Articles | Volume 6-osr9
https://doi.org/10.5194/sp-6-osr9-4-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-6-osr9-4-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Micronekton indicators evolution based on biophysically defined provinces
Sarah Albernhe
CORRESPONDING AUTHOR
Collecte Localisation Satellites, 8–10 rue Hermès, 31520, Ramonville-Saint-Agne, France
Univ Brest, CNRS, Ifremer, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, 29280, Plouzané, France
Thomas Gorgues
Univ Brest, CNRS, Ifremer, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, 29280, Plouzané, France
Olivier Titaud
Collecte Localisation Satellites, 8–10 rue Hermès, 31520, Ramonville-Saint-Agne, France
Patrick Lehodey
Mercator Ocean International, 2 Av. de l'Aérodrome de Montaudran, 31400, Toulouse, France
Pacific Community, Oceanic Fisheries Programme, Nouméa, New Caledonia
Christophe Menkes
ENTROPIE, IRD, Univ. de La Réunion, CNRS, Ifremer, Univ. de la Nouvelle-Calédonie, BP A5, 98848 Nouméa, New Caledonia
Anna Conchon
Collecte Localisation Satellites, 8–10 rue Hermès, 31520, Ramonville-Saint-Agne, France
Related authors
No articles found.
Bastien Pagli, Takeshi Izumo, Alexandre Barboni, Carla Chevillard, Cyril Dutheil, Raphael Legrand, Christophe Menkes, Claire Rocuet, and Sophie Cravatte
EGUsphere, https://doi.org/10.5194/egusphere-2025-4166, https://doi.org/10.5194/egusphere-2025-4166, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Marine heatwaves—periods of unusually warm ocean temperatures—are becoming more frequent and intense with climate change. These events can harm marine ecosystems, especially in vulnerable regions like French Polynesia. Here, we used satellite sea surface temperature data and ocean reanalysis to characterize past events. We investigated their characteristics, variability linked to ENSO, and the physical mechanisms driving their onset and decay across the region.
Shilpa Lal, Sophie Cravatte, Christophe Menkes, Jed Macdonald, Romain LeGendre, Ines Mangolte, Cyril Dutheil, Neil Holbrook, and Simon Nicol
EGUsphere, https://doi.org/10.5194/egusphere-2025-3281, https://doi.org/10.5194/egusphere-2025-3281, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This paper characterizes historical (1981–2023) marine heatwaves in the tropical southwestern Pacific, where they pose a challenge for marine resource dependent Islands. Heatwaves are distinguished as a function of their spatial extent, signature at the coast, and seasonality, to allow a better understanding of their impacts on ecosystems. Marine heatwaves are getting longer and more frequent, with greater spatial extents. Our results aim to inform the Pacific Islands on their vulnerability.
Romain Le Gendre, David Varillon, Sylvie Fiat, Régis Hocdé, Antoine De Ramon N'Yeurt, Jérôme Aucan, Sophie Cravatte, Maxime Duphil, Alexandre Ganachaud, Baptiste Gaudron, Elodie Kestenare, Vetea Liao, Bernard Pelletier, Alexandre Peltier, Anne-Lou Schaefer, Thomas Trophime, Simon Van Wynsberge, Yves Dandonneau, Michel Allenbach, and Christophe Menkes
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-394, https://doi.org/10.5194/essd-2024-394, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Due to ocean warming, coral reef ecosystems are strongly impacted with dystrophic events and corals experiencing increasing frequencies of bleaching events. In-situ observation remains the best alternative for accurate characterization of trends and extremes in these shallow environments. This paper presents the coastal temperature dataset of the ReefTEMPS monitoring network which spreads over multiple Pacific Island Countries and Territories (PICTS) in the Western and Central South Pacific.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Sophie Cravatte, Guillaume Serazin, Thierry Penduff, and Christophe Menkes
Ocean Sci., 17, 487–507, https://doi.org/10.5194/os-17-487-2021, https://doi.org/10.5194/os-17-487-2021, 2021
Short summary
Short summary
The various currents in the southwestern Pacific Ocean contribute to the redistribution of waters from the subtropical gyre equatorward and poleward. The drivers of their interannual variability are not completely understood but are usually thought to be related to well-known climate modes of variability. Here, we suggest that oceanic chaotic variability alone, which is by definition unpredictable, explains the majority of this interannual variability south of 20° S.
