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Abstract. The connection between the ocean and the land is made possible thanks to rivers, which are a vital component of 

the Earth’s system. They govern the hydrological and biogeochemical contributions to the coastal ocean through surface and 

subsurface water discharge and influence local circulation and the distribution of water masses, modulating processes such as 

upwelling and mixing. This paper provides an overview of recent advancements in river modellingapproaches to representing 

coastal river discharges and processes in operational ocean forecasting systems (OOFS), with a particular focus on estuaries. 15 

The methods discussed range frominclude those currently adopted in coarse-resolution ocean forecasting systems, where 

mixing processes are primarily parameterized, toas well as more advanced modelling and  coupling approaches tailored to 

high-resolution that are better suited for coastal systems. A review of river data availability is also presented, illustrating 

various sources of freshwater discharge and salinity, from observational data to climatological datasets, and more 

precisealongside river operational river discharge products modelling approaches that are improvingenhance the representation 20 

of water discharges in operational systems. New satellite-derived datasets and emerging river modelling techniques are also 

introduced. FinallyIn addition, a compendium of currentresponses from a survey of existing operational systemsOOFS 

providers is providedare synthetized, with a focus on how river forcing is treated, from global to coastal scales. Challenges 

such as data accuracy, standardization, and model coupling are discussed, highlighting the need for improved interfaces 

between monitoring and modelling systems. Finally, some recommendations and ways forward are formulated in relation to 25 

identified limitations in current OOFS. 

1 Introduction 

Rivers provide form the primary link between land and sea, and delivering annually an average ofapproximately 36,000 

thousand km³ of freshwater and over 20 billion tons of solid and dissolved material to the world global ocean each year 

(Milliman and Farnsworth, 2011). River discharge into the ocean is a major component of the global hydrological and 30 

biogeochemical cycles, which have undergone significant changes under the influence of climate change and human activities 

(Shi et al., 2019; Yan et al., 2022; Qin et al., 2022; Chandanpurkar et al., 2022). Mediated through estuaries,Estuaries act as 
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transitional zones where freshwater fluxes influence the ocean circulation and, salinity, and in particular the upper-ocean 

stratification, which in turn affects the mixed layer depth, ocean currents, and air-sea interaction (Chandanpurkar et al., 2022; 

Dzwonkowski et al., 2017; Sprintall and Tomczak, 1992; Sun et al., 2017; Pein et al., 2021, 2024). Freshwater inputs to the 35 

ocean also modulate coastal upwelling events. Altogether, thus these factors impacting productivity of the coastal marine 

environment (Sotillo et al., 2021a). 

Despite rivers’ influence on the coastal and basin-wide circulation and dynamics, in global and regional scale models, 

effectively accounting for riverine freshwater discharge into the oceans is a challenging problem (Sun et al., 2017; Verri et al., 

2020). Accurately incorporating river flow into numerical ocean models requires appropriate parameterizations and boundary 40 

conditions. The setup of practical open boundary conditions (OBC) is dependent on flow dynamics, model resolution, data 

availability, and other factors (Blayo and Debreu, 2005). At coarse scales that cannot resolve the estuarine dynamics, but even 

at finer scales in some cases, river outlets are typically often represented in a simplistic way, with climatological runoff and 

zero or constant salinity values, implicitly neglecting estuarine mixing andor exchange as well as seasonal and non-seasonal 

variability (Sun et al., 2017; Verri et al., 2020; Verri et al., 2021; Pein et al., 2021, 2024). ConsequentlyAs a result, important 45 

key natural processes are often omitted, and, depending on how river forcing is defined, ocean model results outputs may differ 

vary significantly from one another,. These discrepancies are most pronounced predominantly in the shelf areas, particularly 

in (or rRegions of freshwater Freshwater influenceInfluence, (ROFI), but can also propagate to at regional and global scales 

(Tseng et al., 2016). 

 50 

The next sections present aThis paper reviews existing methods and datasets used in Operational Ocean Forecasting Systems 

(OOFS) to represent river forcing. As the focus is on freshwater discharges, the river supply of nutrients and other materials 

are neglected in this review but are partly addressed in a separate contribution by Cossarini et al. (2024).  

The paper is structured as follows: Section 2 reviews of approaches to treatfor representing river forcing in global, regional, 

and coastal ocean models, including dynamic methods to represent the mixing processes in estuaries throughestuarine mixing 55 

parameterizations and coupling techniques. Section 3 A description ofdescribes available data sources from operational centers 

and data providers as well as emerging techniques for estimating river dischargeused for this purpose is also provided,. with 

eSection 4 presents examples of river forcing methods and data sources taken fromimplemented in existing OOFS, 

summarizing. While the first sections review the scientific literature and ancillary information, for example, taken from 

operational centers and data providers websites, the last section summarizes results findings from a survey sent to theconducted 60 

within the OceanPredict community. Finally, Section 5 provides a summary and recommendations regarding identified 

limitations in current OOFS. 
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2 River forcing in ocean models 

2.1 Capturing seasonal and non-seasonal river variability 

Accurate representation of river discharges and associated variables (e.g., salinity, temperature), whether model-derived or 65 

observation-based, is crucial for capturing both seasonal and non-seasonal effects in the coastal ocean. The Bay of Bengal is 

one example where the inclusion of seasonal river discharges and salinity in regional model simulations significantly improves 

the representation of sea surface temperatures, near-surface salinity, stratification, mixed-layer depth, and barrier-layer 

thickness, leading to a better simulation of the formation, progression and dispersion of the freshwater plume (Jana et al., 

2015). 70 

Seasonal variability in river discharge not only impacts coastal salinity and temperature but also contributes to the sea level 

changes both locally and remotely, mostly via a halosteric sea level contribution. This effect was observed, for example, 

between the mouth of the Amazon River and the continental shelves of the Gulf of Mexico and Caribbean Sea (Giffard et al., 

2019). Similarly, in the U.S. Atlantic and Gulf coasts, river discharge and sea level changes were found to be significantly 

correlated (Piecuch et al. 2018). Such dynamic sea surface height (SSH) signals driven by river discharge can explain 10-20% 75 

of the regional-scale seasonal variance around major rivers, such as the Amazon, Ganges, Brahmaputra, Irrawaddy, Ob, Lena, 

and Yenisei (Piecuch and Wadehra, 2020).  

While the seasonal effects of river discharge on ocean processes have been extensively documented, non-seasonal influences 

of river runoff on sea level changes remain largely unexplored due to the lack of consolidated discharge databases (Durand et 

al., 2019). These influences, however, can be significant when considering river runoff jointly with wind-driven transport and 80 

heat fluxes, which also play a major role in modulating regional sea level variability (Verri et al., 2018). 

