Articles | Volume 6-osr9
https://doi.org/10.5194/sp-6-osr9-9-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-6-osr9-9-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mediterranean marine heatwave 2023: ecosystem and fisheries impacts in Italian waters
Oceanography Section, National Institute of Oceanography and Applied Geophysics, Trieste, Italy
Francesco Tiralongo
Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
Sofia F. Darmaraki
CORRESPONDING AUTHOR
Foundation for Research and Technology Hellas, Heraklion, Greece
Michela D'Alessandro
Oceanography Section, National Institute of Oceanography and Applied Geophysics, Trieste, Italy
Giorgio Mancinelli
Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
Emanuele Mancini
Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
National Biodiversity Future Center (NBFC), Palermo, Itay
Roberto Simonini
Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
Milena Menna
Oceanography Section, National Institute of Oceanography and Applied Geophysics, Trieste, Italy
Annunziata Pirro
Oceanography Section, National Institute of Oceanography and Applied Geophysics, Trieste, Italy
Diego Borme
Oceanography Section, National Institute of Oceanography and Applied Geophysics, Trieste, Italy
Rocco Auriemma
Oceanography Section, National Institute of Oceanography and Applied Geophysics, Trieste, Italy
Marco Graziano
Oceanography Section, National Institute of Oceanography and Applied Geophysics, Trieste, Italy
Elena Mauri
Oceanography Section, National Institute of Oceanography and Applied Geophysics, Trieste, Italy
Related authors
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Annunziata Pirro, Riccardo Martellucci, Antonella Gallo, Elisabeth Kubin, Elena Mauri, Mélanie Juza, Giulio Notarstefano, Massimo Pacciaroni, Antonio Bussani, and Milena Menna
State Planet, 4-osr8, 18, https://doi.org/10.5194/sp-4-osr8-18-2024, https://doi.org/10.5194/sp-4-osr8-18-2024, 2024
Short summary
Short summary
This work analyses the propagation of the 2022 marine heatwave from the surface to 2000 m depth of the water column in the Mediterranean Sea. The results show that the temperature anomaly during the summer of 2022 varies between 0.88 and 2.92 °C. However, this heat stored in the surface layer is distributed in the water column during the following fall. This warming may enhance variations of the circulation of the surface and deep currents, which in turn may have an impact on the climate.
Valeria Di Biagio, Riccardo Martellucci, Milena Menna, Anna Teruzzi, Carolina Amadio, Elena Mauri, and Gianpiero Cossarini
State Planet, 1-osr7, 10, https://doi.org/10.5194/sp-1-osr7-10-2023, https://doi.org/10.5194/sp-1-osr7-10-2023, 2023
Short summary
Short summary
Oxygen is essential to all aerobic organisms, and its content in the marine environment is continuously under assessment. By integrating observations with a model, we describe the dissolved oxygen variability in a sensitive Mediterranean area in the period 1999–2021 and ascribe it to multiple acting physical and biological drivers. Moreover, the reduction recognized in 2021, apparently also due to other mechanisms, requires further monitoring in light of its possible impacts.
Dimitra Denaxa, Gerasimos Korres, Sofia Darmaraki, and Maria Hatzaki
State Planet, 6-osr9, 10, https://doi.org/10.5194/sp-6-osr9-10-2025, https://doi.org/10.5194/sp-6-osr9-10-2025, 2025
Short summary
Short summary
The Mediterranean Sea experiences a basin-wide increase in sea surface temperature (SST) and extreme SST occurrences. Stronger warming trends are found in the eastern basin, where a decrease in SST variability is also observed. Our findings on the origin of marine heatwave (MHW) trends in the basin suggest that the mean SST warming drives the long-term trends for most MHW properties across the basin, except for mean MHW intensity, where interannual variability emerges as the dominant driver.
Manuel Bensi, Giuseppe Civitarese, Diego Borme, Carmela Caroppo, Gabriella Caruso, Federica Cerino, Franco Decembrini, Alessandra de Olazabal, Tommaso Diociaiuti, Michele Giani, Vedrana Kovacevic, Martina Kralj, Angelina Lo Giudice, Giovanna Maimone, Marina Monti, Maria Papale, Luisa Patrolecco, Elisa Putelli, Alessandro Ciro Rappazzo, Federica Relitti, Carmen Rizzo, Francesca Spataro, Valentina Tirelli, Clara Turetta, and Maurizio Azzaro
Earth Syst. Sci. Data, 17, 3701–3719, https://doi.org/10.5194/essd-17-3701-2025, https://doi.org/10.5194/essd-17-3701-2025, 2025
Short summary
Short summary
In September 2021, the Italian Arctic Research Programme funded a multidisciplinary study along 75° N in the Greenland Sea as part of the CASSANDRA project and the Synoptic Arctic Survey (SAS) programme. This study emphasises the spatial variability of water properties, nutrient distribution, and biological communities determined by oceanographic dynamics in a region influenced by sea ice melting, Atlantic Water inflow, and climatic teleconnections during a record low summer sea ice extent.
Antonios Parasyris, Vassiliki Metheniti, Nikolaos Kampanis, and Sofia Darmaraki
Ocean Sci., 21, 897–912, https://doi.org/10.5194/os-21-897-2025, https://doi.org/10.5194/os-21-897-2025, 2025
Short summary
Short summary
The Mediterranean faces more frequent and intense marine heat waves, harming ecosystems and fisheries. Using machine learning, we developed a model to forecast these events up to 7 d in the future, outperforming traditional methods. This approach enables faster, accurate forecasts, helping authorities mitigate impacts and protect marine resources.