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Cited articles
Abraham, J. P., Baringer, M., Bindoff, N. L., Boyer, T., Cheng, L. J., Church, J. A., Conroy, J. L., Domingues, C. M., Fasullo, J. T., Gilson, J., Goni, G., Good, S. A., Gorman, J. M., Gouretski, V., Ishii, M., Johnson, G. C., Kizu, S., Lyman, J. M., Macdonald, A. M., Minkowycz, W. J., Moffitt, S. E., Palmer, M. D., Piola, A. R., Reseghetti, F., Schuckmann, K., Trenberth, K. E., Velicogna, I., and Willis, J. K.: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change, Rev. Geophys., 51, 450–483, https://doi.org/10.1002/rog.20022, 2013.
Albernhe, S., Gorgues, T., Lehodey, P., Menkes, C., Titaud, O., De La Giclais, S. M., and Conchon, A.: Global characterization of modelled micronekton in biophysically defined provinces, Prog. Oceanogr., 229, 103370, https://doi.org/10.1016/j.pocean.2024.103370, 2024a.
Albernhe, S., Gorgues, T., Titaud, O., Lehodey, P., Menkes, C., and Conchon, A.: Biophysical provinces, monthly times series 1998–2023, TIB AV-Portal [video], https://doi.org/10.5446/68853, 2024b.
Ariza, A., Lengaigne, M., Menkes, C., Lebourges-Dhaussy, A., Receveur, A., Gorgues, T., Habasque, J., Gutiérrez, M., Maury, O., and Bertrand, A.: Global decline of pelagic fauna in a warmer ocean, Nat. Clim. Change, 12, 928–934, https://doi.org/10.1038/s41558-022-01479-2, 2022.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Behrenfeld, M. J. and Falkowski, P. G.: A consumer's guide to phytoplankton primary productivity models, Limnol. Oceanogr., 42, 1479–1491, https://doi.org/10.4319/lo.1997.42.7.1479, 1997.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary ocean productivity, Nature, 444, 752–755, https://doi.org/10.1038/nature05317, 2006.
Bell, J. D., Allain, V., Allison, E. H., Andréfouët, S., Andrew, N. L., Batty, M. J., Blanc, M., Dambacher, J. M., Hampton, J., Hanich, Q., Harley, S., Lorrain, A., McCoy, M., McTurk, N., Nicol, S., Pilling, G., Point, D., Sharp, M. K., Vivili, P., and Williams, P.: Diversifying the use of tuna to improve food security and public health in Pacific Island countries and territories, Mar. Policy, 51, 584–591, https://doi.org/10.1016/j.marpol.2014.10.005, 2015.
Bianchi, D., Stock, C., Galbraith, E. D., and Sarmiento, J. L.: Diel vertical migration: Ecological controls and impacts on the biological pump in a one-dimensional ocean model, Global Biogeochem. Cy., 27, 478–491, https://doi.org/10.1002/gbc.20031, 2013.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.: Multi-faceted particle pumps drive carbon sequestration in the ocean, Nature, 568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019.
Brodeur, R. D., Seki, M. P., Pakhomov, E. A., and Suntsov, A. V.: Micronekton – What are they and why are they important?, PICES Press, 13, 7–11, 2004.
Bryndum-Buchholz, A., Tittensor, D. P., Blanchard, J. L., Cheung, W. W. L., Coll, M., Galbraith, E. D., Jennings, S., Maury, O., and Lotze, H. K.: Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins, Glob. Change Biol., 25, 459–472, https://doi.org/10.1111/gcb.14512, 2019.