2.2 Freshwater input in coarse resolution models: towards a parameterization of estuarine mixing processes 

Because many ocean models operate at resolutions too coarse to resolve estuarine processes explicitly, appropriate 

parameterization of estuarine mixing is required to capture their influence on freshwater transport. In nature, estuaries transport 

and transform water properties along their length, due to tidal mixing, deposition and resuspension, and up- and down-estuary 85 

advection. Saltwater intrusion driven by tides and other coastal signals (e.g. storm surges) controls the estuarine water exchange 

and affects the net estuarine outflow and corresponding salinity values (Sun et al., 2017; Verri et al., 2020). However, although 

water properties at the head differ from those at the mouth, in models too coarse to resolve the estuaries, river discharge 

observed far from the river outlet is typically inputted at the coast with zero salinity (Verri et al., 2021; Herzfeld, 2015). 

Alternatively, salinity values can be prescribed based on constant annual or monthly values derived from sensitivity tests 90 

and/or in situ campaigns, when available (Verri et al., 2018).  
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2.1 Freshwater input in coarse resolution models: towards a parameterization of estuarine mixing processes 

Herzfeld (2015) describes and assesses the performance of various methods for inputting freshwater into regional ocean 

models. A first approach, referred to as a point source input, adds a term of freshwater flux, entering as surface point sources 95 

into one or more layers of the model, to the divergence of flow in via the vertically integrated continuity equation, with no 

associated velocity profile. It affects the vertical velocity surface boundary condition of the free surface equation, and the 

surface boundary conditions for the diffusive heat and salt fluxes. A second approach, the flow input, considers the inertia of 

the river flow and prescribes a velocity profile at the boundary whose vertical integral is equal to the inflow flux. These two 

methods must have a predefined depth at the boundary over which to distribute the volume inflow. A more accurate approach 100 

is to add an artificial channel to the coastline to give momentum to the flow and initiate mixing between fresh and salt waters 

(Lacroix et al., 2004; Sobrinho et al., 2021). 

The horizontal distribution of the runoff plays an important role in the regional salinity distribution and in the vertical 

stratification and mixing (Tseng et al., 2016). Additional subtleties arise for large rivers or deltas, where the coastal source 

points need to be spread laterally to avoid numerical instabilities if inflow values are locally too large (Polton et al. 2023). In 105 

global ocean models, however, freshwater inflow is frequently added at the ocean surface, either as an increased precipitation 

rate over a specified area or by reducing surface salinity (i.e. a virtual salt flux), rather than being introduced as a lateral inflow 

at the coastal boundary. This freshwater can be distributed vertically over several layers or diffused horizontally using 

enhanced mixing (Sun et al., 2017; Tseng et al., 2016; Yin et al., 2010). 

Several plume responses may result from the choice of the horizontal and vertical distribution of freshwater input. However, 110 

most model applications produce plumes whose types differ from plumes associated with real river discharges (Tseng et al., 

2016; Garvine, 2001; Schiller and Kourafalou, 2010). Larger scale offshore stratification is also expected to be impacted by 

this choice.  

MacCready and Geyer (2010) establish the theoretical foundation for estuarine mixing parameterizations, which underpins 

some physics-based methods used to simulate unresolved estuarine processes in regional and global ocean models, such as the 115 

estuary box model (EBM); see, for example, Figure 1 (Sun et al., 2017). These models attempt to parameterize mixing 

processes and to account for baroclinic and barotropic flow, typically using a two-layer formulation, (e.g. Verri et al., (2020;), 

Verri et al., (2021;), Herzfeld, (2015;), Rice et al., (2008;), Hordoir et al., (2008). From these representations, analytical 

solutions can be found for the volume fluxes and outflow salinity. Applied globally to the Community Earth System Model 

(CESM), such an approach revealed substantial localized, regional, and long-range effects when compared to cases without 120 

parameterization, highlighting once again the strong sensitivity of ocean models to the treatment of rivers (Sun et al., 2017). 

New hybrid approaches, such as the Hybrid-EBM (Maglietta et al., 2025; Saccotelli et al., 2024), combine physics-based 

models with machine learning techniques to predict the salt-wedge intrusion length and salinity at river mouths. Hybrid-EBM 

outperforms the classical EBM and addresses the shortcomings of the dimensional equations in the physics-based EBM, which 
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rely on several tunable coefficients and require site-specific calibration, by substituting them with machine learning algorithms 125 

(Maglietta et al., 2025). 

 

Figure 1: Schematic diagram of the estuary box model (EBM) implemented in the Community Earth System Model (CESM) (Sun 

et al., 2017). The EBM is, depicted as a two-layer rectangular box with constant width, uniform local depth (H), and a time-varying 

length (L). Each layer has a fixed thickness (h for the lower layer and H-h for the upper layer), with vertically uniform but 130 
horizontally variable salinity and density. Thick solid lines represent closed boundaries, dotted lines mark open boundaries, and the 

dashed line shows the interface between layers. Volume fluxes (Q) and salinities (S) are indicated by arrows at open boundaries: 

riverine freshwater discharge (QR) enters at the estuary head, oceanic saltwater flows into the lower layer at the mouth (QLM), and 

QUt represents the average tidal volume flux during half a tidal cycle, driving net horizontal salt flux into the upper layer at the 

mouth. Shear-induced turbulent mixing (shown by paired upward and downward open arrows) and upward advection from 135 
exchange flow (solid upward arrows) link the upper and lower layers. The color gradient illustrates salinity variation, from fresher 

(lighter shades) to saltier (darker shades) waters.1   

2.32 Freshwater input in high resolution models: unstructured modelling of the river-sea continuum 

In contrast, when the model resolution is higher than the estuary width, the latter can be resolved explicitly by extending the 

grid for some distance inland using either real bathymetry or a straight channel approximation. When extending it beyond the 140 

salinity intrusion limit and/or the head of tides, a freshwater flux can be directly specified at the upstream boundary. This is 

the preferred option in many east coast US studies (Herzfeld, 2015) (e.g. RISE - Liu et al., 2004; LATTE - Choi and Wilkin, 

2007; MerMADE - Hetland and MacDonald, 2008). 

The use of unstructured grids offers various advantages, including a more accurate treatment of the freshwater inputs from 

rivers, a realistic representation of river-sea interactions and estuarine processes at spatial and temporal scales usually not 145 

resolved in the ocean, and an improved interface between estuaries and the open ocean, sometimes with higher-order spatial 

discretizations (Staneva et al., 2024). In addition, the unstructured grid modelling combined with an efficient vertical 

coordinate system can better resolve the coastal sea dynamics (Verri et al., 2023).  

