas. Bulk formulas require the choice of a given bulk parameterization, which influences the magnitudes of the TASFs. Our results show that parameterization-related SST differences are primarily sensitive to the wind stress differences across parameterizations.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Marion Kersalé, Denis L. Volkov, Kandaga Pujiana, and Hong Zhang
Ocean Sci., 18, 193–212, https://doi.org/10.5194/os-18-193-2022, https://doi.org/10.5194/os-18-193-2022, 2022
Short summary
Short summary
The southern Indian Ocean is one of the major basins for regional heat accumulation and sea level rise. The year-to-year changes of regional sea level are influenced by water exchange with the Pacific Ocean via the Indonesian Throughflow. Using a general circulation model, we show that the spatiotemporal pattern of these changes is primarily set by local wind forcing modulated by El Niño–Southern Oscillation, while oceanic signals originating in the Pacific can amplify locally forced signals.
Susanna Winkelbauer, Michael Mayer, Vanessa Seitner, Ervin Zsoter, Hao Zuo, and Leopold Haimberger
Hydrol. Earth Syst. Sci., 26, 279–304, https://doi.org/10.5194/hess-26-279-2022, https://doi.org/10.5194/hess-26-279-2022, 2022
Short summary
Short summary
We evaluate Arctic river discharge using in situ observations and state-of-the-art reanalyses, inter alia the most recent Global Flood Awareness System (GloFAS) river discharge reanalysis version 3.1. Furthermore, we combine reanalysis data, in situ observations, ocean reanalyses, and satellite data and use a Lagrangian optimization scheme to close the Arctic's volume budget on annual and seasonal scales, resulting in one reliable and up-to-date estimate of every volume budget term.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021, https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary
Short summary
Seasonal variations of processes such as upwelling and biological production that happen along the northwestern African coast can modulate the temporal variability of the biological activity of the adjacent open North Atlantic hundreds of kilometers away from the coast thanks to the lateral transport of coastal organic carbon. This happens with a temporal delay, which is smaller than a season up to roughly 500 km from the coast due to the intense transport by small-scale filaments.
Pierre Bosser, Olivier Bock, Cyrille Flamant, Sandrine Bony, and Sabrina Speich
Earth Syst. Sci. Data, 13, 1499–1517, https://doi.org/10.5194/essd-13-1499-2021, https://doi.org/10.5194/essd-13-1499-2021, 2021
Short summary
Short summary
In the framework of the EUREC4A campaign, water vapour measurements were retrieved over the tropical west Atlantic Ocean from GNSS data acquired from three research vessels (R/Vs Atalante, Maria S. Merian and Meteor). The retrievals from R/Vs Atalante and Meteor are shown to be of high quality unlike the results for the R/V Maria S. Merian. These ship-borne retrievals are intended to be used for the description and understanding of meteorological phenomena that occurred during the campaign.
Claudia Christine Stephan, Sabrina Schnitt, Hauke Schulz, Hugo Bellenger, Simon P. de Szoeke, Claudia Acquistapace, Katharina Baier, Thibaut Dauhut, Rémi Laxenaire, Yanmichel Morfa-Avalos, Renaud Person, Estefanía Quiñones Meléndez, Gholamhossein Bagheri, Tobias Böck, Alton Daley, Johannes Güttler, Kevin C. Helfer, Sebastian A. Los, Almuth Neuberger, Johannes Röttenbacher, Andreas Raeke, Maximilian Ringel, Markus Ritschel, Pauline Sadoulet, Imke Schirmacher, M. Katharina Stolla, Ethan Wright, Benjamin Charpentier, Alexis Doerenbecher, Richard Wilson, Friedhelm Jansen, Stefan Kinne, Gilles Reverdin, Sabrina Speich, Sandrine Bony, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 491–514, https://doi.org/10.5194/essd-13-491-2021, https://doi.org/10.5194/essd-13-491-2021, 2021
Short summary
Short summary
The EUREC4A field campaign took place in the western tropical Atlantic during January and February 2020. A total of 811 radiosondes, launched regularly (usually 4-hourly) from Barbados, and 4 ships measured wind, temperature, and relative humidity. They sampled atmospheric variability associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. The methods of data collection and post-processing for the radiosonde data are described here.