Davide Lombardo, Sofia Flora, Fabio Giordano, Emanuele Ingrassia, Milena Menna, Stefano Querin, and Laura Ursella
EGUsphere, https://doi.org/10.5194/egusphere-2025-1176, https://doi.org/10.5194/egusphere-2025-1176, 2025
Short summary
Short summary
This study analyses the extreme meteo-marine event October–November 2023 in the Gulf of Trieste, characterised by southerly strong winds, heavy rainfall, and high river discharge. Using HF radar data, wind records, and numerical models, we analysed the interactions between river discharge and wind-driven currents. Results show that strong river discharge can dominate coastal circulation and overlay the wind effects. This multi-platform approach provides valuable insights into ocean dynamics.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Annunziata Pirro, Riccardo Martellucci, Antonella Gallo, Elisabeth Kubin, Elena Mauri, Mélanie Juza, Giulio Notarstefano, Massimo Pacciaroni, Antonio Bussani, and Milena Menna
State Planet, 4-osr8, 18, https://doi.org/10.5194/sp-4-osr8-18-2024, https://doi.org/10.5194/sp-4-osr8-18-2024, 2024
Short summary
Short summary
This work analyses the propagation of the 2022 marine heatwave from the surface to 2000 m depth of the water column in the Mediterranean Sea. The results show that the temperature anomaly during the summer of 2022 varies between 0.88 and 2.92 °C. However, this heat stored in the surface layer is distributed in the water column during the following fall. This warming may enhance variations of the circulation of the surface and deep currents, which in turn may have an impact on the climate.
Pierre-Marie Poulain, Luca Centurioni, Carlo Brandini, Stefano Taddei, Maristella Berta, and Milena Menna
Ocean Sci., 19, 1617–1631, https://doi.org/10.5194/os-19-1617-2023, https://doi.org/10.5194/os-19-1617-2023, 2023
Short summary
Short summary
Drifters and a profiling float were deployed in the coastal waters of the southeastern Ligurian Sea to characterize the near-surface circulation at a scale of ~10 km. The drifters were trapped in an offshore-flowing filament and a cyclonic eddy that developed at the southwestern extremity of the filament. Drifter velocities are used to estimate differential kinematic properties and relative dispersion statistics of the surface currents.
Alberto Ribotti, Antonio Bussani, Milena Menna, Andrea Satta, Roberto Sorgente, Andrea Cucco, and Riccardo Gerin
Earth Syst. Sci. Data, 15, 4651–4659, https://doi.org/10.5194/essd-15-4651-2023, https://doi.org/10.5194/essd-15-4651-2023, 2023
Short summary
Short summary
Over 100 experiments were realized between 1998 and 2022 in the Mediterranean Sea using surface coastal and offshore Lagrangian drifters. Raw data were initially unified and pre-processed. Then, the integrity of the received data packages was checked and incomplete ones were discarded. Deployment information was retrieved and integrated into the PostgreSQL database. Data were interpolated at defined time intervals, providing a dataset of 158 trajectories, available in different formats.
Valeria Di Biagio, Riccardo Martellucci, Milena Menna, Anna Teruzzi, Carolina Amadio, Elena Mauri, and Gianpiero Cossarini
State Planet, 1-osr7, 10, https://doi.org/10.5194/sp-1-osr7-10-2023, https://doi.org/10.5194/sp-1-osr7-10-2023, 2023
Short summary
Short summary
Oxygen is essential to all aerobic organisms, and its content in the marine environment is continuously under assessment. By integrating observations with a model, we describe the dissolved oxygen variability in a sensitive Mediterranean area in the period 1999–2021 and ascribe it to multiple acting physical and biological drivers. Moreover, the reduction recognized in 2021, apparently also due to other mechanisms, requires further monitoring in light of its possible impacts.
P. Rossi, S. Righi, L. Parente, C. Castagnetti, S. Cattini, G. Di Loro, E. Falvo, F. Grassi, F. Mancini, L. Rovati, R. Simonini, and A. Capra
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 877–883, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-877-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-877-2022, 2022
Giusy Fedele, Elena Mauri, Giulio Notarstefano, and Pierre Marie Poulain
Ocean Sci., 18, 129–142, https://doi.org/10.5194/os-18-129-2022, https://doi.org/10.5194/os-18-129-2022, 2022
Short summary
Short summary
Atlantic Water (AW) and Levantine Intermediate Water (LIW) are important water masses that play a crucial role in the internal variability of the Mediterranean thermohaline circulation. This work aims to characterize the inter-basin and inter-annual variability of AW and LIW in the Mediterranean Sea, taking advantage of the large observational dataset provided by Argo floats from 2001 to 2019. A clear salinification and warming trend characterizes AW and LIW over the last 2 decades.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
Cited articles
Ahrens, J. B., Borda, E., Barroso, R., Paiva, P. C., Campbell, A. M., Wolf, A., Nugues, M. M., Rouse, G. W., and Schulze, A.: The curious case of Hermodice carunculata (Annelida: Amphinomidae): evidence for genetic homogeneity throughout the Atlantic Ocean and adjacent basins, Mol. Ecol., 22, 2280–2291, https://doi.org/10.1111/mec.12263, 2013.
Alter, K., Jacquemont, J., Claudet, J., Lattuca, M. E., Barrantes, M. E., Royer, C., Cormier, M., Ferrari, R., Cominassi, L., Crochelet, E., Boudouresque, C. F., and Lejeusne, C.: Hidden impacts of ocean warming and acidification on biological response of marine animals revealed through meta-analysis, Nat. Commun., 15, 2885, https://doi.org/10.1038/s41467-024-47064-3, 2024.
Ambati, R. R., Phang, S. M., Ravi, S., and Aswathanarayana, R. G.: Astaxanthin: sources, extraction, stability, biological activities and its commercial applications – A review, Mar. Drugs, 12, 128–152, https://doi.org/10.3390/md12010128, 2014.
Anger, K.: The biology of decapod crustacean larvae, AA Balkema Publishers, Lisse, Vol. 14, 1–420, ISBN 9026518285, 2001.
Azzurro, E., Sbragaglia, V., Cerri, J., Bariche, M., Bolognini, L., Ben Souissi, J., and Moschella, P.: Climate change, biological invasions, and the shifting distribution of Mediterranean fishes: A large-scale survey based on local ecological knowledge, Glob. Change Biol., 25, 2779–2792, https://doi.org/10.1111/gcb.14724, 2019.
Azzurro, E., Bonanomi, S., Chiappi, M., De Marco, R., Luna, G. M., Cella, M., Guicciardi, S., Tiralongo, F., Bonifazi, A., and Strafella, P.: Uncovering unmet demand and key insights for the invasive blue crab (Callinectes sapidus) market before and after the Italian outbreak: Implications for policymakers and industry stakeholders, Mar. Policy, 167, 106295, https://doi.org/10.1016/j.marpol.2024.106295, 2024.