With seamless grid transitions between models or domains, flexibility and cross-scale capabilities are augmented (Zhang et 

al., 2016). As examples, a river-coastal-ocean continuum model has been developed for the Tiber River delta, reproducing the 150 

 
1 Reprinted from Ocean Modelling, Vol 112, Sun, Q., Whitney, M. M., Bryan, F. O., and Tseng, Y., A box model for 

representing estuarine physical processes in Earth system models, Page 140, Copyright Elsevier Ltd. (2017), with permission 

from Elsevier. 
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coastal dynamic processes better than the classic coastal–ocean representation, including the salt wedge intrusion, and 

revealing new features near the river mouth induced by river discharge and coastal morphology (Bonamano et al., 2024). In 

the Columbia River estuary, where both shelf and estuarine circulations are coupled, a multi-scale model has proved to 

reproduce key processes driving the river plume dynamics in a region characterized by complex bathymetry and marked 

gradients in density and velocity (Vallaeys et al., 2018). Likewise, Vallaeys et al. (2021) used a similar model in a 155 

topographically challenging area of the Congo River estuary, characterized by high river discharge, strong stratification and 

large depth. Similarly, Maicu et al. (2021) simulated the circulation in the Goro Lagoon and Po River Delta branches using 

downscaling and a seamless chain of models integrating local forcings and dynamics into a coarser OOFS based on a cascading 

approach. 

While these examples were successful in representing dynamical processes across temporal and spatial scales, in some 160 

contexts, the large inward tidal extent and/or complex bathymetries and coastlines, often featuring coastal infrastructures, pose 

significant challenges for explicitly resolving estuaries, making it impractical in many coastal models. As a result, this approach 

has yet to become standard practice in OOFS. 

 

2.43 One-way and two-way coupling 165 

Coupling techniques can be used to link two or more models to allow one-way data exchange, for example, between a 

hydrological model and an ocean model. That wayIn this approach, external forcing is reduced to fewer a limited set of 

variables., simplifying computational requirements but potentially overlooking key Limitations of this approach include 

processes that cannot be resolved at the land-sea interface. Additionally, it requires and the need to extending the ocean domain 

limits boundaries far landwardinland, beyond the limit of tide and storm-surge propagation. While some parameterizations (cf. 170 

Section 2.2) or use of unstructured grids (cf. Section 2.3) can partly alleviate these shortcomings, Iin a compound flooding 

context, two-way coupled models are preferred because both land and ocean processes can be represented along with their 

interactions (Bao et al., 2022; Cheng et al., 2010). When addingThe inclusion of momentum flux exchanges between land and 

ocean processes, the ability to reproduceimproves the simulation of estuarine water levels in the estuary is enhancedby 

capturing nonlinear feedbacks between runoff and residual ocean water levels. In a case study of Hurricane Florence, (Bao et 175 

al., (2022) achieved significant improvement in simulated water levels (20%-40% at the head of Cape Fear River Estuary) 

during the post-hurricane period by using a two-way coupled model, compared to a stand-alone and linked (one-way coupled) 

approach. . Moreover, with seamless grid transitions between the different models, flexibility and cross-scale capabilities are 

augmented (Zhang et al., 2016).  

Alternative approaches for assessing the risk of compound flooding have been proposed, including integrated hydrodynamic 180 

and machine learning methods to predict water level dynamics (Sampurno et al., 2022). Such approaches are particularly 

valuable in data-scarce regions, where developing fully calibrated, computationally intensive models can be impractical or 

infeasible. 
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3 Data sources 185 

3.1 Freshwater discharge 

An unsolved problem and one of the classical limitations ofA persistent challenge in OOFS with respect to river forcing is the 

absence lack of a global networks of for observed river flows to the oceans. While advances are being made in creating such 

a network, several challenges remain pertaining to data quality, accessibility, and timeliness, at the required spatial and 

temporal scales.  190 

In situ river discharge observations are necessary to build climatologies. and tThey represent a key component of the calibration 

of hydrological models, and thereby of any reanalysis, near-real-time (NRT) analysis and forecast products. The various types 

of discharge products used in OOFS are described in the following. 

3.1.1 Climatologies 

Most ocean models use climatologies to introduce river forcing based on multi-decadal averages of observed and/or modeled 195 

freshwater discharges, along with zero or constant salinity values. Although use of climatological data is still commonly 

acceptedused, even when in cases wherethe estuarine dynamics is are not explicitly resolved, more realistic and less subjective 

estimates of freshwater volume flux and salinity inputs estimates would produce a more accurate representationimprove the 

modelling of coastal (e.g. river plumes) to basin-wide circulation and dynamics (e.g. dense water formation, overturning 

circulation cells, water exchange at straits) in ocean models (Verri et al., 201821), especially during non-seasonal (e.g. storm 200 

induced) events (Chandanpurkar et al., 2022). Moreover, given the global decline of the hydrometric networks, building 

climatologies is not always possible, especially for small or less- studied rivers, and even for large rivers in regions where 

routine monitoring is absent (Campuzano et al., 2016; Mishra and Coulibaly, 2009). Furthermore, monthly climatological 

products are not adequate for high resolution coastal models where temporal variability at daily or even higher frequency is 

needed (Sotillo et al., 2021a). 205 

3.1.2 River discharge databases 

In contrast, Rriver databases and services are progressively becoming available and provide better estimates of coastal runoff 

and river discharges at the global scale (Sotillo et al., 2021a). These databases typically assemble information from multiple 

data providers into coherent, gap-free and quality-controlled datasets. A few eExamples below are given herecategorized by 

data source: 210 

In situ databases: 
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• The Global Runoff Data Center2 (GRDCGRDC), under the auspices of the WMO, is an international archives of 

quality- controlled historical mean daily and monthly discharge data, from over 10,000 stations distributed inacross 

159 countries, facilitating exchanges between data providers and data users. The most recent published version of the 

Freshwater Fluxes into the World's OceansFreshwater Fluxes into the World's Oceans3 dataset, based on the water 215 

balance model WaterGAP, contains provides annual runoff values estimates covering thefrom 1901-2016 period. 

• The Global Streamflow Indices and Metadata archive (GSIM), a collection of metadata and indices derived from 

more than 35 000 daily streamflow time series worldwide, gathered from 12 open databases (7 national and 5 

international collections) (Do et al., 2018; Gudmundsson et al., 2018). 

• A global dataset of monthly streamflow for 925 of the world’s largest rivers connecting to the ocean was built by Dai 220 

et al. (2009), updated from Dai and Trenberth (2002). 