Beena Balan-Sarojini, Steffen Tietsche, Michael Mayer, Magdalena Balmaseda, Hao Zuo, Patricia de Rosnay, Tim Stockdale, and Frederic Vitart
The Cryosphere, 15, 325–344, https://doi.org/10.5194/tc-15-325-2021, https://doi.org/10.5194/tc-15-325-2021, 2021
Short summary
Short summary
Our study for the first time shows the impact of measured sea ice thickness (SIT) on seasonal forecasts of all the seasons. We prove that the long-term memory present in the Arctic winter SIT is helpful to improve summer sea ice forecasts. Our findings show that realistic SIT initial conditions to start a forecast are useful in (1) improving seasonal forecasts, (2) understanding errors in the forecast model, and (3) recognizing the need for continuous monitoring of world's ice-covered oceans.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Ben I. Moat, David A. Smeed, Eleanor Frajka-Williams, Damien G. Desbruyères, Claudie Beaulieu, William E. Johns, Darren Rayner, Alejandra Sanchez-Franks, Molly O. Baringer, Denis Volkov, Laura C. Jackson, and Harry L. Bryden
Ocean Sci., 16, 863–874, https://doi.org/10.5194/os-16-863-2020, https://doi.org/10.5194/os-16-863-2020, 2020
Short summary
Short summary
The RAPID 26° N array has been measuring the Atlantic meridional overturning circulation (AMOC) since 2004. Since 2009 the AMOC has, compared with previous years, been in a low state. In 2013–2015, in the northern North Atlantic, strong cooling was observed in the ocean and anticipated to intensify the strength of the AMOC some years later. Here, we analyse the latest results from 26° N and conclude that while the AMOC has increased since 2009, this increase is not statistically significant.
Torben Koenigk, Ramon Fuentes-Franco, Virna Meccia, Oliver Gutjahr, Laura C. Jackson, Adrian L. New, Pablo Ortega, Christopher Roberts, Malcolm Roberts, Thomas Arsouze, Doroteaciro Iovino, Marie-Pierre Moine, and Dmitry V. Sein
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-41, https://doi.org/10.5194/os-2020-41, 2020
Revised manuscript not accepted
Short summary
Short summary
The mixing of water masses into the deep ocean in the North Atlantic is important for the entire global ocean circulation. We use seven global climate models to investigate the effect of increasing the model resolution on this deep ocean mixing. The main result is that increased model resolution leads to a deeper mixing of water masses in the Labrador Sea but has less effect in the Greenland Sea. However, most of the models overestimate the deep ocean mixing compared to observations.
Malcolm J. Roberts, Alex Baker, Ed W. Blockley, Daley Calvert, Andrew Coward, Helene T. Hewitt, Laura C. Jackson, Till Kuhlbrodt, Pierre Mathiot, Christopher D. Roberts, Reinhard Schiemann, Jon Seddon, Benoît Vannière, and Pier Luigi Vidale
Geosci. Model Dev., 12, 4999–5028, https://doi.org/10.5194/gmd-12-4999-2019, https://doi.org/10.5194/gmd-12-4999-2019, 2019
Short summary
Short summary
We investigate the role that horizontal grid spacing plays in global coupled climate model simulations, together with examining the efficacy of a new design of simulation experiments that is being used by the community for multi-model comparison. We found that finer grid spacing in both atmosphere and ocean–sea ice models leads to a general reduction in bias compared to observations, and that once eddies in the ocean are resolved, several key climate processes are greatly improved.
Hao Zuo, Magdalena Alonso Balmaseda, Steffen Tietsche, Kristian Mogensen, and Michael Mayer
Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, https://doi.org/10.5194/os-15-779-2019, 2019
Short summary
Short summary
OCEAN5 is the fifth generation of the ocean and sea-ice analysis system at ECMWF. It was used for production of historical ocean and sea-ice states from 1979 onwards and is also used for generating real-time ocean and sea-ice states responsible for initializing the operational ECMWF weather forecasting system. This is a valuable data set with broad applications. A description of the OCEAN5 system and an assessment of the historical data set have been documented in this reference paper.