Ballard, H. L., Dixon, C. G., and Harris, E. M.: Youth-focused citizen science: Examining the role of environmental science learning and agency for conservation, Biol. Conserv., 208, 65–75, https://doi.org/10.1016/j.biocon.2017.01.021, 2017.
Bardelli, R., Mancinelli, G., Mazzola, A., and Vizzini, S.: The Atlantic blue crab Callinectes sapidus spreading in the Tyrrhenian sea: Evidence of an established population in the Stagnone di Marsala (Sicily, southern Italy), NAŠE MORE: znanstveni časopis za more i pomorstvo, 70, 177–183, https://doi.org/10.17818/NM/2023/SI6, 2023.
Baron, R. D., Pérez, L. L., Salcedo, J. M., Córdoba, L. P., and Sobral, P. J. d. A.: Production and characterization of films based on blends of chitosan from blue crab (Callinectes sapidus) waste and pectin from Orange (Citrus sinensis Osbeck) peel, Int. J. Biol. Macromol., 98, 676–683, https://doi.org/10.1016/j.ijbiomac.2017.01.061, 2017.
Barroso, R., Almeida, D., Contins, M., Filgueiras, D., and Dias, R.: Hermodice carunculata (Pallas, 1766) (Polychaeta: Amphinomidae) preying on starfishes, Mar. Biodivers., 46, 333–334, https://doi.org/10.1007/s12526-015-0394-9, 2016.
Bedmar, S., Oficialdegui, F. J., and Clavero, M.: Far-reaching blues: Long-distance migration of the invasive Atlantic blue crab, Aquat. Conserv., 34, e4136, https://doi.org/10.1002/aqc.4136, 2024.
Berke, S. K., Mahon, A. R., Lima, F. P., Halanych, K. M., Wethey, D. S., and Woodin, S.A.: Range shifts and species diversity in marine ecosystem engineers: Patterns and predictions for European sedimentary habitats, Global Ecol. Biogeogr., 19, 223–232, https://doi.org/10.1111/j.1466-8238.2009.00509.x, 2010.
Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., and Richardson, D. M.: A proposed unified framework for biological invasions, Trends Ecol. Evol., 26, 333–339, https://doi.org/10.1016/j.tree.2011.03.023, 2011.
Bordignon, F., Zomeño, C., Xiccato, G., Birolo, M., Pascual, A., and Trocino, A.: Effect of emersion time on growth, mortality and quality of Pacific oysters (Crassostrea gigas, Thunberg 1973) reared in a suspended system in a lagoon in Northern Italy, Aquaculture, 528, 735481, https://doi.org/10.1016/j.aquaculture.2020.735481, 2020.
Bunnell, D. B., Lipton, D. W., and Miller, T. J.: The bioeconomic impact of different management regulations on the Chesapeake Bay blue crab fishery, N. Am. J. Fish. Manage., 30, 1505–1521, https://doi.org/10.1577/M09-182.1, 2010.
Celona, A. and Comparetto, G.: Prime osservazioni sulla predazione opportunistica del “vermocane” Hermodice carunculata (Pallas, 1766), ai danni della piccola pesca artigianale nelle acque di Lampedusa (Is. Pelagie), Annali della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 20, 15–20, http://www.dlib.si/details/URN:NBN:SI:DOC-YNXLVSYP (last access: 7 February 2025), 2010.
Chiesa, S., Petochi, T., Brusà, R. B., Raicevich, S., Cacciatore, F., Franceschini, G., Antonini, C., Vallini, C., Bernarello, V., Oselladore, F., Ciani, M., Di Blasio, L., Campolunghi, M. P., Baldessin, F., Boldrin, L., and Marino, G.: Impacts of the blue crab invasion on Manila clam aquaculture in Po Delta coastal lagoons (Northern Adriatic Sea, Italy), Estuar. Coast. Shelf Sc., 312, 109037, https://doi.org/10.1016/j.ecss.2024.109037, 2025.
Civitarese, G., Gačić, M., Batistić, M., Bensi, M., Cardin, V., Dulčić, J., and Menna, M.: The BiOS mechanism: history, theory, implications, Prog. Oceanogr., 216, 103056, https://doi.org/10.1016/j.pocean.2023.103056, 2023.
Clavero, M., Franch, N., Bernardo, R., López, V., Abelló, P., and Mancinelli, G.: Severe, rapid, and widespread impacts of an Atlantic blue crab invasion, Mar. Pollut. Bull., 176, 113479, https://doi.org/10.1016/j.marpolbul.2022.113479, 2022.
Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F., Aguzzi, J., and Voultsiadou, E.: The biodiversity of the Mediterranean Sea: estimates, patterns, and threats, PLOS ONE, 5, e11842, https://doi.org/10.1371/journal.pone.0011842, 2010.
Copernicus: 2023 is the hottest year on record, with global temperatures close to the 1.5 °C limit, Copernicus, https://climate.copernicus.eu/copernicus-2023-hottest-year-record (last access: 7 February 2025), 2024.
Corriero, G., Gherardi, M., Giangrande, A., Longo, C., Mercurio, M., and others: Inventory and distribution of hard bottom fauna from the marine protected area of Porto Cesareo (Ionian Sea): Porifera and Polychaeta, Ital. J. Zool., 71, 237–245, https://doi.org/10.1080/11250000409356578, 2004.
Cosentino, A. and Giacobbe, S.: The new potential invader Linopherus canariensis (Polychaeta: Amphinomidae) in a Mediterranean coastal lake: Colonization dynamics and morphological remarks, Mar. Pollut. Bull., 62, 236–245, https://doi.org/10.1016/j.marpolbul.2010.10.013, 2011.
Costlow, J. D.: The effect of salinity and temperature on survival and metamorphosis of megalops of the blue crab Callinectes sapidus, Helgoländ. Wiss. Meer., 15, 84–97, https://doi.org/10.1007/BF01618611, 1967.
Darmaraki, S., Somot, S., Sevault, F., Nabat, P., Cabos Narvaez, W. D., Cavicchia, L., and Sein, D. V.: Future evolution of marine heatwaves in the Mediterranean Sea, Clim. Dynam., 53, 1371–1392, https://doi.org/10.1007/s00382-019-04661-z, 2019.
