Articles | Volume 1-osr7
https://doi.org/10.5194/sp-1-osr7-14-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sp-1-osr7-14-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Recent variations in oceanic transports across the Greenland–Scotland Ridge
Michael Mayer
CORRESPONDING AUTHOR
Department of Meteorology and Geophysics, University of Vienna,
1090 Vienna, Austria
Research Department, European Centre for Medium-Range Weather
Forecasts (ECMWF), 53175 Bonn, Germany
b.geos, 2100 Korneuburg, Austria
Takamasa Tsubouchi
Atmosphere and Ocean Department, Japan Meteorological Agency (JMA),
Tokyo, 105-8431, Japan
Susanna Winkelbauer
Department of Meteorology and Geophysics, University of Vienna,
1090 Vienna, Austria
Karin Margretha H. Larsen
Faroe Marine Research Institute, Tórshavn, 100, Faroe Islands
Barbara Berx
Marine Scotland, Aberdeen, AB11 9DB, United Kingdom
Andreas Macrander
Environmental division, Marine and Freshwater Research Institute, Hafnarfjörður, 220, Iceland
Doroteaciro Iovino
Ocean Modeling and Data Assimilation Division, Centro
Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, 40127, Italy
Steingrímur Jónsson
Environmental division, Marine and Freshwater Research Institute, Hafnarfjörður, 220, Iceland
Faculty of Natural Resource Sciences, University of Akureyri, Akureyri, 600, Iceland
Richard Renshaw
Met Office, Exeter, EX1 3PB, United Kingdom
Related authors
Susanna Winkelbauer, Isabella Winterer, Michael Mayer, Yao Fu, and Leopold Haimberger
EGUsphere, https://doi.org/10.5194/egusphere-2025-4093, https://doi.org/10.5194/egusphere-2025-4093, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Ocean reanalyses combine models and observations to reconstruct past ocean conditions. We evaluate their performance against detailed measurements from the subpolar North Atlantic at the OSNAP section. While reanalyses capture long-term averages and broad circulation patterns, they miss some more regional features and variability. This highlights both their value and their limitations, stressing the need for improved observations and higher-resolution models.
Susanna Winkelbauer, Michael Mayer, and Leopold Haimberger
Geosci. Model Dev., 17, 4603–4620, https://doi.org/10.5194/gmd-17-4603-2024, https://doi.org/10.5194/gmd-17-4603-2024, 2024
Short summary
Short summary
Oceanic transports shape the global climate, but the evaluation and validation of this key quantity based on reanalysis and model data are complicated by the distortion of the used modelling grids and the large number of different grid types. We present two new methods that allow the calculation of oceanic fluxes of volume, heat, salinity, and ice through almost arbitrary sections for various models and reanalyses that are independent of the used modelling grids.
Johannes Mayer, Leopold Haimberger, and Michael Mayer
Earth Syst. Dynam., 14, 1085–1105, https://doi.org/10.5194/esd-14-1085-2023, https://doi.org/10.5194/esd-14-1085-2023, 2023
Short summary
Short summary
This study investigates the temporal stability and reliability of winter-month trends of air–sea heat fluxes from ERA5 forecasts over the North Atlantic basin for the period 1950–2019. Driving forces of trends and the impact of modes of climate variability and analysis increments on air–sea heat fluxes are investigated. Finally, a new and independent estimate of the Atlantic Meridional Overturning Circulation weakening is provided and associated with a decrease in air–sea heat fluxes.
Jonathan Andrew Baker, Richard Renshaw, Laura Claire Jackson, Clotilde Dubois, Doroteaciro Iovino, Hao Zuo, Renellys C. Perez, Shenfu Dong, Marion Kersalé, Michael Mayer, Johannes Mayer, Sabrina Speich, and Tarron Lamont
State Planet, 1-osr7, 4, https://doi.org/10.5194/sp-1-osr7-4-2023, https://doi.org/10.5194/sp-1-osr7-4-2023, 2023
Short summary
Short summary
We use ocean reanalyses, in which ocean models are combined with observations, to infer past changes in ocean circulation and heat transport in the South Atlantic. Comparing these estimates with other observation-based estimates, we find differences in their trends, variability, and mean heat transport but closer agreement in their mean overturning strength. Ocean reanalyses can help us understand the cause of these differences, which could improve estimates of ocean transports in this region.