• A global database of monthly mean runoff for 986 rivers was incorporated in the NCOM, now HYCOM, U.S. model 

(Barron and Smedstad, 2002). It expands on the work of Perry et al. (1996) with corrections and additions derived 

from monthly mean streamflow from the U.S. Geological Survey (USGS) (Wahl et al., 1995), and extends the basic 

RivDIS database (Vörösmarty et al., 1998) to adjust for missing discharge attributed to small (ungauged) rivers.  225 

Model-derived databases: 

• A 35-year daily and monthly global reconstruction of river flows (GRADES) at 2.94 million river reaches, with bias 

correction from machine-learning derived global runoff characteristics maps, was developed in support of the Surface 

Water and Ocean Topography (SWOT) satellite mission (Lin et al., 2019). 

• A dataset of historical river discharge from 1958 to 2016 was created using the CaMa-Flood global river routing 230 

model and adjusted runoff from the land component of JRA-55 (Suzuki et al., 2018; Tsujino et al., 2018). 

• A global freshwater budget is included in the CORE.v2 datasets that have an accompanying database for continental 

runoff from rivers, groundwater and icebergs. These are estimated from continental imbalances between precipitation, 

evaporation and storage, and then distributed between bordering ocean basins based on river routing schemes and 

flow estimates (Large and Yeager, 2009). 235 

Hybrid database: 

• EMODnet Physics4 provides ocean physics data and data products built with common standards, consisting of 

collections of in situ data, reanalysis, and aggregated in situ data and model outputs. As part of the available 

parameters, the operational river runoff data includes near-real time data from European river stations and a subset of 

the GRDC focusing on coastal areas and stations located near river mouths, which extend beyond European borders. 240 

About 1,200 rivers worldwide are connected and operationally available. 

 
2 https://grdc.bafg.de/ 
3 https://fwf.bafg.de/  
4 https://emodnet.ec.europa.eu/geoviewer/  

https://grdc.bafg.de/
https://fwf.bafg.de/
https://emodnet.ec.europa.eu/geoviewer/
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• A 35-year daily and monthly global reconstruction of river flows (GRADES), with bias correction from machine-

learning derived global runoff characteristics maps, was developed in support of the Surface Water and Ocean 

Topography (SWOT) satellite mission (Lin et al., 2019). 

• A global dataset of monthly streamflow for 925 of the world’s largest rivers connecting to the ocean was built by Dai 245 

et al. (2009), updated from Dai and Trenberth (2002). 

• A dataset of historical river discharge from 1958 to 2016 was created using the CaMa-Flood global river routing 

model and adjusted runoff from the land component of JRA-55 (Suzuki et al., 2018; Tsujino et al., 2018). 

• A global database of monthly mean runoff for 986 rivers was incorporated in the NCOM, now HYCOM, U.S. model 

(Barron and Smedstad, 2022), that expands on the work of Perry et al. (1996) with corrections and additions derived 250 

from monthly mean streamflow from the USGS (Wahl et al., 1995), and extends the basic RivDIS database 

(Vörösmarty et al., 1998) to make adjustments for missing discharge attributed to small (ungauged) rivers.  

• A database of pan-Arctic river discharge (R-Arcticnet). 

Satellite-derived database: 

• A database for Greenland liquid water discharge from 1958 through 2019 (Mankoff et al., 2020). 255 

• The largest known dataset compiles publicly available river gauge data, with satellite-based rating curves used to fill 

in the temporal gaps (Riggs et al., 2023). 

Regional databases also exist, such as: 

• Long-term (1993-2011) satellite-derived estimates of continental freshwater discharge into the Bay of Bengal (Papa 

et al., 2012).  260 

• A database of pan-Arctic river discharge (R-Arcticnet5). 

• A database for Greenland liquid water discharge from 1958 through 2019 (Mankoff et al., 2020). 

• A river discharge climatology and corresponding historical time series for all rivers flowing into the Adriatic Sea with 

an average climatological daily discharge exceeding 1 m3s−1 (Aragão et al., 2024). 

Of particular importance is the fact that some of these databases use model-simulated runoff ratios (e.g. from Community Land 265 

Model (CLM) or river routing model) over gauged and ungauged drainage areas to estimate the contribution from the areas 

not monitored by the hydrometric network and adjust the station flow to represent river mouth outflow (, e.g. Dai et al. (2009). 

This allows more precise derivation of the total discharge into the global oceans, through the sum of both gauged and ungauged 

discharges. 

Unless explicitly stated (e.g. for EMODnet Physics), It is not evident that anymost of these databases are updated on a 270 

regularlack clearly stated update schedules; some remain static, while others are updated at irregularly intervals. Such databases 

are useful in the context of a reanalysis, but less so in an operational context where near-real-time data feeds are required. 

Furthermore, a detailed comparative assessment of these various data sources is still lacking. 

 
5 https://www.r-arcticnet.sr.unh.edu/v4.0/index.html 

https://www.r-arcticnet.sr.unh.edu/v4.0/index.html
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Alternatively, indirect approaches using tidal statistics at the estuarine entrance from tidal stations rather than direct flow 

measurements have been developed to estimate the net freshwater discharge at the mouth of an estuary, with the advantage of 275 

integrating processes at the basin scale, downstream of the last hydrometric station (Moftakhari et al., 2013; Moftakhari et al., 

2016). Because tide gauge records at the coasts were often installed well before the onset of systematic river gauging (Talke 

and Jay, 2013), such inverse techniques make it possible to extend flow records back in time. 

3.1.3 Operational river discharge products 

While most river discharge databases are static, operational products have been developed for near-real-time applications. For 280 

example, Tthe Global Flood Awareness System, GloFAS-ERA5, is an operational global river discharge reanalysis produced 

consistently with the ECMWF ERA5 atmospheric reanalysis and providing global gridded data products from 1979 to near-

real-time (within a 7-day delay) (Harrigan et al., 2020). Figure 2 illustrates the resolution of the river network that emerges in 

the GloFAS gridded data, and the association of discharge at the coast to point sources in a regional model of the northwest 

Atlantic Ocean that is in development for future operations. 285 

 

Figure 2: Annual mean surface water discharge (m3s-1m3 s-1) in 0.1º x 0.1º cells of the GloFAS analysis from Harrigan et al. (2020) 

for the year 2023. Filled circles show the locations of 93 point sources in the prototype East Coast Community Ocean Forecast System 

(ECCOFS) ROMS model (domain denoted by the gray perimeter box) associated to GloFAS points near the coast that have long-

term mean (2009-2019) discharge exceeding 50 m3s-1m3 s-1. River networks come from GloFAS. 290 
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Several centers are also producing continental- and global-scale hydrological (ensemble) forecasts operationally: the European 

Flood Awareness System (EFAS) (Thielen et al., 2009), the European Hydrological Predictions for the Environment (E-HYPE) 

(Donnelly et al., 2015), the Hydrologic Ensemble Forecast Service (HEPS) in the U.S. (Demargne et al., 2014), the Flood 

Forecasting and Warning Service (FWWS) in Australia, the National Surface and River Prediction System (NSRPS) in Canada 

(Fortin et al., 2023); and globally, the World-Wide HYPE (WWH) (Arheimer et al., 2020) and GloFAS (Harrigan et al., 2023). 295 

Notably, as part of the GloFAS service evolution, global daily ensemble river discharge reforecasts (20-year) and real-time 

forecast (2020-present) datasets are made freely and openly available through the Copernicus Climate Change Service (C3S) 

Climate Data Store (CDS) (Harrigan et al., 2023). 