Demir, D., Öfkeli, F., Ceylan, S., and Bölgen, N.: Extraction and characterization of chitin and chitosan from blue crab and synthesis of chitosan cryogel scaffolds, Journal of the Turkish Chemical Society Section A: Chemistry, 3, 131–144, https://doi.org/10.28978/nesciences.970546, 2016.
Encarnação, J., Morais, P., Baptista, V., Cruz, J., and Teodósio, M. A.: New evidence of marine fauna tropicalization off the Southwestern Iberian Peninsula, Diversity, 11, 48, https://doi.org/10.3390/d11040048, 2019.
Escudier, R., Clementi, E., Nigam, T., Aydogdu, A., Fini, E., Pistoia, J., Grandi, A., and Miraglio, P.: EU Copernicus Marine Service Quality Information Docu ment for Mediterranean Sea Physics Reanalysis, MED SEA_MULTIYEAR_PHY_006_004, Issue 2.3, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-MED-QUID-006-004.pdf (last access: 10 February 2025), 2022.
EU Copernicus Marine Service Information (CMEMS): Mediterranean Sea Surface Temperature time series and trend from Observations Reprocessing, Mercator Ocean International, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00268, 2022a.
EU Copernicus Marine Service Information (CMEMS): Global Ocean Sea Surface Temperature time series and trend from Observations Reprocessing, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00242, 2022b.
Fishelson, L.: Ecology and distribution of the benthic fauna in the shallow waters of the Red Sea, Mar. Biol., 10, 113–133, https://doi.org/10.1007/BF00354828, 1971.
Franzoi, P., Facca, C., Redolfi Bristol, S., Boschiero, M., Matteo, Z., and Scapin, L.: Application of the Habitat Fish Biological Index (HFBI) for the assessment of the ecological status of Po Delta lagoons (Italy), Italian Journal of Freshwater Ichthyology, 9, 91–106, https://iris.unive.it/handle/10278/5046422 (last access: 7 February 2025), 2023.
Fraschetti, S., Giangrande, A., Terlizzi, A., Miglietta, M. P., Della Tommasa, L., and Boero, F.: Spatio-temporal variation of hydroids and polychaetes associated with Cystoseira amentacea (Fucales: Phaeophyceae), Mar. Biol., 140, 949–958, https://doi.org/10.1007/s00227-001-0770-9, 2002.
Gačić, M., Ursella, L., Kovačević, V., Menna, M., Malačič, V., Bensi, M., Negretti, M.-E., Cardin, V., Orlić, M., Sommeria, J., Viana Barreto, R., Viboud, S., Valran, T., Petelin, B., Siena, G., and Rubino, A.: Impact of dense-water flow over a sloping bottom on open-sea circulation: laboratory experiments and an Ionian Sea (Mediterranean) example, Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, 2021.
Gavioli, A., Mancinelli, G., Turolla, E., Lanzoni, M., Paesanti, V., Soana, E., and Castaldelli, G.: Impacts of the invasive blue crab Callinectes sapidus on small-scale fisheries in a Mediterranean lagoon using fishery landing data, Sci. Total Environ., 974, 179236, https://doi.org/10.1016/j.scitotenv.2025.179236, 2025.
Gencer, Ö.: The impact of an abiotic variable, temperature, on larvae of the blue crab, Callinectes sapidus Rathbun, 1896 (Brachyura, Portunidae), Crustaceana, 97, 137–150, https://doi.org/10.1163/15685403-bja10239, 2024.
Giakoumi, S., Katsanevakis, S., Albano, P. G., Azzurro, E., Cardoso, A. C., Cebrian, E., and Sghaier, Y. R.: Management priorities for marine invasive species, Sci. Total Environ., 688, 976–982, https://doi.org/10.1016/j.scitotenv.2019.06.282, 2019.
Giangrande, A., Delos, A. L., Fraschetti, S., Musco, L., and Licciano, M.: Polychaete assemblages along a rocky shore on the South Adriatic coast (Mediterranean Sea): patterns of spatial distribution, Mar. Biol., 143, 1109–1116, https://doi.org/10.1007/s00227-003-1162-0, 2003.
Giangrande, A., Pierri, C., Arduini, D., Borghese, J., Licciano, M., Trani, R., Corriero, G., Basile, G., Cecere, E., Petrocelli, A., Stabili, L., and Longo, C.: An innovative IMTA system: Polychaetes, sponges and macroalgae co-cultured in a Southern Italian in-shore mariculture plant (Ionian Sea), Journal of Marine Science and Engineering, 8, 733, https://doi.org/10.3390/jmse8100733, 2020.
Giovos, I., Kleitou, P., Poursanidis, D., Batjakas, I., Bernardi, G., Crocetta, F., Doumpas, N., Kalogirou, S., Kampouris, T. E., Keramidas, I., Langeneck, J., and Azzurro, E.: Citizen-science for monitoring marine invasions and stimulating public engagement: a case project from the eastern Mediterranean, Biol. Invasions, 21, 3707–3721, https://doi.org/10.1007/s10530-019-02083-w, 2019.
Guinaldo, T., Voldoire, A., Waldman, R., Saux Picart, S., and Roquet, H.: Response of the sea surface temperature to heatwaves during the France 2022 meteorological summer, Ocean Sci., 19, 629–647, https://doi.org/10.5194/os-19-629-2023, 2023.
He, Q. and Silliman, B. R.: Climate change, human impacts, and coastal ecosystems in the Anthropocene, Curr. Biol., 29, R1021–R1035, https://doi.org/10.1016/j.cub.2019.08.042, 2019.
Heilskov, A. C., Alperin, M., and Holmer, M.: Benthic fauna bio-irrigation effects on nutrient regeneration in fish farm sediments, J. Exp. Mar. Biol. Ecol., 339, 204–225, https://doi.org/10.1016/j.jembe.2006.08.002, 2006.
Hines, A. H.: Ecology of Juvenile and Adult Blue Crabs, in: The Blue Crab: Callinectes sapidus, edited by: Kennedy, V. S. and Cronin, L. E., Maryland Sea Grant College, College Park, MD, 565–654, ISBN 978-0-943676-67-8, 2007.
Hines, A. H., Johnson, E. G., Young, A. C., Aguilar, R., Kramer, M. A., Goodison, M., and Zohar, Y.: Release strategies for estuarine species with complex migratory life cycles: stock enhancement of Chesapeake blue crabs (Callinectes sapidus), Rev. Fish. Sci., 16, 175–185, https://doi.org/10.1080/10641260701678090, 2008.
Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P. J., Scannell, H. A., Sen Gupta, A., and Wernberg, T.: A hierarchical approach to defining marine heatwaves, Prog. Oceanogr., 141, 227–238, https://doi.org/10.1016/j.pocean.2015.12.014, 2016.
Joyce, P. W. S., Tong, C. B., Yip, Y. L., and Falkenberg, L. J.: Marine heatwaves as drivers of biological and ecological change: implication of current research patterns and future opportunities, Mar. Biol., 171, 20, https://doi.org/10.1007/s00227-023-04340-y, 2024.
Jumars, P. A., Dorgan, K. M., and Lindsay, S. M.: Diet of worms emended: an update of polychaete feeding guilds, Annu. Rev. Mar. Sci., 7, 497–520, https://doi.org/10.1146/annurev-marine-010814-020007, 2015.
Katsanevakis, S., Wallentinus, I., Zenetos, A., Leppäkoski, E., Çinar, M. E., Oztürk, B., Grabowski, M., Golani, D., and Cardoso, A. C.: Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review, Aquat. Invasions, 9, 391–423, https://doi.org/10.3391/ai.2014.9.4.01, 2014.
Katsanevakis, S., Rilov, G., and Edelist, D.: Impacts of marine invasive alien species on European fisheries and aquaculture–plague or boon?, CIESM Monograph, 50, 125–132, 2018.
Kennedy, V. S., Oesterling, M., and Van Engel, W. A.: History of Blue Crab Fisheries on the US Atlantic and Gulf Coasts, in: The Blue Crab: Callinectes sapidus, edited by: Kennedy, V. S. and Cronin, L. E., Maryland Sea Grant College, 655–710, ISBN 978-0-943676-67-8, 2007.
Kicklighter, C. E. and Hay, M. E.: Integrating prey defensive traits: contrasts of marine worms from temperate and tropical habitats, Ecol. Monogr., 76, 195–215, https://doi.org/10.1890/0012-9615(2006)076[0195:IPDTCO]2.0.CO;2, 2006.
Kubin, E., Menna, M., Mauri, E., Notarstefano, G., Mieruch, S., and Poulain, P. M.: Heat content and temperature trends in the Mediterranean Sea as derived from Argo float data, Front. Mar. Sci., 10, 1271638, https://doi.org/10.3389/fmars.2023.1271638, 2023.
Kullenberg, C. and Kasperowski, D.: What is citizen science? – A scientometric meta-analysis, PLOS ONE, 11, e0147152, https://doi.org/10.1371/journal.pone.0147152, 2016.
Ladd, M. C. and Shantz, A. A.: Novel enemies–previously unknown predators of the bearded fireworm, Front. Ecol. Environ., 14, 342–343, https://doi.org/10.1002/fee.1310, 2016.
Lecci, R., Drudi, M., Grandi, A., Cretì, S., and Clementi, E.: EU Copernicus Marine Service Product User Manual for For Mediterranean Sea Physics Reanalysis, MED SEA_MULTIYEAR_PHY_006_004, Issue 2.3, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-MED-PUM-006-004.pdf (last access: 10 February 2025), 2022.
Libralato, S., Caccin, A., and Pranovi, F.: Modeling species invasions using thermal and trophic niche dynamics under climate change, Front. Mar. Sci., 2, 29, https://doi.org/10.3389/fmars.2015.00029, 2015.
Lipcius, R. N., Eggleston, D. B., Heck, K. L., Seitz, R. D., and Van Montfrans, J.: The Blue Crab: Callinectes sapidus, edited by: Kennedy, V. S. and Cronin, L. E., Maryland Sea Grant College, 535–564, ISBN 978-0-943676-67-8, 2007.
Lopez, B. E., Magliocca, N. R., and Crooks, A. T.: Challenges and Opportunities of Social Media Data for Socio-Environmental Systems Research, Land, 8, 107, https://doi.org/10.3390/land8070107, 2019.
Maicu, F., De Pascalis, F., Ferrarin, C., and Umgiesser, G.: Hydrodynamics of the Po River-Delta-Sea System, J. Geophys. Res.-Oceans, 123, 6349–6372, https://doi.org/10.1029/2017JC013601, 2018.
Mancinelli, G., Alujević, K., Guerra, M. T., Raho, D., Zotti, M., and Vizzini, S.: Spatial and seasonal trophic flexibility of the Atlantic blue crab Callinectes sapidus in invaded coastal systems of the Apulia region (SE Italy): a stable isotope analysis, Estuar. Coast. Shelf Sc., 198, 421–431, https://doi.org/10.1016/j.ecss.2017.10.013, 2017a.
Mancinelli, G., Chainho, P., Cilenti, L., Falco, S., Kapiris, K., Katselis, G., and Ribeiro, F.: The Atlantic blue crab Callinectes sapidus in southern European coastal waters: Distribution, impact and prospective invasion management strategies, Mar. Pollut. Bull., 119, 5–11, https://doi.org/10.1016/j.marpolbul.2017.03.024, 2017b.
Mancinelli, G., Bardelli, R., and Zenetos, A.: A global occurrence database of the Atlantic blue crab Callinectes sapidus, Scientific Data, 8, 111, https://doi.org/10.1038/s41597-021-00879-x, 2021.
Manfrin, C., Comisso, G., Dall'Asta, A., Bettoso, N., and Sook Chung, J.: The return of the Blue Crab, Callinectes sapidus Rathbun, 1896, after 70 years from its first appearance in the Gulf of Trieste, northern Adriatic Sea, Italy (Decapoda: Portunidae), Check List, 12, 1–7, https://doi.org/10.15560/12.6.2006, 2016.
Marullo, S., Serva, F., Iacono, R., Napolitano, E., di Sarra, A., Meloni, D., and Santoleri, R.: Record-breaking persistence of the 2022/23 marine heatwave in the Mediterranean Sea, Environ. Res. Lett., 18, 114041, https://doi.org/10.1088/1748-9326/acfdbc, 2023.
Mastrototaro, F., d'Onghia, G., Corriero, G., Matarrese, A., and Maiorano, P.: Biodiversity of the white coral bank off Cape Santa Maria di Leuca (Mediterranean Sea): An update, Deep-Sea Res. Pt. II, 57, 412–430, https://doi.org/10.1016/j.dsr2.2009.10.010, 2010.