Buesseler, K. O., Jin, D., Kourantidou, M., Levin, D. S., Ramakrishna, K., and Renaud, P.: The ocean twilight zone's role in climate change, Woods Hole Oceanographic Institution, https://doi.org/10.1575/1912/28074, 2022.
Conchon, A.: Modélisation du zooplancton et du micronecton marins, Doctoral dissertation, Université de La Rochelle, https://theses.hal.science/tel-01661554 (last access: 1 September 2024), 2016.
Costello, M. J., Tsai, P., Wong, P. S., Cheung, A. K. L., Basher, Z., and Chaudhary, C.: Marine biogeographic realms and species endemicity, Nat. Commun., 8, 1057, https://doi.org/10.1038/s41467-017-01121-2, 2017.
Denman, K. L. and Gargett, A. E.: Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean, Limnol. Oceanogr., 28, 801–815, https://doi.org/10.4319/lo.1983.28.5.0801, 1983.
Elizondo, U. H., Righetti, D., Benedetti, F., and Vogt, M.: Biome partitioning of the global ocean based on phytoplankton biogeography, Prog. Oceanogr., 194, 102530, https://doi.org/10.1016/j.pocean.2021.102530, 2021.
Escobar-Flores, P. C., Ladroit, Y., and O'Driscoll, R. L.: Acoustic assessment of the micronekton community on the Chatham Rise, New Zealand, using a semi-automated approach, Front. Mar. Sci., 6, 507, https://doi.org/10.3389/fmars.2019.00507, 2019.
EU Copernicus Marine Service Information (CMEMS): Global ocean low and mid trophic levels biomass content hindcast, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00020, 2024a.
EU Copernicus Marine Service Information (CMEMS): Global Ocean Biogeochemistry Hindcast, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00019, 2024b.
EU Copernicus Marine Service Information (CMEMS): Multi Observation Global Ocean 3D Temperature Salinity Height Geostrophic Current and MLD, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00052, 2024c.
Gatto, A., Sadik-Zada, E. R., Özbek, S., Kieu, H., and Huynh, N. T. N.: Deep-sea fisheries as resilient bioeconomic systems for food and nutrition security and sustainable development, Resour. Conserv. Recycl., 197, 106907, https://doi.org/10.1016/j.resconrec.2023.106907, 2023.
Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M., and Brown, J. H.: Effects of size and temperature on developmental time, Nature, 417, 70–73, https://doi.org/10.1038/417070a, 2002.
Gorgues, T., Aumont, O., and Memery, L.: Simulated changes in the particulate carbon export efficiency due to diel vertical migration of zooplankton in the North Atlantic, Geophys. Res. Lett., 46, 5387–5395, https://doi.org/10.1029/2018GL081748, 2019.
Greiner, E., Verbrugge, N., Mulet, S., and Guinehut, S.: Copernicus Marine Service Information (CMEMS) Quality Information Document (QUID): CMEMS-MOB-QUID-015-012 – QUID for MULTIOBS product MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012, Copernicus Mar. Serv., 65 pp., https://documentation.marine.copernicus.eu/QUID/CMEMS-MOB-QUID-015-012.pdf (last access: 1 September 2024), 2023.
Grimaud, G. M., Mairet, F., Sciandra, A., and Bernard, O.: Modeling the temperature effect on the specific growth rate of phytoplankton: a review, Rev. Environ. Sci. Biotechnol., 16, 625–645, https://doi.org/10.1007/s11157-017-9443-0, 2017.
Guinehut, S., Dhomps, A.-L., Larnicol, G., and Le Traon, P.-Y.: High resolution 3-D temperature and salinity fields derived from in situ and satellite observations, Ocean Sci., 8, 845–857, https://doi.org/10.5194/os-8-845-2012, 2012.