Other projects have been supported by the Copernicus Marine Environment Monitoring Service (CMEMS), for example, the 

LAMBDA project regionally focused on the European Atlantic Façade and the North Sea. The resulting freshwater model 300 

estimates and in-situ observations are operationally updated and made available via the project viewer web interfaceviewer 

web interface6 (Sotillo et al., 2021a). 

The FOCCUS project (Forecasting and Observing the Open-to-Coastal Ocean for Copernicus Users 7) further enhances 

operational hydrological models by addressing the land-ocean continuum through improved river runoff estimations and the 

development of advanced coupling between hydrological and coastal ocean models. FOCCUS builds on existing pan-European 305 

hydrological frameworks, such as E-HYPE and LISFLOOD, to provide dynamic freshwater inputs, including nutrient and 

inorganic matter transport. Additionally, the project integrates novel AI techniques to optimize estuarine modelling and 

freshwater forcing for coastal systems. These innovations directly contribute to refining CMEMS and supporting all European 

coastal services with more accurate and seamless coastal monitoring and forecasting capabilities. 

In some instances, the regional products may appear to be the preferred option for some regional or local studies, as they were 310 

designed to specifically represent the hydrological characteristics of a given region, sometimes with higher resolution and 

accuracy. However, a global solution is attractive in data scarce areas and where consistency between discharge products and 

across all forcing variables is required over large domains (Polton et al., 2023). 

3.1.4 Remotely-sensed discharges 

Remote sensing of river discharge is a rapidly advancing research field (see Gleason and Durand, 2020, and references therein). 315 

With the successful launch of the SWOT satellite launched in December 2022, new global discharge products will soon become 

available globally at a nominal resolution of 10 km over for river reaches wider than 100 m, thus vastly expanding 

measurements of global rivers in both gauged and ungauged basins (Durand et al., 2023). Significant improvements on global 

uncalibrated models are expected (Emery et al., 2018). Furthermore, the temporal variations in SWOT-derived discharge data 

 
6 http://www.cmems-lambda.eu/home.html  
7 https://foccus-project.eu/ 

http://www.cmems-lambda.eu/home.html
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is expected to improve could lead to a better representation of the global hydrological cycle representation and to enhanced 320 

ocean model solutions near the coast when forced by SWOT discharges. 

3.1.5 Machine learning-derived discharge estimates 

Machine learning is increasingly used in hydrology for rainfall-runoff modelling, with Long Short-Term Memory (LSTM) 

networks (Greff et al., 2016; Hochreiter and Schmidhuber, 1997) proving particularly effective in capturing both periodic and 

chaotic patterns in time-series data while accurately learning long-term dependencies (Fang et al., 2017; Hu et al., 2019; 325 

Mouatadid et al., 2019). In numerous hydrological studies, LSTM has demonstrated superior performance over traditional 

process-based models in simulating runoff, primarily in data-rich regions (Feng et al., 2020, 2021; Frame et al., 2022; Gauch 

et al., 2021; Hunt et al., 2022; Konapala et al., 2020; Kratzert et al., 2019; Lees et al., 2021; Li et al., 2023; Luppichini et al., 

2024; Nearing et al., 2021; Reichstein et al., 2019). However, limited efforts have explored the transferability of LSTM models 

to data-scarce regions (e.g. Akpoti et al., 2024), with Ma et al., (2021) and Muhebwa et al. (2024) (and references therein) 330 

being a few such exceptions. Recently, researchers have explored the potential of LSTM models for global river discharge 

estimations (Rasiva Koya and Roy, 2024; Tang et al., 2023; Yang et al. 2023; Zhao et al. 2021). However, extensive validation 

beyond the training basins is required to fully evaluate their suitability for global-scale implementations. 

 

3.2 Salinity and temperature 335 

Estuarine mixing processes affect theinfluences salinity distribution and its seasonal variations variability near river mouths 

(Sun et al., 2019). Models are particularly sensitive to salinity in shelf areas and ROFI zones, most often due to the diverse 

treatment of OOFS given to coastal and river freshwater forcing (Sotillo et al., 2021a). Therefore, to assess the impact of a 

chosen formulation and evaluate model performances, sea surface salinity (SSS) and temperature (SST) are typically used. 

The climatology of the World Ocean Atlas climatology (Locarnini et al., 2013; Zweng et al., 2023) can have a high positive 340 

often overestimates nearshore salinity bias nearshore and is not adequate, making it unsuitable for model evaluation in these 

areascoastal regions. As an alternative, Sun et al. (2019) built on the original World Ocean Database and developed an 

improved salinity and temperature climatology with an enhanced representation of the coastal ocean. In-situ data and satellite 

observations from SMOS, Aquarius and SMAP (Bao et al., 2019) can also be used to assess the impact of river forcing on sea 

surface salinity (Feng et al., 2021). However, seasonal variability in the skill of SSS retrievals can be associated with SST-345 

dependent bias and strong land-sea differences in microwave emissivity, makinge satellite observations unreliable within some 

70 km of the coast (Grodsky et al., 2018; Menezes, 2020; Vazquez-Cuervo et al., 2018). Higher resolution coastal satellite 

products have been demonstrated developed based on empirical relationships between local salinity and ocean color 

observations (e.g. Geiger et al, 2011; Chen et al., 2017), using deep neural networks trained on Sentinel-2 Level 1-C Top of 

Atmosphere (TOA) reflectance data (Medina-Lopez and Ureña-Fuentes, 2019; Medina-Lopez, 2020), or by relating the 350 
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reflectance of the visible bands from Sentinel-2 imagery with electrical conductivity, influenced by the concentration and 

composition of dissolved salts (Sakai et al., 2021), but although these are not applied globally applicable.  

A recent study in the German Bight (Thao et al., 2024) demonstrated the critical role of high-resolution salinity inputs at 

estuarine mouths in improving the predictive capabilities of coupled wave-ocean models. Using the GCOAST model system, 

which seamlessly integrates estuarine and coastal dynamics with regional ocean models, researchers validated salinity and 355 

temperature fields against in-situ observations. The results highlighted that estuarine inflows significantly enhance the 

accuracy of coastal ocean models.  