Menna, M., Gačić, M., Martellucci, R., Notarstefano, G., Fedele, G., Mauri, E., and Poulain, P. M.: Climatic, Decadal, and Interannual Variability in the Upper Layer of the Mediterranean Sea Using Remotely Sensed and In-Situ Data, Remote Sens., 14, 1322, https://doi.org/10.3390/rs14061322, 2022.
Millikin, M. R. and Williams, A. B.: Synopsis of biological data on blue crab, Callinectes sapidus Rathbun, FAO Fisheries Synopsis, 38, https://repository.library.noaa.gov/view/noaa/5574 (last access: 10 February 2025), 1984.
Mistri, M., Borja, A., Aleffi, I. F., Lardicci, C., Tagliapietra, D., and Munari, C.: Assessing the ecological status of Italian lagoons using a biomass-based index, Mar. Pollut. Bull., 126, 600–605, https://doi.org/10.1016/j.marpolbul.2017.09.048, 2018.
Nehring, S.: Invasion History and Success of the American Blue Crab Callinectes sapidus in European and Adjacent Waters, in: In the Wrong Place – Alien Marine Crustaceans: Distribution, Biology and Impacts, edited by: Galil, B. S., Clark, P. F., and Carlton, J. T., Invading Nature – Springer Series in Invasion Ecology, Springer Netherlands, 607–624, https://doi.org/10.1007/978-94-007-0591-3, 2011.
Oh, I. K. and Lee, S. W.: Effects of temperature on the survival and larval development of Deiratonotus japonicus (Brachyura, Camptandriidae) as a biological indicator, Journal of Marine Science and Engineering, 8, 213, https://doi.org/10.3390/jmse8030213, 2020.
Pallas, P. S.: Miscellanea zoologica: quibus novae imprimis atque obscurae animalium species describuntur et observationibus iconibusque illustrantur, apud Sam et Joan Luchtmans, https://www.biodiversitylibrary.org/bibliography/44341 (last access: 10 February 2025), 1766.
Pires, A., Martins, R., Magalhães, L., Soares, A. M. V. M., Figueira, Quintino, E. V., Rodrigues A. M., and Freitas, R.: Expansion of lugworms towards southern European habitats and their identification using combined ecological, morphological and genetic approaches, Mar. Ecol. Prog. Ser., 533, 177–190, https://doi.org/10.3354/meps11315, 2015.
Pirro, A., Martellucci, R., Gallo, A., Kubin, E., Mauri, E., Juza, M., Notarstefano, G., Pacciaroni, M., Bussani, A., and Menna, M.: Subsurface warming derived from Argo floats during the 2022 Mediterranean marine heat wave, in: 8th edition of the Copernicus Ocean State Report (OSR8), edited by: von Schuckmann, K., Moreira, L., Grégoire, M., Marcos, M., Staneva, J., Brasseur, P., Garric, G., Lionello, P., Karstensen, J., and Neukermans, G., Copernicus Publications, State Planet, 4-osr8, 18, https://doi.org/10.5194/sp-4-osr8-18-2024, 2024.
Pisano, A., Nardelli, B. B., Tronconi, C., and Santoleri, R.: The new Mediterranean optimally interpolated pathfinder AVHRR SST Dataset (1982–2012), Remote Sens. Environ., 176, 107–116, https://doi.org/10.1016/j.rse.2016.01.019, 2016.
Pisano, A., Marullo, S., Artale, V., Falcini, F., Yang, C., Leonelli, F. E., and Buongiorno Nardelli, B.: New evidence of Mediterranean climate change and variability from sea surface temperature observations, Remote Sens., 12, 132, https://doi.org/10.3390/rs12010132, 2020.
Pisano, A., Fanelli, C., Massi, A., Tronconi, C., Cesarini, C., La Padula, F., Buongiorno Nardelli, B., and Ciani D.: Sea Surface Temperature Production Centre Mediterranean Sea and Black Sea Sea Surface Temperature Reprocessing, Sea Surface Temperature Production Centre Mediterranean Sea and Black Sea Sea Surface Temperature Reprocessing, Issue 4.0, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-SST-QUID-010-021-022-041-042.pdf (last access: 10 February 2025), 2024a.
Pisano, A., Fanelli, C., Massi, A., Tronconi, C., Cesarini, C., La Padula, F., Buongiorno Nardelli, B., and Ciani D.: EU Copernicus Marine Service Product User Manual for Mediterranean Sea and Black Sea L3S and L4 SST Reprocessed Products, SST_MED_SST_L4_REP_OBSERVATIONS_010_021, Issue 4.0, Mercator Ocean International, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-SST-PUM-010-021-022-041-042.pdf (last access: 10 February 2025) 2024b.
Raffa, F., Ludeno, G., Patti, B., Soldovieri, F., Mazzola, S., and Serafino, F.: X-band wave radar for coastal upwelling detection off the southern coast of Sicily, J. Atmos. Sol.-Terr. Phy., 34, 21–31, https://doi.org/10.1175/JTECH-D-16-0049.1, 2017.
Ramos, M. A. C. and Schizas, N. V.: Population structure of the fireworm Hermodice carunculata in the wider Caribbean, Atlantic and Mediterranean Sea, J. Mar. Biol. Assoc. UK, 103, e14, https://doi.org/10.1017/S0025315422001114, 2023.
Riera, R., Pérez, O., Rodríguez, M., Ramos, E., and Monterroso, Ó.: Are assemblages of the fireworm Hermodice carunculata enhanced in sediments beneath offshore fish cages?, Acta Oceanol. Sin., 33, 108–111, https://doi.org/10.1007/s13131-014-0449-y, 2014.
Righi, S., Prevedelli, D., and Simonini, R.: Ecology, distribution and expansion of a Mediterranean native invader, the fireworm Hermodice carunculata (Annelida), Mediterr. Mar. Sci., 21, 558–574, https://doi.org/10.12681/mms.23117, 2020.
Righi, S., Savioli, M., Prevedelli, D., Simonini, R., and Malferrari, D.: Unraveling the ultrastructure and mineralogical composition of fireworm stinging bristles, Zoology, 144, 125851, https://doi.org/10.1016/j.zool.2020.125851, 2021.
