Articles | Volume 2-oae2023
https://doi.org/10.5194/sp-2-oae2023-4-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-2-oae2023-4-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
General considerations for experimental research on ocean alkalinity enhancement
Sam Dupont
CORRESPONDING AUTHOR
Radioecology Laboratory, International Atomic Energy Agency, Marine Environment Laboratories, Monaco 98000, Monaco
Department for Biological and Environmental Sciences, University of Gothenburg, Fiskebäckskil 45178, Sweden
Marc Metian
Radioecology Laboratory, International Atomic Energy Agency, Marine Environment Laboratories, Monaco 98000, Monaco
Related authors
Claudine Hauri, Brita Irving, Sam Dupont, Rémi Pagés, Donna D. W. Hauser, and Seth L. Danielson
Biogeosciences, 21, 1135–1159, https://doi.org/10.5194/bg-21-1135-2024, https://doi.org/10.5194/bg-21-1135-2024, 2024
Short summary
Short summary
Arctic marine ecosystems are highly susceptible to impacts of climate change and ocean acidification. We present pH and pCO2 time series (2016–2020) from the Chukchi Ecosystem Observatory and analyze the drivers of the current conditions to get a better understanding of how climate change and ocean acidification could affect the ecological niches of organisms.
Steve Widdicombe, Kirsten Isensee, Yuri Artioli, Juan Diego Gaitán-Espitia, Claudine Hauri, Janet A. Newton, Mark Wells, and Sam Dupont
Ocean Sci., 19, 101–119, https://doi.org/10.5194/os-19-101-2023, https://doi.org/10.5194/os-19-101-2023, 2023
Short summary
Short summary
Ocean acidification is a global perturbation of the ocean carbonate chemistry as a consequence of increased carbon dioxide concentration in the atmosphere. While great progress has been made over the last decade for chemical monitoring, ocean acidification biological monitoring remains anecdotal. This is a consequence of a lack of standards, general methodological framework, and overall methodology. This paper presents methodology focusing on sensitive traits and rates of change.
Aisling Fontanini, Alexandra Steckbauer, Sam Dupont, and Carlos M. Duarte
Biogeosciences, 15, 3717–3729, https://doi.org/10.5194/bg-15-3717-2018, https://doi.org/10.5194/bg-15-3717-2018, 2018
Short summary
Short summary
Invertebrate species of the Gullmar Fjord (Sweden) were exposed to four different treatments (high/low oxygen and low/high CO2) and respiration measured. Respiration responses of species of contrasting habitats and life-history strategies to single and multiple stressors was evaluated. Results show that the responses of the respiration were highly species specific as we observed both synergetic as well as antagonistic responses, and neither phylum nor habitat explained trends in respiration.
Claudine Hauri, Brita Irving, Sam Dupont, Rémi Pagés, Donna D. W. Hauser, and Seth L. Danielson
Biogeosciences, 21, 1135–1159, https://doi.org/10.5194/bg-21-1135-2024, https://doi.org/10.5194/bg-21-1135-2024, 2024
Short summary
Short summary
Arctic marine ecosystems are highly susceptible to impacts of climate change and ocean acidification. We present pH and pCO2 time series (2016–2020) from the Chukchi Ecosystem Observatory and analyze the drivers of the current conditions to get a better understanding of how climate change and ocean acidification could affect the ecological niches of organisms.
Steve Widdicombe, Kirsten Isensee, Yuri Artioli, Juan Diego Gaitán-Espitia, Claudine Hauri, Janet A. Newton, Mark Wells, and Sam Dupont
Ocean Sci., 19, 101–119, https://doi.org/10.5194/os-19-101-2023, https://doi.org/10.5194/os-19-101-2023, 2023
Short summary
Short summary
Ocean acidification is a global perturbation of the ocean carbonate chemistry as a consequence of increased carbon dioxide concentration in the atmosphere. While great progress has been made over the last decade for chemical monitoring, ocean acidification biological monitoring remains anecdotal. This is a consequence of a lack of standards, general methodological framework, and overall methodology. This paper presents methodology focusing on sensitive traits and rates of change.