Siren Rühs, Franziska U. Schwarzkopf, Sabrina Speich, and Arne Biastoch
Ocean Sci., 15, 489–512, https://doi.org/10.5194/os-15-489-2019, https://doi.org/10.5194/os-15-489-2019, 2019
Short summary
Short summary
We revisit the sources for the upper limb of the overturning circulation in the South Atlantic by tracking fluid particles in a high-resolution ocean model. Our results suggest that the upper limb’s transport is dominantly supplied by waters with Indian Ocean origin, but the contribution of waters with Pacific origin is substantially larger than previously estimated with coarse-resolution models. Yet, a large part of upper limb waters obtains thermohaline properties within the South Atlantic.
Christopher D. Roberts, Retish Senan, Franco Molteni, Souhail Boussetta, Michael Mayer, and Sarah P. E. Keeley
Geosci. Model Dev., 11, 3681–3712, https://doi.org/10.5194/gmd-11-3681-2018, https://doi.org/10.5194/gmd-11-3681-2018, 2018
Short summary
Short summary
This paper presents climate model configurations of the European Centre for Medium-Range Weather Forecasts Integrated Forecast System (ECMWF-IFS) for different combinations of ocean and atmosphere resolution. These configurations are used to perform multi-decadal experiments following the protocols of the High Resolution Model Intercomparison Project (HighResMIP) and phase 6 of the Coupled Model Intercomparison Project (CMIP6).
Marion Kersalé, Tarron Lamont, Sabrina Speich, Thierry Terre, Remi Laxenaire, Mike J. Roberts, Marcel A. van den Berg, and Isabelle J. Ansorge
Ocean Sci., 14, 923–945, https://doi.org/10.5194/os-14-923-2018, https://doi.org/10.5194/os-14-923-2018, 2018
Steffen Tietsche, Magdalena Alonso-Balmaseda, Patricia Rosnay, Hao Zuo, Xiangshan Tian-Kunze, and Lars Kaleschke
The Cryosphere, 12, 2051–2072, https://doi.org/10.5194/tc-12-2051-2018, https://doi.org/10.5194/tc-12-2051-2018, 2018
Short summary
Short summary
We compare Arctic sea-ice thickness from L-band microwave satellite observations and an ocean–sea ice reanalysis. There is good agreement for some regions and times but systematic discrepancy in others. Errors in both the reanalysis and observational products contribute to these discrepancies. Thus, we recommend proceeding with caution when using these observations for model validation or data assimilation. At the same time we emphasise their unique value for improving sea-ice forecast models.
Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, Hao Zuo, Johnny A. Johannessen, Martin G. Scharffenberg, Luciana Fenoglio-Marc, M. Joana Fernandes, Ole Baltazar Andersen, Sergei Rudenko, Paolo Cipollini, Graham D. Quartly, Marcello Passaro, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, https://doi.org/10.5194/essd-10-281-2018, 2018
Short summary
Short summary
Sea level is one of the best indicators of climate change and has been listed as one of the essential climate variables. Sea level measurements have been provided by satellite altimetry for 25 years, and the Climate Change Initiative (CCI) program of the European Space Agency has given the opportunity to provide a long-term, homogeneous and accurate sea level record. It will help scientists to better understand climate change and its variability.
Marianne Pietschnig, Michael Mayer, Takamasa Tsubouchi, Andrea Storto, Sebastian Stichelberger, and Leopold Haimberger
Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-98, https://doi.org/10.5194/os-2017-98, 2017
Revised manuscript not accepted
Short summary
Short summary
New estimates of volume and temperature transports into the Arctic Ocean through the four major gateways (Davis, Fram and Bering Strait and the Barents Sea Opening) have recently become available. These estimates are derived from moored observations. In this study, the same transports derived from a recent ocean reanalysis are compared to the observation-based estimates in the straits. In addition, cross-section plots of velocity, temperature and temperature flux density are investigated.
Verena Haid, Doroteaciro Iovino, and Simona Masina
The Cryosphere, 11, 1387–1402, https://doi.org/10.5194/tc-11-1387-2017, https://doi.org/10.5194/tc-11-1387-2017, 2017
Short summary
Short summary
Since the Antarctic sea ice extent shows a recent increase, we investigate the sea ice response to changed amount and distribution of surface freshwater addition in the Southern Ocean with the ocean–sea ice model NEMO/LIM2. We find that freshwater addition within the range of current estimates increases the ice extent, but higher amounts could have an opposing effect. The freshwater distribution is of great influence on the ice dynamics and the ice thickness is strongly influenced by it.