Magdalena Fritz, Michael Mayer, Leopold Haimberger, and Susanna Winkelbauer
Ocean Sci., 19, 1203–1223, https://doi.org/10.5194/os-19-1203-2023, https://doi.org/10.5194/os-19-1203-2023, 2023
Short summary
Short summary
The interaction between the Indonesian Throughflow (ITF) and regional climate phenomena indicates the high relevance for monitoring the ITF. Observations remain temporally and spatially limited; hence near-real-time monitoring is only possible with reanalyses. We assess how well ocean reanalyses depict the intensity of the ITF via comparison to observations. The results show that reanalyses agree reasonably well with in situ observations; however, some aspects require higher-resolution products.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Susanna Winkelbauer, Michael Mayer, Vanessa Seitner, Ervin Zsoter, Hao Zuo, and Leopold Haimberger
Hydrol. Earth Syst. Sci., 26, 279–304, https://doi.org/10.5194/hess-26-279-2022, https://doi.org/10.5194/hess-26-279-2022, 2022
Short summary
Short summary
We evaluate Arctic river discharge using in situ observations and state-of-the-art reanalyses, inter alia the most recent Global Flood Awareness System (GloFAS) river discharge reanalysis version 3.1. Furthermore, we combine reanalysis data, in situ observations, ocean reanalyses, and satellite data and use a Lagrangian optimization scheme to close the Arctic's volume budget on annual and seasonal scales, resulting in one reliable and up-to-date estimate of every volume budget term.
Beena Balan-Sarojini, Steffen Tietsche, Michael Mayer, Magdalena Balmaseda, Hao Zuo, Patricia de Rosnay, Tim Stockdale, and Frederic Vitart
The Cryosphere, 15, 325–344, https://doi.org/10.5194/tc-15-325-2021, https://doi.org/10.5194/tc-15-325-2021, 2021
Short summary
Short summary
Our study for the first time shows the impact of measured sea ice thickness (SIT) on seasonal forecasts of all the seasons. We prove that the long-term memory present in the Arctic winter SIT is helpful to improve summer sea ice forecasts. Our findings show that realistic SIT initial conditions to start a forecast are useful in (1) improving seasonal forecasts, (2) understanding errors in the forecast model, and (3) recognizing the need for continuous monitoring of world's ice-covered oceans.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Susanna Winkelbauer, Isabella Winterer, Michael Mayer, Yao Fu, and Leopold Haimberger
EGUsphere, https://doi.org/10.5194/egusphere-2025-4093, https://doi.org/10.5194/egusphere-2025-4093, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Ocean reanalyses combine models and observations to reconstruct past ocean conditions. We evaluate their performance against detailed measurements from the subpolar North Atlantic at the OSNAP section. While reanalyses capture long-term averages and broad circulation patterns, they miss some more regional features and variability. This highlights both their value and their limitations, stressing the need for improved observations and higher-resolution models.
Jozef Skákala, David Ford, Keith Haines, Amos Lawless, Matthew J. Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Deep S. Banerjee, Mike Bell, Davi M. Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
Ocean Sci., 21, 1709–1734, https://doi.org/10.5194/os-21-1709-2025, https://doi.org/10.5194/os-21-1709-2025, 2025
Short summary
Short summary
UK marine data assimilation (MDA) involves a closely collaborating research community. In this paper, we offer both an overview of the state of the art and a vision for the future across all of the main areas of UK MDA, ranging from physics to biogeochemistry to coupled DA. We discuss the current UK MDA stakeholder applications, highlight theoretical developments needed to advance our systems, and reflect upon upcoming opportunities with respect to hardware and observational missions.
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408, https://doi.org/10.5194/egusphere-2025-3408, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes how the Coupled Model Intercomparison Project organized its 7th phase (CMIP7) to encourage the production of Earth system model outputs relevant for impacts and adaptation. Community engagement identified 13 opportunities for application across human and natural systems, 60 variable groups and 539 unique variables. We also show how simulations can more efficiently meet applications needs by targeting appropriate resolution, time slices, experiments and variable groups.
Baylor Fox-Kemper, Patricia DeRepentigny, Anne Marie Treguier, Christian Stepanek, Eleanor O’Rourke, Chloe Mackallah, Alberto Meucci, Yevgeny Aksenov, Paul J. Durack, Nicole Feldl, Vanessa Hernaman, Céline Heuzé, Doroteaciro Iovino, Gaurav Madan, André L. Marquez, François Massonnet, Jenny Mecking, Dhrubajyoti Samanta, Patrick C. Taylor, Wan-Ling Tseng, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-3083, https://doi.org/10.5194/egusphere-2025-3083, 2025
Short summary
Short summary
The earth system model variables needed for studies of the ocean and sea ice are prioritized and requested.