Hastings, R. A., Rutterford, L. A., Freer, J. J., Collins, R. A., Simpson, S. D., and Genner, M. J.: Climate change drives poleward increases and equatorward declines in marine species, Curr. Biol., 30, 1572–1577, https://doi.org/10.1016/j.cub.2020.02.043, 2020.
Hotelling, H.: Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., 24, 417–441, https://doi.org/10.1037/h0071325, 1933.
Kaartvedt, S., Staby, A., and Aksnes, D. L.: Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass, Mar. Ecol. Prog. Ser., 456, 1–6, https://doi.org/10.3354/meps09785, 2012.
Kloser, R. J., Ryan, T., Sakov, P., Williams, A., and Koslow, J. A.: Species identification in deep water using multiple acoustic frequencies, Can. J. Fish. Aquat. Sci., 59, 1065–1077, https://doi.org/10.1139/f02-076, 2002.
Kwiatkowski, L., Aumont, O., and Bopp, L.: Consistent trophic amplification of marine biomass declines under climate change, Glob. Change Biol., 25, 218–229, https://doi.org/10.1111/gcb.14468, 2019.
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020.
Le Galloudec, O., Perruche, C., Derval, C., Tressol, M., and Dussurget, R.: Copernicus Marine Service Information (CMEMS) Product User Manual (PUM): CMEMS-GLO-PUM-001-029 – PUM for Global MFC Products GLOBAL_MULTIYEAR_BGC_001_029, Copernicus Mar. Serv., 17 pp., https://documentation.marine.copernicus.eu/PUM/CMEMS-GLO-PUM-001-029.pdf (last access: 1 September 2024), 2024.
Laufkötter, C., Vogt, M., and Gruber, N.: Long-term trends in ocean plankton production and particle export between 1960–2006, Biogeosciences, 10, 7373–7393, https://doi.org/10.5194/bg-10-7373-2013, 2013.
Lehodey, P., Murtugudde, R., and Senina, I.: Bridging the gap from ocean models to population dynamics of large marine predators: a model of mid-trophic functional groups, Prog. Oceanogr., 84, 69–84, https://doi.org/10.1016/j.pocean.2009.09.008, 2010.
Lehodey, P., Conchon, A., Senina, I., Domokos, R., Calmettes, B., Jouanno, J., Hernandez, O., and Kloser, R.: Optimization of a micronekton model with acoustic data, ICES J. Mar. Sci., 72, 1399–1412, https://doi.org/10.1093/icesjms/fsu233, 2015.
Lloyd, S. P.: Least squares quantization in PCM, IEEE Trans. Inf. Theory, 28, 129–137, https://doi.org/10.1109/TIT.1982.1056489, 1982.
Longhurst, A. R.: Seasonal cycles of pelagic production and consumption, Prog. Oceanogr., 36, 77–167, https://doi.org/10.1016/0079-6611(95)00015-1, 1995.
Longhurst, A. R.: Toward an ecological geography of the sea, in: Ecological Geography of the Sea, 2nd edn., edited by: Longhurst, A. R., Academic Press, Burlington, 1–17, https://doi.org/10.1016/B978-012455521-1/50002-4, 2007.
Lotze, H. K., Tittensor, D. P., Bryndum-Buchholz, A., Eddy, T. D., Cheung, W. W. L., Galbraith, E. D., Barange, M., Barrier, N., Bianchi, D., Blanchard, J. L., Bopp, L., Büchner, M., Bulman, C. M., Carozza, D. A., Christensen, V., Coll, M., Dunne, J. P., Fulton, E. A., Jennings, S., Jones, M. C., Mackinson, S., Maury, O., Niiranen, S., Oliveros-Ramos, R., Roy, T., Fernandes, J. A., Schewe, J., Shin, Y.-J., Silva, T. A. M., Steenbeek, J., Stock, C. A., Verley, P., Volkholz, J., Walker, N. D., and Worm, B.: Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change, P. Natl. Acad. Sci. USA, 116, 12907–12912, https://doi.org/10.1073/pnas.1900194116, 2019.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B. (Eds.): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896, 2023.