Petteri Uotila, Doroteaciro Iovino, Martin Vancoppenolle, Mikko Lensu, and Clement Rousset
Geosci. Model Dev., 10, 1009–1031, https://doi.org/10.5194/gmd-10-1009-2017, https://doi.org/10.5194/gmd-10-1009-2017, 2017
Short summary
Short summary
We performed ocean model simulations with new and old sea-ice components. Sea ice improved in the new model compared to the earlier one due to better model physics. In the ocean, the largest differences are confined close to the surface within and near the sea-ice zone. The global ocean circulation slowly deviates between the simulations due to dissimilar sea ice in the deep water formation regions, such as the North Atlantic and Antarctic.
Christopher S. Meinen, Silvia L. Garzoli, Renellys C. Perez, Edmo Campos, Alberto R. Piola, Maria Paz Chidichimo, Shenfu Dong, and Olga T. Sato
Ocean Sci., 13, 175–194, https://doi.org/10.5194/os-13-175-2017, https://doi.org/10.5194/os-13-175-2017, 2017
Short summary
Short summary
This study investigates the variability of the Deep Western Boundary Current at 34.5° S. This current carries a large part of the cold deep limb of the Meridional Overturning Circulation, which is a crucial part of the ocean system and has impacts on global weather patterns. Study of this current in the South Atlantic has been limited in the past, and this new study provides insights into the strength and variability of the current as well as the causes for the observed changes.
Doroteaciro Iovino, Simona Masina, Andrea Storto, Andrea Cipollone, and Vladimir N. Stepanov
Geosci. Model Dev., 9, 2665–2684, https://doi.org/10.5194/gmd-9-2665-2016, https://doi.org/10.5194/gmd-9-2665-2016, 2016
Short summary
Short summary
An 11-year simulation of a global eddying ocean (1/16) configuration is presented. Model performance is evaluated against observations and a twin 1/4 configuration. The model realistically represents the variability at upper and intermediate depths, the position and strength of the surface circulation, and exchanges of mass through key passages. Sea ice properties are close to satellite observations. This simulation constitutes the groundwork for future applications to short range ocean forecasting.
Cited articles
Baker, J., Renshaw, R., Jackson, L., Dubois, C., Iovino, D., and Zuo, H.: Overturning variations in the subpolar North Atlantic in an ocean reanalyses ensemble, in: Copernicus Marine Service Ocean State Report, Issue 6, Supplement, J. Oper. Oceanogr., 15, S16–S20, https://doi.org/10.1080/1755876X.2022.2095169, 2022.
Baker, J. A., Watson, A. J., and Vallis, G. K.: Meridional overturning circulation in a multibasin model. Part I: Dependence on southern ocean buoyancy forcing, J. Phys. Oceanogr., 50, 1159–1178,
https://doi.org/10.1175/JPO-D-19-0135.1, 2020.
Baker, J. A., Watson, A. J., and Vallis, G. K.: Meridional Overturning
Circulation in a Multibasin Model. Part II: Sensitivity to Diffusivity and
Wind in Warm and Cool Climates, J. Phys. Oceanogr., 51, 1813–1828,
https://doi.org/10.1175/JPO-D-20-0121.1, 2021.
Biastoch, A., Schwarzkopf, F. U., Getzlaff, K., Rühs, S., Martin, T., Scheinert, M., Schulzki, T., Handmann, P., Hummels, R., and Böning, C. W.: Regional imprints of changes in the Atlantic Meridional Overturning Circulation in the eddy-rich ocean model VIKING20X, Ocean Sci., 17, 1177–1211, https://doi.org/10.5194/os-17-1177-2021, 2021.
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of
the Atlantic Meridional Overturning Circulation: A review, Rev.
Geophys., 54, 5–63, https://doi.org/10.1002/2015RG000493, 2016.
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.: Observed
fingerprint of a weakening Atlantic Ocean overturning circulation, Nature, 556, 191–196, https://doi.org/10.1038/s41586-018-0006-5,
2018.
Caínzos, V., Hernández-Guerra, A., McCarthy, G. D., McDonagh, E.
L., Cubas Armas, M., and Pérez-Hernández, M. D.: Thirty Years of
GOSHIP and WOCE Data: Atlantic Overturning of Mass, Heat, and Freshwater
Transport, Geophys. Res. Lett., 49, e2021GL096527,
https://doi.org/10.1029/2021GL096527, 2022.