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc'h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
Geosci. Model Dev., 18, 3405–3425, https://doi.org/10.5194/gmd-18-3405-2025, https://doi.org/10.5194/gmd-18-3405-2025, 2025
Short summary
Short summary
We describe major improvements of the Met Office's global ocean–sea ice forecasting system. The models and the way observations are used to improve the forecasts were changed, which led to a significant error reduction of 1 d forecasts. The new system performance in past conditions, where subsurface observations are scarce, was improved with more consistent ocean heat content estimates. The new system will be of better use for climate studies and will provide improved forecasts for end users.
Angel Ruiz-Angulo, Esther Portela, Charly de Marez, Andreas Macrander, Sólveig Rósa Ólafsdóttir, Thomas Meunier, Steingrímur Jónsson, and M. Dolores Pérez-Hernández
EGUsphere, https://doi.org/10.5194/egusphere-2025-2102, https://doi.org/10.5194/egusphere-2025-2102, 2025
Short summary
Short summary
The ocean around Iceland is a key region for water mass transformation that drives global ocean circulation. We use 29 years of hydrographic data to examine the spatial and temporal variability of mixed layer depth and stratification, identifying three distinct regions: South, North, and Northeast. We present a comprehensive view of seasonal to multi-decadal variability in upper ocean structure and its link to a changing North Atlantic under global warming.
Francesco Cocetta, Lorenzo Zampieri, Julia Selivanova, and Doroteaciro Iovino
The Cryosphere, 18, 4687–4702, https://doi.org/10.5194/tc-18-4687-2024, https://doi.org/10.5194/tc-18-4687-2024, 2024
Short summary
Short summary
Arctic sea ice is thinning and retreating because of global warming. Thus, the region is transitioning to a new state featuring an expansion of the marginal ice zone, a region where mobile ice interacts with waves from the open ocean. By analyzing 30 years of sea ice reconstructions that combine numerical models and observations, this paper proves that an ensemble of global ocean and sea ice reanalyses is an adequate tool for investigating the changing Arctic sea ice cover.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Julia Selivanova, Doroteaciro Iovino, and Francesco Cocetta
The Cryosphere, 18, 2739–2763, https://doi.org/10.5194/tc-18-2739-2024, https://doi.org/10.5194/tc-18-2739-2024, 2024
Short summary
Short summary
Climate models show differences in sea ice representation in comparison to observations. Increasing the model resolution is a recognized way to improve model realism and obtain more reliable future projections. We find no strong impact of resolution on sea ice representation; it rather depends on the analysed variable and the model used. By 2050, the marginal ice zone (MIZ) becomes a dominant feature of the Arctic ice cover, suggesting a shift to a new regime similar to that in Antarctica.
Susanna Winkelbauer, Michael Mayer, and Leopold Haimberger
Geosci. Model Dev., 17, 4603–4620, https://doi.org/10.5194/gmd-17-4603-2024, https://doi.org/10.5194/gmd-17-4603-2024, 2024
Short summary
Short summary
Oceanic transports shape the global climate, but the evaluation and validation of this key quantity based on reanalysis and model data are complicated by the distortion of the used modelling grids and the large number of different grid types. We present two new methods that allow the calculation of oceanic fluxes of volume, heat, salinity, and ice through almost arbitrary sections for various models and reanalyses that are independent of the used modelling grids.
Elena Bianco, Doroteaciro Iovino, Simona Masina, Stefano Materia, and Paolo Ruggieri
The Cryosphere, 18, 2357–2379, https://doi.org/10.5194/tc-18-2357-2024, https://doi.org/10.5194/tc-18-2357-2024, 2024
Short summary
Short summary
Changes in ocean heat transport and surface heat fluxes in recent decades have altered the Arctic Ocean heat budget and caused warming of the upper ocean. Using two eddy-permitting ocean reanalyses, we show that this has important implications for sea ice variability. In the Arctic regional seas, upper-ocean heat content acts as an important precursor for sea ice anomalies on sub-seasonal timescales, and this link has strengthened since the 2000s.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Doroteaciro Iovino, Pier Giuseppe Fogli, and Simona Masina
Geosci. Model Dev., 16, 6127–6159, https://doi.org/10.5194/gmd-16-6127-2023, https://doi.org/10.5194/gmd-16-6127-2023, 2023
Short summary
Short summary
This paper describes the model performance of three global ocean–sea ice configurations, from non-eddying (1°) to eddy-rich (1/16°) resolutions. Model simulations are obtained following the Ocean Model Intercomparison Project phase 2 (OMIP2) protocol. We compare key global climate variables across the three models and against observations, emphasizing the relative advantages and disadvantages of running forced ocean–sea ice models at higher resolution.