Righi, S., Forti, L., Simonini, R., Ferrari, V., Prevedelli, D., and Mucci, A.: Novel Natural Compounds and Their Anatomical Distribution in the Stinging Fireworm Hermodice carunculata (Annelida), Mar. Drugs, 20, 585, https://doi.org/10.3390/md20090585, 2022.
Rogers, T. L., Gouhier, T. C., and Kimbro, D. L.: Distinct temperature stressors acting on multiple ontogenetic stages influence the biogeography of Atlantic blue crabs, Mar. Ecol. Prog. Ser., 690, 97–111, https://doi.org/10.3354/meps14039, 2022.
Samperio-Ramos, G., Olsen, Y. S., Tomas, F., and Marbà, N.: Ecophysiological responses of three Mediterranean invasive seaweeds (Acrothamnion preissii, Lophocladia lallemandii and Caulerpa cylindracea) to experimental warming, Mar. Pollut. Bull., 96, 418–423, https://doi.org/10.1016/j.marpolbul.2015.05.024, 2015.
Scalici, M., Chiesa, S., Mancinelli, G., Rontani, P. M., Voccia, A., and Nonnis Marzano, F.: Euryhaline aliens invading Italian inland waters: The case of the Atlantic blue crab Callinectes sapidus Rathbun, 1896, Appl. Sci., 12, 4666, https://doi.org/10.3390/app12094666, 2022.
Schneider, A. K., Fabrizio, M. C., and Lipcius, R. N.: Reproductive phenology of the Chesapeake Bay blue crab population in a changing climate, Front. Ecol. Evol., 11, 1304021, https://doi.org/10.3389/fevo.2023.1304021, 2024.
Schulze, A., Grimes, C. J., and Rudek, T. E.: Tough, armed and omnivorous: Hermodice carunculata (Annelida: Amphinomidae) is prepared for ecological challenges, J. Mar. Biol. Assoc. UK, 97, 1075–1080, https://doi.org/10.1017/S0025315417000091, 2017.
Seesanong, S., Seangarun, C., Boonchom, B., Laohavisuti, N., Thompho, S., Boonmee, W., and Rungrojchaipon, P.: Bio-green synthesis of calcium acetate from oyster shell waste at low cost and reducing the emission of greenhouse gases, Sustainable Environment Research, 33, 26, https://doi.org/10.1186/s42834-023-00187-6, 2023.
Simonini, R. and Ferri, A.: Prime stime della longevità del verme di fuoco Hermodice carunculata (Annelida) dedotte grazie al contributo dei fotografi subacquei alla scienza partecipata, Atti della Società dei Naturalisti e Matematici di Modena, 153, 207–222, 2022.
Simonini, R., Maletti, I., Righi, S., Fai, S., and Prevedelli, D.: Laboratory observations on predator–prey interactions between the bearded fireworm (Hermodice carunculata) and Mediterranean benthic invertebrates, Freshwater Behaviour and Physiology, 51, 145–158, https://doi.org/10.1080/10236244.2018.1502031, 2018.
Simonini, R., Prevedelli, D., and Righi, S.: Esemplari mediterranei del verme di fuoco Hermodice carunculata (Annelida) catalogati nelle raccolte zoologiche di musei europei, Atti della Società dei Naturalisti e Matematici di Modena, 150, 145–159, https://iris.unimore.it/handle/11380/1184301 (last access: 10 February 2025), 2019.
Simonini, R., Righi, S., Zanetti, F., Fai, S., and Prevedelli, D.: Development and catch efficiency of an attracting device to collect and monitor the invasive fireworm Hermodice carunculata in the Mediterranean Sea, Mediterr. Mar. Sci., 22, 706–714, https://doi.org/10.12681/mms.26916, 2021.
Simonini, R., Ferri, A., Righi, S., Cenni, E., Ferrari, V., Sabia, C., and Prevedelli, D.: Potenziali applicazioni biotecnologiche dei policheti Halla parthenopeia (Oenonidae) e Hermodice carunculata (Amphinomidae), Biologia Marina Mediterranea, 28, 27–30, 2024.
Stachowicz, J. J., Terwin, J. R., Whitlatch, R. B., and Osman, R. W.: Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions, P. Natl. Acad. Sci. USA, 99, 15497–15500, https://doi.org/10.1073/pnas.242437499, 2002.
Sun, C. C., Hurst, J. E., and Fuller, A. K.: Citizen science data collection for integrated wildlife population analyses, Front. Ecol. Evol., 9, 682124, https://doi.org/10.3389/fevo.2021.682124, 2021.
Sussman, M., Loya, Y., Fine, M., and Rosenberg, E.: The marine fireworm Hermodice carunculata is a winter reservoir and spring-summer vector for the coral-bleaching pathogen Vibrio shiloi, Environ. Microbiol., 5, 250–255, https://doi.org/10.1046/j.1462-2920.2003.00392.x, 2003.
Taylor, D. L. and Fehon, M. M.: Blue Crab (Callinectes sapidus) population structure in Southern New England tidal rivers: Patterns of shallow-water, unvegetated habitat use and quality, Estuar. Coast., 44, 1320–1343, https://doi.org/10.1007/s12237-020-00867-1, 2021.
Tiralongo, F., Crocetta, F., Riginella, E., Lillo, A. O., Tondo, E., Macali, A., and Azzurro, E.: Snapshot of rare, exotic and overlooked fish species in the Italian seas: A citizen science survey, J. Sea Res., 164, 101930, https://doi.org/10.1016/j.seares.2020.101930, 2020.
Tiralongo, F., Villani, G., Arciprete, R., and Mancini, E.: Filling the gap on Italian records of an invasive species: first records of the Blue Crab, Callinectes sapidus Rathbun, 1896 (Decapoda: Brachyura: Portunidae), in Latium and Campania (Tyrrhenian Sea), Acta Adriat., 61, 99–104, https://doi.org/10.32582/aa.62.1.8, 2021.
Tiralongo, F., Marino, S., Ignoto, S., Martellucci, R., Lombardo, B. M., Mancini, E., and Scacco, U.: Impact of Hermodice carunculata (Pallas, 1766) (Polychaeta: Amphinomidae) on artisanal fishery: A case study from the Mediterranean Sea, Mar. Environ. Res., 192, 106227, https://doi.org/10.1016/j.marenvres.2023.106227, 2023.