Alternatively, salinity predictions in estuaries and at river mouths have been successfully estimated using machine learning 

approaches. A few examples can be found in the recent literature: Qiu and Wan (2013) developed an autoregressive model 

relating salinity at a given time to past observations of salinity and physical drivers (freshwater inflow, rainfall, tidal elevation) 360 

in the Caloosahatchee River Estuary; Fang et al. (2017) used a genetic algorithm coupled with support vector machine to 

predict salinity in the Min River Estuary; Qi et al. (2022) applied four neural network models to emulate salinity simulations 

in the Sacramento-San Joaquin Delta from a process-based river, estuary and land modelling system; Guillou et al. (2023) 

were able to reproduce the seasonal and semi-diurnal variations of sea surface salinity at the mouth of the Elorn estuary (bay 

of Brest), with support vector regression performing best among all tested algorithms. 365 

Despite these advancements, Improved and sustained operational high-resolution salinity monitoring for salinity observations 

is still needed with enhanced spatial coverage and temporal repetition in order to build confidence in numerical solutions near 

the coast. Integrating salinity, temperature, and additional parameters such as nutrients and sediments directly into river 

outflows could further improve model accuracy (Verri et al., 2018; Thao et al., 2024). While these factors play a secondary 

role in influencing oceanographic processes, their inclusion could advance research on coastal hypoxia, carbon cycling, and 370 

regional weather and climate, ultimately supporting seamless predictions of land–ocean–atmosphere feedbacks in next-

generation Earth system models (Feng et al. 2021).  

43.3 Examples of current OOFS 

This section describes howe status of implementation of river forcing is implemented in current OOFS is described in this 

section. The objective is to get a picture of the current landscape of approaches and data sources. While Cirano et al. (2024) 375 

provide a comprehensive overview of existing OOFS worldwide, the representation of rivers in these systems remains poorly 

documented and often buried in model configuration files. The list of systems presented below in Appendix A is therefore not 

exhaustive and is limited to a compilation of comments received as part of a survey conducted among members of the 

OceanPredict community in May 2023. It is meant to illustrate the diversity of methods employed for treating freshwater fluxes 

in OOFS and associated input data sources, in 4 global, 12 regional, 4 coastal and 1 inland systems. Although the survey covers 380 

a limited number of systems,  tThe literature review presented in the previous sections provides offers other additional 

examples to complete the picture.  
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Figure 3 provides a graphical summary of the 6 river forcing methods and 4 data sources used in the OOFS listed in Appendix 

A. In terms of river forcing methods, most systems specify vertical or lateral freshwater fluxes to account for riverine inputs. 

Only a few of them rely on more sophisticated approaches that use channel extensions within the ocean model or routing 385 

schemes from hydrological models to transport the water from the watershed to the coast. Furthermore, none of the global 

systems surveyed use lateral boundary conditions, likely due to insufficient spatial resolution near river mouths. 

In terms of the data sources used in OOFS, what stands out from the survey is the use of in situ data as a primary source in 

most systems, and climatology either as a primary or fallback source of freshwater discharge. Global systems tend to opt for 

climatologies in comparison with regional or coastal systems that favour observed data when available, which allows to capture 390 

both seasonal and non-seasonal events and their potential local or regional impacts. Only a few regional and inland systems 

use hydrological models or reanalyses as primary data sources. 

 

Figure 3: Graphical summary from a survey on river forcing methods (left panel) and data sources (right panel) used in global, 

regional, coastal and inland OOFS listed in Appendix A. Coloured bars indicate the primary data sources or methods, whereas 395 
dashed bars represent secondary data sources used as a fallback when primary sources are unavailable. 

Additional considerations were also highlighted by the respondents, essential for appropriately representing river inflow in 

ocean models and addressing challenges such as numerical instabilities and data limitations. For example, spatial smoothing 

around the river source, or equivalently, optimizing the integration distance for equivalent coastal precipitation may be required 

to prevent numerical instabilities. Similarly, an increased diffusivity within the surface mixing layer can be implemented to 400 

simulate the effects of river inflow. Salinity and temperature of the input freshwater can either be set to zero and to the local 

SST, respectively, or derived from a combination of real-time gauge data and monthly averages when available. For ungauged 

areas, river gauge data can be scaled, or additional coastal runoff can be incorporated. In contrast, some systems directly 

convert precipitation data into river discharges, disregarding hydrological processes and assuming an instantaneous response. 
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In sum, the representation of rivers in OOFS requires careful consideration of various numerical methods, data sources, and 405 

modelling approaches. However, some simplifications may limit accuracy in applications requiring high regional precision.  

5 Summary and recommendations 

The assessment of river forcing implementation in OOFS highlights the complexity and challenges of accurately integrating 

riverine freshwater discharges into ocean models. Despite the growing demand for operational oceanographic products, 

especially in coastal areas (Ciliberti et al., 2023), OOFS river forcing still faces shortcomings related to the representation of 410 

physical processes, data availability, and data quality. The parameterization of river inputs and the interaction between model 

components, often nonlinear, remain unresolved issues, underscoring the absence of standardized practices for river forcing. 

Addressing these gaps requires advancements in model physics, improved spatial and temporal resolution, and enhanced 

coupling between land, ocean and atmosphere. Furthermore, the incorporation of river flow varies regionally, largely due to 

differences in the availability and quality of river discharge, salinity and bathymetric datasets, and is further influenced by 415 

model scale and resolution. As the demand for reliable coastal forecasts grows, real-time, high-quality river discharge data 

becomes increasingly pressing. Standardized methodologies and improved integration of riverine parameters—including 

salinity, temperature, and biogeochemical components—will facilitate seamless watershed-ocean coupling and improve 

predictions of coastal dynamics, particularly under extreme conditions. 

Service evolution roadmaps, such as those outlined by CMEMS, emphasize the need for a better characterization of coastal 420 

freshwater exchanges to improve forecasts, especially during severe weather events (Sotillo et al., 2021b). A key step forward 

involves the progressive replacement of static climatologies with real-time, updated time series (past, present, and forecasts) 

of river inputs, covering both major and minor or ephemeral streams. Recommendations have been made towards standardized 

freshwater inputs (and associated river inputs of nutrients and sediment loading), harmonized river forcing approaches, and a 

more integrated watershed-ocean strategy (Campuzano et al., 2016; Capet et al., 2020; Sobrinho et al., 2021). Additionally, 425 

ensuring validated observational error estimates for estuary-mouth forcing, including river discharge and auxiliary variables 

such as coastal salinity, is crucial for model accuracy (De Mey-Frémaux et al., 2019; Polton et al., 2023). Improved interfaces 

between coastal monitoring and modelling systems are therefore essential. The FOCCUS project exemplifies progress in 

addressing these challenges through advancements in hydrological and estuarine modelling, dynamic freshwater inputs, and 

the integration of AI-driven tools to refine river discharge estimations and coastal system forecasts. 430 

Future efforts must focus on refining model physics, resolution, and coupling strategies to better integrate the land-ocean 

continuum. Standardized methodologies and integrated high-quality data sources, together with continued interdisciplinary 

collaboration and technological advancements, will be key to overcoming existing limitations and ensuring more accurate and 

reliable ocean predictions. Such efforts are critical for improving predictions of coastal dynamics and for fostering a deeper 

understanding of their implications on global climate and ecosystem functioning. 435 
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Appendix A: Survey on river forcing methods and data sources in current OOFS 

This Appendix presents results of a survey conducted among members of the OceanPredict community in May 2023. The 

responses are reported in the following tables as given by the participants; nearly no changes were made to each contributed 440 

entry, except for a few added references and acronym definitions. 