McCluney, J. K., Anderson, C. M., and Anderson, J. L.: The fishery performance indicators for global tuna fisheries, Nat. Commun., 10, 1641, https://doi.org/10.1038/s41467-019-09466-6, 2019.
McGehee, D. E., O'Driscoll, R. L., and Traykovski, L. M.: Effects of orientation on acoustic scattering from Antarctic krill at 120 kHz, Deep-Sea Res. Pt. II, 45, 1273–1294, https://doi.org/10.1016/S0967-0645(98)00036-8, 1998.
Mulet, S., Rio, M. H., Mignot, A., Guinehut, S., and Morrow, R.: A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in situ measurements, Deep-Sea Res. Pt. II, 77–80, 70–81, https://doi.org/10.1016/j.dsr2.2012.04.012, 2012.
Pauthenet, E., Martinez, E., Gorgues, T., Roussillon, J., Drumetz, L., Fablet, R., and Roux, M.: Contrasted trends in chlorophyll-a satellite products, Geophys. Res. Lett., 51, e2024GL108916, https://doi.org/10.1029/2024GL108916, 2024.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.
Perruche, C., Szczypta, C., Paul, J., and Drévillon, M.: Copernicus Marine Service Information (CMEMS) Quality Information Document (QUID): CMEMS-GLO-QUID-001-029 – QUID for Global MFC Products GLOBAL_MULTIYEAR_BGC_001_029, Copernicus Mar. Serv., 40 pp., https://documentation.marine.copernicus.eu/QUID/CMEMS-GLO-QUID-001-029.pdf (last access: 1 September 2024), 2024.
Pinsky, M. L., Selden, R. L., and Kitchel, Z. J.: Climate-driven shifts in marine species ranges: Scaling from organisms to communities, Annu. Rev. Mar. Sci., 12, 153–179, https://doi.org/10.1146/annurev-marine-010419-010916, 2020.
Pinti, J., DeVries, T., Norin, T., Serra-Pompei, C., Proud, R., Siegel, D. A., and Visser, A. W.: Metazoans, migrations, and the ocean's biological carbon pump, bioRxiv, https://doi.org/10.1101/2021.03.22.436489, 2021.
Proud, R., Cox, M. J., and Brierley, A. S.: Biogeography of the global ocean's mesopelagic zone, Curr. Biol., 27, 113–119, https://doi.org/10.1016/j.cub.2016.11.003, 2017.
Reygondeau, G., Maury, O., Beaugrand, G., Fromentin, J. M., Fonteneau, A., and Cury, P.: Biogeography of tuna and billfish communities, J. Biogeogr., 39, 114–129, https://doi.org/10.1111/j.1365-2699.2011.02582.x, 2012.
Spalding, M. D., Agostini, V. N., Rice, J., and Grant, S. M.: Pelagic provinces of the world: A biogeographic classification of the world's surface pelagic waters, Ocean Coast. Manag., 60, 19–30, https://doi.org/10.1016/j.ocecoaman.2011.12.016, 2012.
Srokosz, M. A. and Bryden, H. L.: Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises, Science, 348, 1255575, https://doi.org/10.1126/science.1255575, 2015.
St. John, M. A., Borja, A., Chust, G., Heath, M., Grigorov, I., Mariani, P., Martin, A. P., and Santos, R. S.: A dark hole in our understanding of marine ecosystems and their services: Perspectives from the mesopelagic community, Front. Mar. Sci., 3, 31, https://doi.org/10.3389/fmars.2016.00031, 2016.
Sutton, T. T., Clark, M. R., Dunn, D. C., Halpin, P. N., Rogers, A. D., Guinotte, J., Bograd, S. J., Angel, M. V., Alvarez Perez, J. A., Wishner, K. F., Haedrich, R. L., Lindsay, D. J., Drazen, J. C., Vereshchaka, A., Piatkowski, U., Morato, T., Błachowiak-Samołyk, K., Robison, B. H., Gjerde, K. M., Pierrot-Bults, A., Bernal, P., Reygondeau, G., and Heino, M.: A global biogeographic classification of the mesopelagic zone, Deep-Sea Res. Pt. I, 126, 85–102, https://doi.org/10.1016/j.dsr.2017.05.006, 2017.