Tiralongo, F., Nota, A., Di Pasquale, C., Muccio, E., and Felici, A.: Trophic interactions of Callinectes sapidus (Blue Crab) in Vendicari Nature Reserve (Central Mediterranean, Ionian Sea) and first record of Penaeus aztecus (Brown Shrimp), Diversity, 16, 724, https://doi.org/10.3390/d16120724, 2024a.
Tiralongo, F., Marcelli, M., Anselmi, G., Gattelli, R., and Felici, A.: Invasion of freshwater systems by the Atlantic blue crab Callinectes sapidus Rathbun, 1896 – new insights from Italian regions, Acta Adriat., 65, 193–204, https://doi.org/10.32582/aa.65.2.7, 2024b.
Tirelli, V., Goruppi, A., Riccamboni, R., and Tempesta, M.: Citizens' Eyes on Mnemiopsis: How to Multiply Sightings with a Click!, Diversity, 13, 224, https://doi.org/10.3390/d13060224, 2021.
Toivonen, T., Heikinheimo, V., Fink, C., Hausmann, A., Hiippala, T., Karhu, M., Orellana, J., and Tenkanen, H.: Social media data for conservation science: A methodological overview, Biol. Conserv., 233, 298–315, https://doi.org/10.1016/j.biocon.2019.02.013, 2019.
Toso, A., Boulamail, S., Lago, N., Pierri, C., Piraino, S., and Giangrande, A.: First description of early developmental stages of the native invasive fireworm Hermodice carunculata (Annelida, Amphinomidae): a cue to the warming of the Mediterranean Sea, Mediterr. Mar. Sci., 21, 442–447, https://doi.org/10.12681/mms.22043, 2020.
Toso, A., Furfaro, G., Fai, S., Giangrande, A., and Piraino, S.: A sea of fireworms? New insights on ecology and seasonal density of Hermodice carunculata (Pallas, 1766) (Annelida) in the Ionian Sea (SE Italy), European Zoological Journal, 89, 1104–1114, https://doi.org/10.1080/24750263.2022.2113156, 2022.
Toso, A., Mammone, M., Rossi, S., Piraino, S., and Giangrande, A.: Effect of temperature and body size on anterior and posterior regeneration in Hermodice carunculata (Polychaeta, Amphinomidae), Mar. Biol., 171, 152, https://doi.org/10.1007/s00227-024-04468-5, 2024.
Tsirintanis, K., Azzurro, E., Crocetta, F., Dimiza, M., Froglia, C., Gerovasileiou, V., Langeneck, J., Mancinelli, G., Rosso, A., Stern, N., Triantaphyllou, M., Tsiamis, K., Turon, X., Verlaque, M., Zenetos, A., and Katsanevakis, S.: Bioinvasion impacts on biodiversity, ecosystem services, and human health in the Mediterranean Sea, Aquat. Invasions, 17, 308–352, https://doi.org/10.3391/ai.2022.17.3.01, 2022.
Turolla, E.: La venericoltura in Italia. Estado actual de cultivo y manejo de moluscos bivalvos y su proyección futura: factores que afectan su sustentabilidad en América Latina, edited by: Lovatelli, A., Farías, A., and Uriarte, I., Taller Técnico Regional de la FAO, 20–24 August 2007, Puerto Montt, Chile, FAO Actas de Pesca y Acuicultura, No. 12. Roma, FAO, 177–188, ISBN 978-92-5-306115-0, 2008.
Turrini, T., Dörler, D., Richter, A., Heigl, F., and Bonn, A.: The threefold potential of environmental citizen science – Generating knowledge, creating learning opportunities and enabling civic participation, Biol. Conserv., 225, 176–186, https://doi.org/10.1016/j.biocon.2018.06.003, 2018.
Valdes, L., Alvarez-Ossorio, M. T., and Gonzalez-Gurriaran, E.: Influence of temperature on embryonic and larval development in Necora puber (Brachyura, Portunidae), J. Mar. Biol. Assoc. UK, 71, 787–789, https://doi.org/10.1017/S0025315400053455, 1991.
van den Brink, A. M., McLay, C. L., Hosie, A. M., and Dunnington, M. J.: The effect of temperature on brood duration in three Halicarcinus anger species (Crustacea: Brachyura: Hymenosomatidae), J. Mar. Biol. Assoc. UK, 92, 515–520, https://doi.org/10.1017/S0025315411000579, 2012.
Vetrano, A., Napolitano, E., Iacono, R., Schroeder, K., and Gasparini, G. P.: Tyrrhenian Sea circulation and water mass fluxes in spring 2004: Observations and model results, J. Geophys. Res.-Oceans, 115, C06011, https://doi.org/10.1029/2009JC005837, 2010.
Wolf, A. T. and Nugues, M. M.: Predation on coral settlers by the corallivorous fireworm Hermodice carunculata, Coral Reefs, 32, 227–231, https://doi.org/10.1007/s00338-012-0969-x, 2013.
Wolf, A. T., Nugues, M. M., and Wild, C.: Distribution, food preference, and trophic position of the corallivorous fireworm Hermodice carunculata in a Caribbean coral reef, Coral Reefs, 33, 1153–1163, https://doi.org/10.1007/s00338-014-1184-8, 2014.
Zenetos, A., Çinar, M. E., Pancucci-Papadopoulou, M. A., Harmelin, J. G., Furnari, G., Andaloro, F., Bellou, N., Streftaris, N., and Zibrowius, H.: Annotated list of marine alien species in the Mediterranean with records of the worst invasive species, Mediterr. Mar. Sci., 6, 63–118, https://doi.org/10.12681/mms.186, 2005.
Short summary
In 2023, global mean air temperatures reached unprecedented highs and the Mediterranean was hit by the longest marine heatwave in four decades. These conditions favoured the spread of invasive species affecting fisheries in the central Mediterranean. This study provides new insights into the cascading impacts of climate-driven extreme events on marine ecosystems and fisheries and suggests actionable strategies for dealing with invasive species in a changing climate.
In 2023, global mean air temperatures reached unprecedented highs and the Mediterranean was hit...
Altmetrics
Final-revised paper
Preprint