Chidichimo, M. P., Perez, R. C., Speich, S., Kersalé, M., Sprintall, J.,
Dong, S., Lamont, T., Sato, O. T., Chereskin, T. K., Hummels, R., and
Schmid, C.: Energetic overturning flows, dynamic interocean exchanges, and
ocean warming observed in the South Atlantic, Communications Earth &
Environment, 4, 1–20, https://doi.org/10.1038/s43247-022-00644-x, 2023.
Collins, M., Sutherland, M., Bouwer, L., Cheong, S.-M., Frölicher, T., Jacot Des Combes, H., Koll Roxy, M., Losada, I., McInnes, K., Ratter, B., Rivera-Arriaga, E., Susanto, R., Swingedouw, D., and Tibig, L.: Extremes, Abrupt Changes and Managing Risk, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 589–655, https://doi.org/10.1017/9781009157964.008, 2019.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. v., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q.
J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Desportes, C., Garric, G., Régnier, C,, Drévillon, M., Parent, L.,
Drillet, Y., Masina, S., Storto, A., Mirouze, I., Cipollone, A., Zuo, H.,
Balmaseda, M., Peterson, D., Wood, R., Jackson, L., Mulet, S., Greiner, E., and Gounou, A.: EU Copernicus Marine Service Quality Information Document for the Global Ocean Reanalysis Multi-model Ensemble Products,
GLOBAL-REANALYSIS-PHY-001-031, Issue 1.1, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-031.pdf (last access: 5 April 2023), 2022.
Dong, S., Garzoli, S., Baringer, M., Meinen, C., and Goni, G.: Interannual
variations in the Atlantic meridional overturning circulation and its
relationship with the net northward heat transport in the South Atlantic,
Geophys. Res. Lett., 36, L20606, https://doi.org/10.1029/2009GL039356, 2009.
Dong, S., Goni, G., and Bringas, F.: Temporal variability of the South
Atlantic Meridional Overturning Circulation between 20∘ S and
35∘ S, Geophys. Res. Lett., 42, 7655–7662,
https://doi.org/10.1002/2015GL065603, 2015.
Dong, S., Goni, G., Domingues, R., Bringas, F., Goes, M., Christophersen,
J., and Baringer, M.: Synergy of In Situ and Satellite Ocean Observations in
Determining Meridional Heat Transport in the Atlantic Ocean, J. Geophys. Res.-Oceans, 126, e2020JC017073, https://doi.org/10.1029/2020JC017073, 2021.
Drévillon, M., Lellouche, J. M., Régnier, C., Garric, G., Bricaud, C., Hernandez, O., and Bourdallé-Badie, R.: EU Copernicus Marine Service
Quality Information Document for the Global Ocean Physical Multi Year
Product, GLOBAL_MULTIYEAR_PHY_001_030, Issue 1.6, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-030.pdf
(last access: 5 April 2023), 2022a.
Drévillon, M., Fernandez, E., and Lellouche, J. M.: EU Copernicus Marine
Service Product User Manual for the Global Ocean Physical Multi Year
Product, GLOBAL_MULTIYEAR_PHY_001_030, Issue 1.4, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-030.pdf
(last access: 5 April 2023), 2022b.
EU Copernicus Marine Service Product: Global Ocean Ensemble Reanalysis,
Mercator Ocean International [data set], https://doi.org/10.48670/moi-00024, 2022a.
EU Copernicus Marine Service Product: Global Ocean Physics Reanalysis,
Mercator Ocean International [data set], https://doi.org/10.48670/moi-00021, 2022b.
Frajka-Williams, E., Ansorge, I. J., Baehr, J., Bryden, H. L., Chidichimo,
M. P., Cunningham, S. A., Danabasoglu, G., Dong, S., Donohue, K. A., Elipot,
S., Heimbach, P., Holliday, N. P., Hummels, R., Jackson, L. C., Karstensen,
J., Lankhorst, M., le Bras, I. A., Susan Lozier, M., McDonagh, E. L.,
Meinen, C. S., Mercier, H., Moat, B. I., Perez, R. C., Piecuch, C. G.,
Rhein, M., Srokosz, M. A., Trenberth, K. E., Bacon, S., Forget, G., Goni,
G., Kieke, D., Koelling, J., Lamont, T., McCarthy, G. D., Mertens, C., Send,
U., Smeed, D. A., Speich, S., van den Berg, M., Volkov, D., and Wilson, C.:
Atlantic meridional overturning circulation: Observed transport and
variability, Front. Mar. Sci., 6, 260,
https://doi.org/10.3389/FMARS.2019.00260, 2019.