Miguel Gómez Batista, Marc Metian, François Oberhänsli, Simon Pouil, Peter W. Swarzenski, Eric Tambutté, Jean-Pierre Gattuso, Carlos M. Alonso Hernández, and Frédéric Gazeau
Biogeosciences, 17, 887–899, https://doi.org/10.5194/bg-17-887-2020, https://doi.org/10.5194/bg-17-887-2020, 2020
Short summary
Short summary
In this paper, we assessed four methods (total alkalinity anomaly, calcium anomaly, 45Ca incorporation, and 13C incorporation) to determine coral calcification of a reef-building coral. Under all conditions (light vs. dark incubations and ambient vs. lowered pH levels), calcification rates estimated using the alkalinity and calcium anomaly techniques as well as 45Ca incorporation were highly correlated, while significantly different results were obtained with the 13C incorporation technique.
Aisling Fontanini, Alexandra Steckbauer, Sam Dupont, and Carlos M. Duarte
Biogeosciences, 15, 3717–3729, https://doi.org/10.5194/bg-15-3717-2018, https://doi.org/10.5194/bg-15-3717-2018, 2018
Short summary
Short summary
Invertebrate species of the Gullmar Fjord (Sweden) were exposed to four different treatments (high/low oxygen and low/high CO2) and respiration measured. Respiration responses of species of contrasting habitats and life-history strategies to single and multiple stressors was evaluated. Results show that the responses of the respiration were highly species specific as we observed both synergetic as well as antagonistic responses, and neither phylum nor habitat explained trends in respiration.
Cited articles
Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S., and Renforth, P.: CO2 removal with Enhanced Weathering and Ocean Alkalinity Enhancement: potential risks and co-benefits for marine pelagic ecosystems, Front. Clim., 1, https://doi.org/10.3389/fclim.2019.00007, 2019.
Benoit, G., Hunter, K. S., and Rozan, T. F.: Sources of trace metal contamination artifacts during collection, handling, and analysis of freshwaters, Anal. Chem., 69, 1006–1011, https://doi.org/10.1021/ac960798y, 1997.
Boyd, C. E. and Tucker, C. S.: Liming, in: Pond Aquaculture Water Quality Management, Springer, Boston, MA, 178–225, https://doi.org/10.1007/978-1-4615-5407-3_5, 1998.
Boyd, P., Collins, S., Dupont, S., Fabricius, K., Gattuso, J. P., Havenhand, J., Hutchins, D., Riebesell, U., Rintoul, M., Vichi, M., Biswas, H., Gao, K., Gehlen, M., Hurd, C., Kurihara, H., McGraw, C., Navarro, J., Nilsson, G., Passow, U., and Poertner, H. O.: Experimental strategies to assess the biological ramifications of multiple drivers of ocean global changes – a review, Glob. Chang. Biol., 24, 2239–2261, https://https://doi.org/10.1111/gcb.14102, 2018.
Cooley, S., Schoeman, D., Bopp, L., Boyd, P., Donner, S., Ito, S., Kiessling, W., Martinetto, P., Ojea, E., Racault, M. F., Rost, B., Skern-Mauritzen, M., Yemane Ghebrehiwet, D., Bell, J. D., Blanchard, J., Bolin, J., Cheung, W. W. L., Cisneros-Montemayor, A., Dupont, S., Dutkiewicz, S., Frölicher, T., Gaitán-Espitia, J. D., Molinos, J. G., Gurney-Smith, H., Henson, S., Hidalgo, M., Holland, E., Kopp, R., Kordas, R., Kwiatkowski, L., Le Bris, N., Lluch-Cota, S. E., Logan, C., Mark, F. C., Mgaya,Y., Moloney, C., Muñoz Sevilla, N. M., Randin, G., Raja, N. B., Rajkaran, A., Richardson, A., Roe, S., Ruiz Diaz, R., Salili, D., Sallée, J. B., Scales, K., Scobie, M., Simmons, C. T., Torres, O., and Yool, A.: Oceans and Coastal Ecosystems and their Services, in: IPCC AR6 WGII, Cambridge University Press, 379–550, https://doi.org/10.1017/9781009325844.005, 2022.