Johannes Mayer, Leopold Haimberger, and Michael Mayer
Earth Syst. Dynam., 14, 1085–1105, https://doi.org/10.5194/esd-14-1085-2023, https://doi.org/10.5194/esd-14-1085-2023, 2023
Short summary
Short summary
This study investigates the temporal stability and reliability of winter-month trends of air–sea heat fluxes from ERA5 forecasts over the North Atlantic basin for the period 1950–2019. Driving forces of trends and the impact of modes of climate variability and analysis increments on air–sea heat fluxes are investigated. Finally, a new and independent estimate of the Atlantic Meridional Overturning Circulation weakening is provided and associated with a decrease in air–sea heat fluxes.
Jonathan Andrew Baker, Richard Renshaw, Laura Claire Jackson, Clotilde Dubois, Doroteaciro Iovino, Hao Zuo, Renellys C. Perez, Shenfu Dong, Marion Kersalé, Michael Mayer, Johannes Mayer, Sabrina Speich, and Tarron Lamont
State Planet, 1-osr7, 4, https://doi.org/10.5194/sp-1-osr7-4-2023, https://doi.org/10.5194/sp-1-osr7-4-2023, 2023
Short summary
Short summary
We use ocean reanalyses, in which ocean models are combined with observations, to infer past changes in ocean circulation and heat transport in the South Atlantic. Comparing these estimates with other observation-based estimates, we find differences in their trends, variability, and mean heat transport but closer agreement in their mean overturning strength. Ocean reanalyses can help us understand the cause of these differences, which could improve estimates of ocean transports in this region.
Richard Renshaw, Eileen Bresnan, Susan Kay, Robert McEwan, Peter I. Miller, and Paul Tett
State Planet, 1-osr7, 13, https://doi.org/10.5194/sp-1-osr7-13-2023, https://doi.org/10.5194/sp-1-osr7-13-2023, 2023
Short summary
Short summary
There were two unusual blooms in Scottish waters in summer 2021. Both turned the sea a turquoise colour visible from space, typical of coccolithophore blooms. We use reanalysis and satellite data to examine the environment that led to these blooms. We suggest unusual weather was a contributory factor in both cases.
Andrea Cipollone, Deep Sankar Banerjee, Doroteaciro Iovino, Ali Aydogdu, and Simona Masina
Ocean Sci., 19, 1375–1392, https://doi.org/10.5194/os-19-1375-2023, https://doi.org/10.5194/os-19-1375-2023, 2023
Short summary
Short summary
Sea-ice volume is characterized by low predictability compared to the sea ice area or the extent. A joint initialization of the thickness and concentration using satellite data could improve the predictive power, although it is still absent in the present global analysis–reanalysis systems. This study shows a scheme to correct the two features together that can be easily extended to include ocean variables. The impact of such a joint initialization is shown and compared among different set-ups.
Bogi Hansen, Karin M. H. Larsen, Hjálmar Hátún, Steffen M. Olsen, Andrea M. U. Gierisch, Svein Østerhus, and Sólveig R. Ólafsdóttir
Ocean Sci., 19, 1225–1252, https://doi.org/10.5194/os-19-1225-2023, https://doi.org/10.5194/os-19-1225-2023, 2023
Short summary
Short summary
Based on in situ observations combined with sea level anomaly (SLA) data from satellite altimetry, volume as well as heat (relative to 0 °C) transport of the Iceland–Faroe warm-water inflow towards the Arctic (IF inflow) increased from 1993 to 2021. The reprocessed SLA data released in December 2021 represent observed variations accurately. The IF inflow crosses the Iceland–Faroe Ridge in two branches, with retroflection in between. The associated coupling to overflow reduces predictability.