Terawasi, P. and Reid, C.: Economic and development indicators and statistics: Tuna fisheries of the western and central Pacific Ocean, Forum Fisheries Agency (FFA), Honiara, https://www.ffa.int/wp-content/uploads/_pda/2022/05/Economic-and-Development-Indicators-and-Statistics-2017.pdf (last access: 1 September 2024), 2017.
Titaud, O., Conchon, A., Mérillet, L., and Goeman, N.: Copernicus Marine Service Information (CMEMS) Quality Information Document (QUID): CMEMS-GLO-QUID-001-033 – QUID for Global MFC Products GLOBAL_MULTIYEAR_BGC_001_033, Copernicus Mar. Serv., 31 pp., https://documentation.marine.copernicus.eu/QUID/CMEMS-GLO-QUID-001-033.pdf (last access: 1 September 2024), 2024a.
Titaud, O., Conchon, A., and Mérillet, L.: Copernicus Marine Service Information (CMEMS) Product User Manual (PUM): CMEMS-GLO-PUM-001-033 – PUM for Global MFC Products GLOBAL_MULTIYEAR_BGC_001_033, Copernicus Mar. Serv., 21 pp., https://documentation.marine.copernicus.eu/PUM/CMEMS-GLO-PUM-001-033.pdf (last access: 1 September 2024), 2024b.
Tittensor, D. P., Novaglio, C., Harrison, C. S., Heneghan, R. F., Barrier, N., Bianchi, D., Blanchard, J. L., Bopp, L., Bryndum-Buchholz, A., Cheung, W. W. L., Galbraith, E. D., Gehlen, M., Lotze, H. K., Maury, O., McCormack, S. A., McInnes, K. L., Mignot, J., Oliveros-Ramos, R., Roy, T., Stock, C. A., Tagliabue, A., and Vichi, M.: Next-generation ensemble projections reveal higher climate risks for marine ecosystems, Nat. Clim. Change, 11, 973–981, https://doi.org/10.1038/s41558-021-01173-9, 2021.
Verbrugge, N., Greiner, E., Mulet, S., and Guinehut, S.: Copernicus Marine Service Information (CMEMS) Product User Manual (PUM): CMEMS-MOB-PUM-015-012 – PUM for MULTIOBS product MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012, Copernicus Mar. Serv., 17 pp., https://documentation.marine.copernicus.eu/PUM/CMEMS-MOB-PUM-015-012.pdf (last access: 1 September 2024), 2023.
Young, J. W., Hunt, B. P. V., Cook, T. R., Llopiz, J. K., Hazen, E. L., Pethybridge, H. R., Ceccarelli, D., Lorrain, A., Olson, R. J., Allain, V., Menkes, C., Patterson, T., Nicol, S., Lehodey, P., Kloser, R. J., Arrizabalaga, H., and Choy, C. A.: The trophodynamics of marine top predators: Current knowledge, recent advances and challenges, Deep-Sea Res. Py. II, 113, 170–187, https://doi.org/10.1016/j.dsr2.2014.05.015, 2015.
Short summary
Micronekton are marine organisms gathering a wide diversity of taxa (crustaceans, fish, cephalopods) 2 to 20 cm in size. They are responsible for an important carbon export to the deep ocean and are the main prey for marine predators. We define provinces of homogeneous environmental parameters, representing areas of common micronekton biomass and vertical structure. We observe the evolution of the provinces in time from 1998 to 2023 to account for the seasonal to interannual variability.
Micronekton are marine organisms gathering a wide diversity of taxa (crustaceans, fish,...
Altmetrics
Final-revised paper
Preprint