Garzoli, S. L. and Matano, R.: The South Atlantic and the Atlantic
Meridional Overturning Circulation, Deep-Sea Res. Pt. II, 58, 1837–1847,
https://doi.org/10.1016/J.DSR2.2010.10.063, 2011.
Garzoli, S. L., Baringer, M. O., Dong, S., Perez, R. C., and Yao, Q.: South
Atlantic meridional fluxes, Deep-Sea Res. Pt. I, 71, 21–32, https://doi.org/10.1016/J.DSR.2012.09.003, 2013.
Goes, M., Goni, G., and Dong, S.: An optimal XBT-based monitoring system for
the South Atlantic meridional overturning circulation at 34∘ S, J.
Geophys. Res.-Oceans, 120, 161–181, https://doi.org/10.1002/2014JC010202, 2015.
Gounou, A., Drévillon, M., and Clavier, M.: EU Copernicus Marine Service
Product User Manual for the Global Ocean Reanalysis Multi-model Ensemble
Products, GLOBAL-REANALYSIS-PHY-001-031, Issue 1.1, Mercator Ocean
International,
https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-031.pdf
(last access: 5 April 2023), 2022.
Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woollings, T. J.,
Pohlmann, H., and de Cuevas, B.: Bistability of the Atlantic overturning
circulation in a global climate model and links to ocean freshwater
transport, Geophys. Res. Lett., 38, L10605, https://doi.org/10.1029/2011GL047208, 2011.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., de Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/QJ.3803, 2020.
Jackson, L., Dubois, C., Masina, S., Storto, A., and Zuo, H.: Atlantic Meridional Overturning Circulation, in: the Copernicus Marine Service Ocean State Report, Issue 2, edited by: von Schuckmann, K., Le Traon, P.-Y., Smith, N., Pascual, A., Brasseur, P., Fennel, K., and Djavidnia, S., Supplement,
J. Oper. Oceanogr., 11, S1–S142, https://doi.org/10.1080/1755876X.2018.1489208, 2018.
Jackson, L. C., Dubois, C., Forget, G., Haines, K., Harrison, M., Iovino,
D., Köhl, A., Mignac, D., Masina, S., Peterson, K. A., Piecuch, C. G.,
Roberts, C. D., Robson, J., Storto, A., Toyoda, T., Valdivieso, M., Wilson,
C., Wang, Y., and Zuo, H.: The Mean State and Variability of the North
Atlantic Circulation: A Perspective From Ocean Reanalyses, J. Geophys. Res.-Oceans, 124, 9141–9170, https://doi.org/10.1029/2019JC015210, 2019.
Katsumata, K. and Yoshinari, H.: Uncertainties in global mapping of Argo
drift data at the parking level, J. Oceanogr., 66, 553–569,
https://doi.org/10.1007/S10872-010-0046-4, 2010.
Kersalé, M., Meinen, C. S., Perez, R. C., le Hénaff, M., Valla, D.,
Lamont, T., Sato, O. T., Dong, S., Terre, T., van Caspel, M., Chidichimo, M.
P., van den Berg, M., Speich, S., Piola, A. R., Campos, E. J. D., Ansorge,
I., Volkov, D. L., Lumpkin, R., and Garzoli, S. L.: Highly variable upper
and abyssal overturning cells in the South Atlantic, Sci. Adv., 6, eaba7573,
https://doi.org/10.1126/sciadv.aba7573, 2020.
Kersalé, M., Meinen, C. S., Perez, R. C., Piola, A. R., Speich, S.,
Campos, E. J. D., Garzoli, S. L., Ansorge, I., Volkov, D. L., le Hénaff,
M., Dong, S., Lamont, T., Sato, O. T., and van den Berg, M.: Multi-Year
Estimates of Daily Heat Transport by the Atlantic Meridional Overturning
Circulation at 34.5∘ S, J. Geophys. Res.-Oceans, 126, e2020JC016947,
https://doi.org/10.1029/2020JC016947, 2021.