Magdalena Fritz, Michael Mayer, Leopold Haimberger, and Susanna Winkelbauer
Ocean Sci., 19, 1203–1223, https://doi.org/10.5194/os-19-1203-2023, https://doi.org/10.5194/os-19-1203-2023, 2023
Short summary
Short summary
The interaction between the Indonesian Throughflow (ITF) and regional climate phenomena indicates the high relevance for monitoring the ITF. Observations remain temporally and spatially limited; hence near-real-time monitoring is only possible with reanalyses. We assess how well ocean reanalyses depict the intensity of the ITF via comparison to observations. The results show that reanalyses agree reasonably well with in situ observations; however, some aspects require higher-resolution products.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Giulia Bonino, Doroteaciro Iovino, Laurent Brodeau, and Simona Masina
Geosci. Model Dev., 15, 6873–6889, https://doi.org/10.5194/gmd-15-6873-2022, https://doi.org/10.5194/gmd-15-6873-2022, 2022
Short summary
Short summary
The sea surface temperature (SST) is highly influenced by the transfer of energy driven by turbulent air–sea fluxes (TASFs). In the NEMO ocean general circulation model, TASFs are computed by means of bulk formulas. Bulk formulas require the choice of a given bulk parameterization, which influences the magnitudes of the TASFs. Our results show that parameterization-related SST differences are primarily sensitive to the wind stress differences across parameterizations.
Susanna Winkelbauer, Michael Mayer, Vanessa Seitner, Ervin Zsoter, Hao Zuo, and Leopold Haimberger
Hydrol. Earth Syst. Sci., 26, 279–304, https://doi.org/10.5194/hess-26-279-2022, https://doi.org/10.5194/hess-26-279-2022, 2022
Short summary
Short summary
We evaluate Arctic river discharge using in situ observations and state-of-the-art reanalyses, inter alia the most recent Global Flood Awareness System (GloFAS) river discharge reanalysis version 3.1. Furthermore, we combine reanalysis data, in situ observations, ocean reanalyses, and satellite data and use a Lagrangian optimization scheme to close the Arctic's volume budget on annual and seasonal scales, resulting in one reliable and up-to-date estimate of every volume budget term.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021, https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary
Short summary
Seasonal variations of processes such as upwelling and biological production that happen along the northwestern African coast can modulate the temporal variability of the biological activity of the adjacent open North Atlantic hundreds of kilometers away from the coast thanks to the lateral transport of coastal organic carbon. This happens with a temporal delay, which is smaller than a season up to roughly 500 km from the coast due to the intense transport by small-scale filaments.
Bogi Hansen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, Steingrímur Jónsson, Sólveig Rósa Ólafsdóttir, Andreas Macrander, William Johns, N. Penny Holliday, and Steffen Malskær Olsen
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-14, https://doi.org/10.5194/os-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Compared to other freshwater sources, runoff from Iceland is small and usually flows into the Nordic Seas. Under certain wind conditions, it can, however, flow into the Iceland Basin and this occurred after 2014, when this region had already freshened from other causes. This explains why the surface freshening in this area became so extreme. The local and shallow character of this runoff allows it to have a disproportionate effect on vertical mixing, winter convection, and biological production.
Beena Balan-Sarojini, Steffen Tietsche, Michael Mayer, Magdalena Balmaseda, Hao Zuo, Patricia de Rosnay, Tim Stockdale, and Frederic Vitart
The Cryosphere, 15, 325–344, https://doi.org/10.5194/tc-15-325-2021, https://doi.org/10.5194/tc-15-325-2021, 2021
Short summary
Short summary
Our study for the first time shows the impact of measured sea ice thickness (SIT) on seasonal forecasts of all the seasons. We prove that the long-term memory present in the Arctic winter SIT is helpful to improve summer sea ice forecasts. Our findings show that realistic SIT initial conditions to start a forecast are useful in (1) improving seasonal forecasts, (2) understanding errors in the forecast model, and (3) recognizing the need for continuous monitoring of world's ice-covered oceans.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Cited articles
Asbjørnsen, H., Årthun, M., Skagseth, Ø., and Eldevik, T.: Mechanisms of ocean heat anomalies in the Norwegian Sea, J. Geophys. Res.-Oceans, 124, 2908–2923, 2019.
Berx, B., Hansen, B., Østerhus, S., Larsen, K. M., Sherwin, T., and Jochumsen, K.: Combining in situ measurements and altimetry to estimate volume, heat and salt transport variability through the Faroe–Shetland Channel, Ocean Sci., 9, 639–654, https://doi.org/10.5194/os-9-639-2013, 2013.
Borchert, L. F., Menary, M. B., Swingedouw, D., Sgubin, G., Hermanson, L.,
and Mignot, J.: Improved decadal predictions of North Atlantic subpolar gyre
SST in CMIP6, Geophys. Res. Lett., 48, e2020GL091307, https://doi.org/10.1029/2020GL091307, 2021.
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms
of the Atlantic Meridional Overturning Circulation: A review, Rev.
Geophys., 54, 5–63, 2016.