Cyronak, T., Albright, R., and Bach, L. T.: Field experiments in ocean alkalinity enhancement research, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 7, https://doi.org/10.5194/sp-2-oae2023-7-2023, 2023.
Eisaman, M. D., Geilert, S., Renforth, P., Bastianini, L., Campbell, J., Dale, A. W., Foteinis, S., Grasse, P., Hawrot, O., Löscher, C. R., Rau, G. H., and Rønning, J.: Assessing the technical aspects of ocean-alkalinity-enhancement approaches, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023.
Eisler, R.: Compendium of trace metals and marine biota: Volume 1: Plants and Invertebrates, Elsevier, ISBN 9780444534361, 2009.
Eisler, R.: Compendium of trace metals and marine biota: Volume 2: Vertebrates, Elsevier, ISBN 9780444534378, 2010.
Feder, M. E. and Walser, J. C.: The biological limitations of transcriptomics in elucidating stress and stress responses, J. Evol. Biol., 18, 901–910, https://doi.org/10.1111/j.1420-9101.2005.00921.x, 2005.
Fennel, K., Long, M. C., Algar, C., Carter, B., Keller, D., Laurent, A., Mattern, J. P., Musgrave, R., Oschlies, A., Ostiguy, J., Palter, J. B., and Whitt, D. B.: Modelling considerations for research on ocean alkalinity enhancement (OAE), in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 9, https://doi.org/10.5194/sp-2-oae2023-9-2023, 2023.
Field, E.: All Models Are Wrong, but Some Are Useful, Seismol. Res. Lett., 86, 291–293, https://doi.org/10.1785/02201401213, 2015.
Forstner, U. and Wittman, G. T.: Metal Pollution in the Aquatic Environment, 2nd edn., Springer, New York, ISBN 978-3-540-12856-4, 1983.
GEOTRACES: Chapter 5: Trace elements, in: Sampling and Sample-handling Protocols for GEOTRACES Cruises Version 3, 53–106, https://geotracesold.sedoo.fr/Cookbook.pdf (last access: 10 October 2023), 2017.
GESAMP: High level review of a wide range of proposed marine geoengineering techniques, in: IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UN Environment/UNDP/ISA Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, edited by: Boyd, P. W. and Vivian, C. M. G., Rep. Stud. GESAMP No. 98, ISSN: 1020-4873, http://www.gesamp.org/publications/high-level-review-of-a-wide-range-of-proposed-marine-geoengineering-techniques (last access: 10 October 2023), 2019.
Goemans, B.: The “living” Marine Aquarium Manual Basic and Advanced Husbandry for the 'Modern' Marine Aquarium, Basic and advances husbrandry for the modern marine aquarium, Salt Corner, ISBN 978-0-615-60306-3, http://www.saltcorner.com/LMAM/ShowChapter.php?ChapterID=17 (last access: 10 October 2023), 2012.
Hauck, J., Kohler, P., Wolf-Gladrow, D., and Völker, C.: Iron fertilization and century-scale effects of open ocean dissolution of olivine in a simulated CO2 removal experiment, Environ. Res. Lett., 11, 24007, https://doi.org/10.1088/1748-9326/11/2/024007, 2016.
Hédouin, L., Metian, M., Teyssié, J.-L., Fichez, R., and Warnau, M.: Delineation of heavy metal contamination pathways (seawater, food and sediment) in tropical oysters from New Caledonia using radiotracer techniques, Mar. Poll. Bull., 61, 542–553, https://doi.org/10.1016/j.marpolbul.2010.06.037, 2010.
Hirata, S., Honda, K., Shikino, O., Maekawa, N., and Aihara, M: Determination of chromium (III) and total chromium in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry, Spectrochimica Acta Part B At. Spectros., 55, 1089-1099, https://doi.org/10.1016/S0584-8547(00)00169-5, 2000.
Iglesias-Rodríguez, M. D., Rickaby, R. E. M., Singh, A., and Gately, J. A.: Laboratory experiments in ocean alkalinity enhancement research, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 5, https://doi.org/10.5194/sp-2-oae2023-5-2023, 2023.