3.3
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A.1 Global systems 

Table A.1: Examples of river forcing methods and data sources in global OOFS. 

System  Institution Domain(s) Resolution Circulation 

Model 

Method for river forcing Data sources 

MOVE/ 

MRI.COM-

G3 8 

(Multivariate 

Ocean 

Variational 

Estimation/ 

Meteorological 

Research 

Institute 

Community 

Ocean Model - 

Global version 

3) 

Japan 

Meteorological 

Agency (JMA)’s 

Meteorological 

Research 

Institute 

Global 1/4° MRI.COM Ver. 

4 

River discharge is expressed as a 

part of the surface freshwater 

Climatology of JRA-55do river 

runoff data 

GEOS 9 

(NASA 

Goddard Earth 

Observing 

System)  

NASA’s Global 

Modeling and 

Assimilation 

Office 

Global 25 km –  

4 km 

MOM6 GEOS-land component run off, 

routed to catchments 

In situ data, land/catchment 

model 

 
8 https://ds.data.jma.go.jp/tcc/tcc/products/elnino/move_mricom-g3_doc.html  
9 https://gmao.gsfc.nasa.gov/GEOS_systems/  

https://ds.data.jma.go.jp/tcc/tcc/products/elnino/move_mricom-g3_doc.html
https://gmao.gsfc.nasa.gov/GEOS_systems/
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RTOFSv2 10 

(Real-Time 

Ocean 

Forecast 

System) 

NOAA’s 

National Centers 

for 

Environmental 

Prediction 

Global 0.08º HYCOMv2.2 Rivers are implemented as 

virtual salt flux at the ocean 

surface. River runoff is 

distributed over several ocean 

grid points around the river 

source by applying spatial 

smoothing to spread out the 

effect of the river and prevent 

negative salinities due to 

numerical overshooting. To 

mimic the river inflow, river 

freshwater is mixed from the 

surface down to a depth specified 

by the user (set to 6 meters in 

RTOFS). In the grid cells with 

not-zero river runoff and in the 

upper layers, river freshwater is 

mixed within increased vertical 

diffusivity. Alternatively, rivers 

can be added directly to the input 

precipitation fields, which is a 

better option for a higher (than 

monthly) frequency river flow 

data. It is possible to treat rivers 

(as well as evaporation minus 

precipitation, E-P) as a mass 

exchange (not activated in 

RTOFS).  

RTOFS uses global climatology 

of monthly mean river discharge 

created at the Naval Research 

Laboratory (NRL) (Barron and 

Smedstad, 20222002). It 

provides monthly runoff for 986 

rivers. The dataset is based on 

the Perry (1996) data with 

corrections and additions 

derived from: (1) monthly mean 

streamflow over all years, 

accessible from the USGS 

(Wahl et al., 1995); (2) 

the  Global River Discharge 

(RivDIS) database (Vörösmarty 

et al., 1998); (3) the Regional, 

Hydrometeorological Data 

Network (R-ArcticnetR-

Arcticnet 11 ) database provides 

most of the information 

ultimately used on rivers 

flowing into the Arctic, 

primarily rivers in Russia and 

Canada. 

 
10 https://polar.ncep.noaa.gov/global/about/  
11 http://www.r-arcticnet.sr.unh.edu/  

https://polar.ncep.noaa.gov/global/about/
http://www.r-arcticnet.sr.unh.edu/
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FOAM-CPL-

NWP 12 

(Forecast 

Ocean 

Assimilation 

Model, 

Coupled 

Numerical 

Weather 

Prediction 

UK Met Office Global 1/4° NEMO v3.6 Fresh water runoff from land is 

input in the surface layer of the 

ocean with the assumption that 

the runoff is fresh and at the 

same temperature as the local sea 

surface temperature. An 

enhanced vertical mixing of 

2x10-3 m2s-1 is added over the top 

10 m of the water column at 

runoff points to mix the runoff 

vertically and avoid instabilities 

associated with very shallow 

fresh layers at the surface 

(Storkey et al., 2018).  

Climatological river runoff 

fields were derived by 

Bourdalle-Badie and Treguier 

(2006) based on estimates given 

in Dai and Trenbert (2002) 

(Blockley et al., 2014) 

 445 

3.3A.2 Regional systems 

Table A.2: Examples of river forcing methods and data sources in regional OOFS. 

System  Institution Domain(s) Resolution Circulation 

Model 

Method for river forcing Data sources 

MOVE/MRI.C

OM-NP/JPN 13 

(Multivariate 

Ocean 

Variational 

Estimation/ 

Japan 

Meteorological 

Agency 

(JMA)’s 

Meteorological 

North 

Pacific  

2 km - 10 km MRI.COM 

Ver. 5 

River discharge is expressed as 

a part of the surface freshwater 

Climatology of JRA-55do river 

runoff data 

 
12 https://www.metoffice.gov.uk/services/data/met-office-data-for-reuse/model  
13 https://www.data.jma.go.jp/kaiyou/data/db/kaikyo/knowledge/move_jpn/system.html  

https://www.metoffice.gov.uk/services/data/met-office-data-for-reuse/model
https://www.data.jma.go.jp/kaiyou/data/db/kaikyo/knowledge/move_jpn/system.html
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Meteorological 

Research 

Institute 

Community 

Ocean Model – 

North Pacific/ 

Japan) 

Research 

Institute 

TOPAZ14 Norwegian’s 

Nansen 

Environmental 

and Remote 

Sensing Center 

(NERSC) 

Arctic and 

Nordic Seas 

12 km HYCOM Removal of salt from the surface 

(an ellipse around the river 

mouth) and barotropic water 

flux. We use nutrients (N, P and 

Si) from the globalNEWS 

model and scale them by river 

discharge.  