Burgard, C. and Notz, D.: Drivers of Arctic Ocean warming in CMIP5 models,
Geophys. Res. Lett., 44, 4263–4271, 2017.
Chatterjee, S., Raj, R. P., Bertino, L., Skagseth, Ø., Ravichandran, M.,
and Johannessen, O. M.: Role of Greenland Sea gyre circulation on Atlantic
water temperature variability in the Fram Strait, Geophys. Res. Lett., 45, 8399–8406, 2018.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
Desportes, C., Garric, G., Régnier, C., Drévillon, M., Parent, L.,
Drillet, Y., Masina, S., Storto, A., Mirouze, I., Cipollone, A., Zuo, H.,
Balmaseda, M., Peterson, D., Wood, R., Jackson, L., Mulet, S., Grenier, E., and Gounou, A.: EU Copernicus Marine Service Quality Information Document for
the Global Ocean Ensemble Physics Reanalysis, GLOBAL_REANALYSIS_PHY_001_031, Issue 1.1, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-031.pdf
(last access: 31 March 2023), 2022.
Dickson, R., Meincke, J., and Rhines, P.: Arctic-Subarctic Ocean Fluxes:
Defining the Role of the Northern Seas in Climate, Springer, Dordrecht, the Netherlands, ISBN 978-1-4020-6774-7, 2008.
Drévillon, M., Lellouche, J.-M., Régnier, C., Garric, G., Bricaud,
C., Hernandez, O., and Bourdallé-Badie, R.: EU Copernicus Marine Service
Quality Information Document for the Global Ocean Physics Reanalysis,
GLOBAL_REANALYSIS_PHY_001_030, Issue 1.6, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-030.pdf
(last access: 31 March 2023), 2022a.
Drévillon, M., Fernandez, E., and Lellouche, J.-M.: EU Copernicus Marine
Service Product User Manual for the Global Ocean Physics Reanalysis,
GLOBAL_REANALYSIS_PHY_001_030, Issue 1.4, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-030.pdf
(last access: 31 March 2023), 2022b.
Eldevik, T., Nilsen, J. E. Ø., Iovino, D., Anders Olsson, K., Sandø,
A. B., and Drange, H.: Observed sources and variability of Nordic seas
overflow, Nat. Geosci., 2, 406–410, 2009.
EU Copernicus Marine Service Product: Global Ocean Ensemble Physics Reanalysis v2, Mercator Ocean International [data set], https://doi.org/10.48670/moi-00024, 2022a.
EU Copernicus Marine Service Product: Global Ocean Physics Reanalysis GLORYS12V1, Mercator Ocean International [data set], https://doi.org/10.48670/moi-00021, 2022b.
EU Copernicus Marine Service Product: Global Ocean Gridded L 4 Sea Surface Heights And Derived Variables Reprocessed 1993 Ongoing, Mercator Ocean International [data set], https://doi.org/10.48670/moi-00148, 2023.
Gounou, A., Drevillon, M., and Clavier, M.: EU Copernicus Marine Service Product User Manual for the Global Ocean Ensemble Physics Reanalysis,
GLOBAL_REANALYSIS_PHY_001_031, Issue 1.1, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-031.pdf
(last access: 31 March 2023), 2022.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality
controlled ocean temperature and salinity profiles and monthly objective
analyses with uncertainty estimates, J. Geophys. Res.-Oceans,
118, 6704–6716, 2013.
Häkkinen, S., Rhines, P. B., and Worthen, D. L.: Warm and saline events
embedded in the meridional circulation of the northern North Atlantic,
J. Geophys. Res., 116, C03006, https://doi.org/10.1029/2010JC006275, 2011.
Hansen, B. and Østerhus, S.: North atlantic–nordic seas exchanges, Prog. Oceanogr., 45.2, 109–208, 2000.
Hansen, B., Larsen, K. M. H., Hátún, H., Kristiansen, R., Mortensen, E., and Østerhus, S.: Transport of volume, heat, and salt towards the Arctic in the Faroe Current 1993–2013, Ocean Sci., 11, 743–757, https://doi.org/10.5194/os-11-743-2015, 2015.
Hansen, B., Húsgarð Larsen, K. M., Hátún, H., and Østerhus, S.: A stable Faroe Bank Channel overflow 1995–2015, Ocean Sci., 12, 1205–1220, https://doi.org/10.5194/os-12-1205-2016, 2016.