Lebedev, K., Yoshinari, H., Maximenko, N. A., and Hacker, P. W.: YoMaHa'07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface, IPRC Technical Note No. 4, 16 pp., 2007.
Lellouche, J.-M., Le Galloudec, O., Drévillon, M., Régnier, C., Greiner, E., Garric, G., Ferry, N., Desportes, C., Testut, C.-E., Bricaud, C., Bourdallé-Badie, R., Tranchant, B., Benkiran, M., Drillet, Y., Daudin, A., and De Nicola, C.: Evaluation of global monitoring and forecasting systems at Mercator Océan, Ocean Sci., 9, 57–81, https://doi.org/10.5194/os-9-57-2013, 2013.
Liu, C. and Allan, R.: Reconstructions of the radiation fluxes at the top
of the atmosphere and net surface energy flux over 1985–2017 – DEEP-C
Version 4.0, University of Reading [data set],
https://doi.org/10.17864/1947.271, 2020.
Liu, C., Allan, R. P., Mayer, M., Hyder, P., Desbruyères, D., Cheng, L.,
Xu, J., Xu, F., and Zhang, Y.: Variability in the global energy budget and
transports 1985–2017, Clim. Dynam., 55, 3381–3396,
https://doi.org/10.1007/S00382-020-05451-8, 2020.
Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G.,
Liang, L., Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the Earth's
Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)
Top-of-Atmosphere (TOA) Edition-4.0 Data Product, J. Climate, 31, 895–918,
https://doi.org/10.1175/JCLI-D-17-0208.1, 2018.
MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D.,
Scaife, A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp,
J., Xavier, P., and Madec, G.: Global Seasonal forecast system version 5
(GloSea5): a high-resolution seasonal forecast system, Q. J. Roy. Meteor. Soc., 141, 1072–1084, https://doi.org/10.1002/qj.2396, 2015.
Majumder, S., Schmid, C., and Halliwell, G.: An observations and model-based
analysis of meridional transports in the South Atlantic, J. Geophys. Res.-Oceans, 121, 5622–5638, https://doi.org/10.1002/2016JC011693, 2016.
Mayer, J., Mayer, M., and Haimberger, L.: Consistency and Homogeneity of
Atmospheric Energy, Moisture, and Mass Budgets in ERA5, J. Climate, 34,
3955–3974, https://doi.org/10.1175/JCLI-D-20-0676.1, 2021a.
Mayer, J., Mayer, M., and Haimberger, L.: Mass-consistent atmospheric energy and moisture budget monthly data from 1979 to present derived from ERA5 reanalysis, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.c2451f6b, 2021b.
Mayer, J., Mayer, M., Haimberger, L., and Liu, C.: Comparison of Surface
Energy Fluxes from Global to Local Scale, J. Climate, 1, 1–55,
https://doi.org/10.1175/JCLI-D-21-0598.1, 2022.
Meinen, C. S., Speich, S., Perez, R. C., Dong, S., Piola, A. R., Garzoli, S.
L., Baringer, M. O., Gladyshev, S., and Campos, E. J. D.: Temporal
variability of the meridional overturning circulation at 34.5∘ S:
Results from two pilot boundary arrays in the South Atlantic, J. Geophys. Res.-Oceans, 118, 6461–6478, https://doi.org/10.1002/2013JC009228, 2013.
Meinen, C. S., Speich, S., Piola, A. R., Ansorge, I., Campos, E.,
Kersalé, M., Terre, T., Chidichimo, M. P., Lamont, T., Sato, O. T.,
Perez, R. C., Valla, D., van den Berg, M., le Hénaff, M., Dong, S., and
Garzoli, S. L.: Meridional Overturning Circulation Transport Variability at
34.5∘ S During 2009–2017: Baroclinic and Barotropic Flows and the
Dueling Influence of the Boundaries, Geophys. Res. Lett., 45, 4180–4188,
https://doi.org/10.1029/2018GL077408, 2018.
Mignac, D., Ferreira, D., and Haines, K.: South Atlantic meridional transports from NEMO-based simulations and reanalyses, Ocean Sci., 14, 53–68, https://doi.org/10.5194/os-14-53-2018, 2018.
Nadeau, L. P. and Jansen, M. F.: Overturning Circulation Pathways in a
Two-Basin Ocean Model, J. Phys. Oceanogr., 50, 2105–2122,
https://doi.org/10.1175/JPO-D-20-0034.1, 2020.