IOC-UNESCO: Multiple Ocean Stressors: A Scientific Summary for Policy Makers, edited by: Boyd, P. W., Dupont, S., and Isensee, K., UNESCO, Paris, IOC Information Series, 1404, 20 pp., https://doi.org/10.25607/OBP-1724, 2022.
Kooijman, S. A. L. M.: Quantitative aspects of metabolic organization: a discussion of concepts, Philos. Trans. R. Soc. B, 356, 331–349, https://doi.org/10.1098/rstb.2000.0771, 2001.
Metian, M., Warnau, M., Oberhänsli, F., Teyssié, J. L., and Bustamante, P.: Interspecific comparison of Cd bioaccumulation in European Pectinidae (Chlamys varia and Pecten maximus), J. Exp. Mar. Biol. Ecol., 353, 58–67, https://doi.org/10.1016/j.jembe.2007.09.001, 2007.
Millero, F. J., Woosley, R., DiTrolio, B., and Waters, J.: Effect of ocean acidification on the speciation of metals in seawater, Oceanography, 22, 72–85, https://doi.org/10.5670/oceanog.2009.98, 2009.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J. Lenton, T. M., Mahowald, N. M., Marañón, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic nutrient limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Noble, A. E., Tuit, C. B., Maney, J. P., and Wait, A. D.: A review of marine water sampling methods for trace metals, Environ. Forensics, 21, 267–290, https://doi.org/10.1080/15275922.2020.1771629, 2020.
Quinn, G. P. and Keough, M. J.: Experimental design and data analysis for biologists, Cambridge University Press, ISBN 9780521009768, 2002.
Riebesell, U., Fabry, V. J., Hansson, L., and Gattuso J.-P.: EUR24872: Guide to best practices for ocean acidification research and data reporting, Publications Office of the European Union, ISBN 978-92-79-20650-4, https://doi.org/10.2777/66906, 2011.
Riebesell, U., Basso, D., Geilert, S., Dale, A. W., and Kreuzburg, M.: Mesocosm experiments in ocean alkalinity enhancement research, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023.
Schäfer, R. B. and Piggott, J. J.: Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models, Glob. Chang. Biol., 24, 1817–1826, https://doi.org/10.1111/gcb.14073, 2018.
Schintu, M., Marrucci, A., and Marras, B.: Passive Sampling Technologies for the Monitoring of Organic and Inorganic Contaminants in Seawater, in: Current Environmental Issues and Challenges, edited by: Cao, G. and Orrù, R., Springer, Dordrecht, https://doi.org/10.1007/978-94-017-8777-2_14, 2014.
Subhas, A. V., Lehmann, N., and Rickaby, R. E. M.: Natural analogs to ocean alkalinity enhancement, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 8, https://doi.org/10.5194/sp-2-oae2023-8-2023, 2023.
Vargas, C. A., Cuevas, L. A., Broitman, B. R., San Martin, V. A., Lagos, N. A., Gaitán-Espitia, J. D., and Dupont, S.: Upper environmental pCO2 drives sensitivity to ocean acidification in marine invertebrates, Nat. Clim. Change, 12, 200–207, https://doi.org/10.1038/s41558-021-01269-2, 2022.
Weeks, J.: Protesters urge caution over St Ives climate trial amid chemical plans for bay, The Guardian, https://www.theguardian.com/uk-news/2023/apr/17/protesters-urge-caution-over-st-ives-climate-trial-amid-chemical-plans-for-bay-planetary-technologies, last access: 2 October 2023.
Wuttig, K., Townsend, A. T., van der Merwe, P., Gault-Ringold, M., Holmes, T., Schallenberg, C., Latour, P., Tonnard, M., Rijkenberg, M. J. A., Lannuzel, D., and Bowie, A. R.: Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples, Talanta, 197, 653–668, https://doi.org/10.1016/j.talanta.2019.01.047, 2019.
Short summary
This chapter summarizes some key general considerations for experimental research methods and compares the strengths and weaknesses of the different approaches. It also considers best practices relevant to ocean alkalinization enhancement, such as the need to properly monitor and consider the addition of trace elements and byproducts and potential interactions with other naturally occurring drivers.
This chapter summarizes some key general considerations for experimental research methods and...
Altmetrics
Final-revised paper
Preprint