Hansen, B., Poulsen, T., Húsgarð Larsen, K. M., Hátún, H., Østerhus, S., Darelius, E., Berx, B., Quadfasel, D., and Jochumsen, K.: Atlantic water flow through the Faroese Channels, Ocean Sci., 13, 873–888, https://doi.org/10.5194/os-13-873-2017, 2017.
Hansen, B., Larsen, K. M. H., Olsen, S. M., Quadfasel, D., Jochumsen, K., and Østerhus, S.: Overflow of cold water across the Iceland–Faroe Ridge through the Western Valley, Ocean Sci., 14, 871–885, https://doi.org/10.5194/os-14-871-2018, 2018.
Hátún, H. and Chafik, L.: On the recent ambiguity of the North
Atlantic subpolar gyre index, J. Geophys. Res.-Oceans, 123,
5072–5076, 2018.
Hátún, H., Sandø, A. B., Drange, H., Hansen, B., and
Valdimarsson, H.: Influence of the Atlantic subpolar gyre on the
thermohaline circulation, Science, 309, 1841–1844, https://doi.org/10.1126/science.1114777, 2005.
Iovino, D., Fogli, P. G., and Masina, S.: Evaluation of the CMCC global eddying ocean model for the Ocean Model Intercomparison Project (OMIP2), EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-469, 2023.
Jochumsen, K., Moritz, M., Nunes, N., Quadfasel, D., Larsen, K. M. H.,
Hansen, B., Valdimarsson, H., and Jónsson, S.: Revised transport
estimates of the Denmark Strait overflow, J. Geophys. Res.-Oceans, 122,
3434–3450, https://doi.org/10.1002/2017JC012803, 2017 (data available at: https://www.cen.uni-hamburg.de/en/icdc/data/ocean/denmark-strait-overflow.htm, last access: 22 March 2023).
Jónsson, S. and Valdimarsson, H.: Water mass transport variability to
the North Icelandic shelf, 1994–2010, ICES J. Mar. Sci., 69, 809–815,
https://doi.org/10.1093/icesjms/fss024, 2012.
Liu, C., Allan, R. P., Mayer, M., Hyder, P., Desbruyères, D., Cheng, L.,
Xu, J., Xu, F., and Zhang, Y.: Variability in the global energy budget and
transports 1985–2017, Clim. Dynam., 55, 3381–3396, 2020.
MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D.,
Scaife, A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp,
J., Xavier, P., and Madec, G.: Global Seasonal forecast system
version 5 (GloSea5): a high-resolution seasonal forecast system, Q.
J. Roy. Meteor. Soc., 141, 1072–1084, https://doi.org/10.1002/qj.2396, 2015.
Mayer, J., Mayer, M., Haimberger, L., and Liu, C.: Comparison of Surface
Energy Fluxes from Global to Local Scale, J. Climate, 35,
4551–4569, 2022.
Mayer, M., Haimberger, L., Pietschnig, M., and Storto, A.: Facets of Arctic
energy accumulation based on observations and reanalyses 2000–2015,
Geophys. Res. Lett., 43, 10420–10429, https://doi.org/10.1002/2016GL070557, 2016.
Mayer, M., Tietsche, S., Haimberger, L., Tsubouchi, T., Mayer, J., and Zuo,
H.: An improved estimate of the coupled Arctic energy budget, J.
Climate, 32, 7915–7934, 2019.
Mayer, M., Tsubouchi, T., von Schuckmann, K., Seitner, V., Winkelbauer, S.,
Haimberger, L.: Atmospheric and oceanic contributions to observed Nordic
Seas and Arctic Ocean Heat Content variations 1993–2020, in: Copernicus
Ocean State Report, Issue 6, J. Oper. Oceanogr., 15, s119–s126, https://doi.org/10.1080/1755876X.2022.2095169, 2022.
Muilwijk, M., Smedsrud, L. H., Ilicak, M., and Drange, H.: Atlantic Water
heat transport variability in the 20th century Arctic Ocean from a global
ocean model and observations, J. Geophys. Res.-Oceans,
123, 8159–8179, 2018.
Oort, A. H. and Yienger, J. J.: Observed interannual variability in the
Hadley circulation and its connection to ENSO, J. Climate, 9,
2751–2767, 1996.
Østerhus, S., Woodgate, R., Valdimarsson, H., Turrell, B., de Steur, L., Quadfasel, D., Olsen, S. M., Moritz, M., Lee, C. M., Larsen, K. M. H., Jónsson, S., Johnson, C., Jochumsen, K., Hansen, B., Curry, B., Cunningham, S., and Berx, B.: Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations, Ocean Sci., 15, 379–399, https://doi.org/10.5194/os-15-379-2019, 2019.