Perez, R. C., Garzoli, S. L., Meinen, C. S., and Matano, R. P.: Geostrophic
Velocity Measurement Techniques for the Meridional Overturning Circulation
and Meridional Heat Transport in the South Atlantic, J. Atmos. Ocean. Tech.,
28, 1504–1521, https://doi.org/10.1175/JTECH-D-11-00058.1, 2011.
Rahmstorf, S.: Exceptional twentieth-century slowdown in Atlantic Ocean
overturning circulation, Nat. Clim. Chang., 5, 475–480,
https://doi.org/10.1038/nclimate2554, 2015.
Storto, A., Masina, S., and Navarra, A.: Evaluation of the CMCC
eddy-permitting global ocean physical reanalysis system (C-GLORS, 1982–2012)
and its assimilation components, Q. J. Roy. Meteor. Soc., 142, 738–758, https://doi.org/10.1002/qj.2673, 2016.
Thornalley, D. J. R., Oppo, D. W., Ortega, P., Robson, J. I., Brierley, C.
M., Davis, R., Hall, I. R., Moffa-Sanchez, P., Rose, N. L., Spooner, P. T.,
Yashayaev, I., and Keigwin, L. D.: Anomalously weak Labrador Sea convection
and Atlantic overturning during the past 150 years, Nature,
556, 227–230, https://doi.org/10.1038/s41586-018-0007-4, 2018.
Trenberth, K. E., Zhang, Y., Fasullo, J. T., and Cheng, L.: Ocean Meridional
Heat Transport Values, Version 1.0, UCAR/NCAR – GDEX,
https://doi.org/10.5065/9v3y-fn61, 2019a.
Trenberth, K. E., Zhang, Y., Fasullo, J. T., and Cheng, L.:
Observation-Based Estimates of Global and Basin Ocean Meridional Heat
Transport Time Series, J. Climate, 32, 4567–4583,
https://doi.org/10.1175/JCLI-D-18-0872.1, 2019b.
Weijer, W., de Ruijter, W. P. M., Sterl, A., and Drijfhout, S. S.: Response
of the Atlantic overturning circulation to South Atlantic sources of
buoyancy, Glob. Planet. Change, 34, 293–311,
https://doi.org/10.1016/S0921-8181(02)00121-2, 2002.
Weijer, W., Cheng, W., Drijfhout, S. S., Fedorov, A. V., Hu, A., Jackson, L.
C., Liu, W., McDonagh, E. L., Mecking, J. V., and Zhang, J.: Stability of
the Atlantic Meridional Overturning Circulation: A Review and Synthesis, J. Geophys. Res.-Oceans, 124, 5336–5375, https://doi.org/10.1029/2019JC015083, 2019.
Weijer, W., Cheng, W., Garuba, O. A., Hu, A., and Nadiga, B. T.: CMIP6
Models Predict Significant 21st Century Decline of the Atlantic Meridional
Overturning Circulation, Geophys. Res. Lett., 47, e2019GL086075,
https://doi.org/10.1029/2019GL086075, 2020.
Xu, X., Chassignet, E. P., Dong, S., and Baringer, M. O.: Transport
Structure of the South Atlantic Ocean Derived From a High-Resolution
Numerical Model and Observations, Front. Mar. Sci., 9, 175, https://doi.org/10.3389/FMARS.2022.811398, 2022.
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, 2019.
Zuo, H., Balmaseda, M. A., de Boisseson, E., Tietsche, S., Mayer, M., and de Rosnay, P.: The ORAP6 ocean and sea-ice reanalysis: description and evaluation, EGU General Assembly 2021, online, 19–30 April 2021, EGU21-9997, https://doi.org/10.5194/egusphere-egu21-9997, 2021.
Short summary
We use ocean reanalyses, in which ocean models are combined with observations, to infer past changes in ocean circulation and heat transport in the South Atlantic. Comparing these estimates with other observation-based estimates, we find differences in their trends, variability, and mean heat transport but closer agreement in their mean overturning strength. Ocean reanalyses can help us understand the cause of these differences, which could improve estimates of ocean transports in this region.
We use ocean reanalyses, in which ocean models are combined with observations, to infer past...
Altmetrics
Final-revised paper
Preprint