Pietschnig, M., Mayer, M., Tsubouchi, T., Storto, A., Stichelberger, S., and
Haimberger: Volume transports and temperature distributions in the main
Arctic Gateways: A comparative study between an ocean reanalysis and
mooring-derived data, EarthArXiv [preprint],
https://doi.org/10.31223/osf.io/5hg3z, 2018.
Pujol, M.-I.: EU Copernicus Marine Service Product User Manual for the
Global Ocean Gridded L4 Sea Surface Heights And Derived Variables
Reprocessed 1993 Ongoing, SEALEVEL_GLO_PHY_L4_ MY_ 008_047, Issue 7.0, Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-SL-PUM-008-032-068.pdf,
last access: 31 March 2023, 2022
Pujol, M.-I., Taburel, G., and SL-TAC Team: EU Copernicus Marine Service
Quality Information Document for the Global Ocean Gridded L4 Sea Surface
Heights And Derived Variables Reprocessed 1993 Ongoing,
SEALEVEL_GLO_PHY_L4_MY_008_047, Issue 8.2,
Mercator Ocean International,
https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-SL-QUID-008-032-068.pdf, last access: 31 March 2023.
Robson, J., Polo, I., Hodson, D. L., Stevens, D. P., and Shaffrey, L. C.:
Decadal prediction of the North Atlantic subpolar gyre in the HiGEM
high-resolution climate model, Clim. Dynam., 50, 921–937, 2018.
Rossby, T., Flagg, C., Chafik, L., Harden, B., and Søiland, H.: A direct
estimate of volume, heat, and freshwater exchange across the
Greenland-Iceland-Faroe-Scotland Ridge, J. Geophys. Res.-Oceans, 123, 7139–7153, https://doi.org/10.1029/2018JC014250, 2018.
Schauer, U. and Beszczynska-Möller, A.: Problems with estimation and interpretation of oceanic heat transport – conceptual remarks for the case of Fram Strait in the Arctic Ocean, Ocean Sci., 5, 487–494, https://doi.org/10.5194/os-5-487-2009, 2009.
Trenberth, K. E. and Fasullo, J. T.: Atlantic meridional heat transports
computed from balancing Earth's energy locally, Geophys. Res. Lett., 44, 1919–1927, 2017.
Tsubouchi, T., Våge, K., Hansen, B., Larsen, K. M. H, Østerhus, S., Johnson, C., Jónsson, S., and Valdimarsson, H.: Increased ocean heat transport into the Arctic Mediterranean over the period 1993–2016, NMDC [data set], http://metadata.nmdc.no/metadata-api/landingpage/0a2ae0e42ef7af767a920811e83784b1 (last access: 21 March 2023), 2020.
Tsubouchi, T., Våge, K., Hansen, B., Larsen, K. M. H., Østerhus, S., Johnson, C., Jónsson, S., and Valdimarsson, H.: Increased ocean heat transport into
the Nordic Seas and Arctic Ocean over the period 1993–2016, Nat. Clim.
Change, 11, 21–26, 2021.
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W., Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack, P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C., Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. J., Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do), Ocean Model., 130, 79–139, 2018.
Winkelbauer, S., Mayer, M., Seitner, V., Zsoter, E., Zuo, H., and Haimberger, L.: Diagnostic evaluation of river discharge into the Arctic Ocean and its impact on oceanic volume transports, Hydrol. Earth Syst. Sci., 26, 279–304, https://doi.org/10.5194/hess-26-279-2022, 2022.
Woodgate, R. A.: Increases in the Pacific inflow to the Arctic from 1990 to
2015, and insights into seasonal trends and driving mechanisms from
year-round Bering Strait mooring data, Prog. Oceanogr., 160, 124–154,
https://doi.org/10.1016/j.pocean.2017.12.007, 2018 (data available at: http://psc.apl.washington.edu/HLD/Bstrait/bstrait.html, last access: 22 March 2023).
Short summary
This paper compares oceanic fluxes across the Greenland–Scotland Ridge (GSR) from ocean reanalyses to largely independent observational data. Reanalyses tend to underestimate the inflow of warm waters of subtropical Atlantic origin and hence oceanic heat transport across the GSR. Investigation of a strong negative heat transport anomaly around 2018 highlights the interplay of variability on different timescales and the need for long-term monitoring of the GSR to detect forced climate signals.
This paper compares oceanic fluxes across the Greenland–Scotland Ridge (GSR) from ocean...
Altmetrics
Final-revised paper
Preprint