Swedish Meteorological and 

Hydrological Institute (SMHI) 

(Arctic-HYPE and E-HYPE), 

GRACE satellite for Greenland 

mass loss and a home-made 

climatology for Greenland 

surface mass balance.  

eSA-Marine15 South 

Australian 

Research and 

Development 

Institute 

South 

Australian 

Gulfs and 

Shelf 

2.5 km and 0.5 

km 

ROMS None, intermittent river input is 

usually weak to non-existent. 

None 

DMI _ 

HYCOM-_ 

CICE16 

Danish 

Meteorological 

Institute (DMI) 

Arctic and 

Atlantic 

Oceans 

4-10 km: ~5 

km 

throughout 

Arctic and 

northern 

Atlantic 

HYCOM + 

CICE fully 

coupled using 

Earth System 

Modeling 

Framework 

River forcing is converted to 

monthly means precipitation 

equivalents [m/s] for ~50,000 

river-runoff outlets and 

distributed to the nearest coastal 

River forcing is taken from 

various sources using a dataset 

from the Geological Survey of 

Denmark and Greenland 

(Mankoff et al., 2020), 

 
14 https://nersc.no/en/products-and-services/analysis-tools-and-models/ocean-models/  
15 https://pir.sa.gov.au/research/services/esa_marine/about_esa-marine  
16 https://ocean.dmi.dk/models/hycom.uk.php  

https://nersc.no/en/products-and-services/analysis-tools-and-models/ocean-models/
https://pir.sa.gov.au/research/services/esa_marine/about_esa-marine
https://ocean.dmi.dk/models/hycom.uk.php
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(ESMF) 

coupler. CICE 

runs on a 

subset of the 

full HYCOM 

domain 

model grid point(s) (Ponsoni et 

al., 2023). 

converted to monthly means 

precipitation equivalents [m/s] 

DKSS17 (Danish 

Storm Surge 

System) 

Danish 

Meteorological 

Institute 

North Sea - 

Baltic Sea, 

with 

multiple 

nested 

subdomains 

3 nautical 

miles 

(coarsest) to 

0.1 nautical 

mile (finest) 

HBM, 

(Hiromb-

Baltic Model) 

River forcing is treated as a 

freshwater flux into coastal grid 

cells. Water temperature equal 

to receiving cell (river 

temperature data not used) with 

0°C as lower limit to avoid 

instantaneous freezing. 

European hydrological model 

E-HYPE3, from which an 

annual plus a calendar day ~30y 

climatology has been derived 

and used as a back-up for a 

daily forecast. The forecast 

model is run by the Swedish 

Hydrological and 

Meteorological Institute, and 

the day-to-day service comes 

with an annual fee. 

IBI Near-Real-

Time18 

Iberia Biscay 

Irish (IBI) Sea 

– Monitoring 

Forecasting 

Center 

European 

Atlantic 

façade (the 

Iberia-

Biscay-

Ireland 

zone): Lat: 

from 26N to 

1/36º, Surface 

and 3D fields 

(50 vertical 

levels) 

NEMO v3.6 Freshwater river discharge 

inputs are implemented as 

lateral open boundary 

conditions for the main 33 rivers 

of the IBI area. The system also 

incorporates an extra coastal 

runoff rate (derived from the Dai 

and Trenberth (2002) 

Data come from different 

sources, depending on their 

availability, in the following 

order: (1) Model data: SMHI 

hydrologic model; (2) Monthly 

climatological data taken from 

GRDCGRDC, French “Banque 

HydroBanque Hydro” 19 

 
17 https://opendatadocs.dmi.govcloud.dk/Data/Forecast_Data_Storm_Surge_Model_DKSS#:~:text=DKSS%20is%20DMI%27s%20forecast%20m

odel,ice%20thickness%20and%20ice%20concentration  
18 https://marine.copernicus.eu/about/producers/ibi-mfc  
19 http://www.hydro.eaufrance.fr/  

https://opendatadocs.dmi.govcloud.dk/Data/Forecast_Data_Storm_Surge_Model_DKSS#:~:text=DKSS%20is%20DMI%27s%20forecast%20model,ice%20thickness%20and%20ice%20concentration
https://opendatadocs.dmi.govcloud.dk/Data/Forecast_Data_Storm_Surge_Model_DKSS#:~:text=DKSS%20is%20DMI%27s%20forecast%20model,ice%20thickness%20and%20ice%20concentration
https://marine.copernicus.eu/about/producers/ibi-mfc
http://www.hydro.eaufrance.fr/
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56N, Lon: 

from 19W to 

5E 

climatology, on a monthly 

basis), which makes the IBI 

forcing consistent with the ones 

imposed in the parent 

Copernicus Marine GLOBAL 

system. 

dataset, Copernicus Marine 

Service and 

EmodnetEMODnet. 

IBI Multi-Year20 Iberia Biscay 

Irish (IBI) Sea 

– Monitoring 

Forecasting 

Center 

European 

Atlantic 

facade (the 

Iberia-

Biscay-

Ireland 

zone): Lat: 

from 26N to 

56N, Lon: 

from 19W to 

5E 

1/12º, Surface 

and 3D fields 

(50 vertical 

levels) 

NEMO v3.6 Same as IBI-NRT, but with an 

additional river (LAGAN) 

Data come from different 

sources, depending on their 

availability, in the following 

order: (1) In-situ data: daily 

measurements from Copernicus 

Marine Service, Emodnet 

EMODnet or national web 

sites; (2) Model data: SMHI 

hydrologic model.  

CBEFS 21 

(Chesapeake 

Bay 

Environmental 

Forecast 

System) 

Virginia 

Institute of 

Marine 

Science 

Chesapeake 

Bay 

600 m x 600 m ROMS Freshwater - Real time USGS 

river gauge data is scaled to 

better represent total freshwater 

inflows over a larger area based 

on a watershed model. The 

scaled discharge is then 

disaggregated into the main 

river inflow and smaller streams 

based on proportions developed 

from the watershed model. The 

In situ gauge data. Hindcast 

watershed model information. 

Artificial Neural Networks. 

 
20 https://marine.copernicus.eu/about/producers/ibi-mfc  
21 https://www.vims.edu/research/products/cbefs/  

https://marine.copernicus.eu/about/producers/ibi-mfc
https://www.vims.edu/research/products/cbefs/
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forecast is a simple 

autoregressive model based on 

the past few days.  

Riverine Biogeochemistry - 

Inputs are specified using 

Artificial Neural Network AI 

models based on the discharge 

and date, which recreate what 

the watershed model would 

have predicted had the current 

and forecast conditions been 

simulated by the watershed 

model.  

Temperature - Water 

temperature is specified using a 

combination of real time gauge 

data and monthly averages 

depending on what is available. 

DREAMS 22 

(RIAM Real-

Time Ocean 

Forecasting) 

Kyushu 

University’s 

Research 

Institute for 

Applied 

Mechanics 

(RIAM) 

East Asian 

marginal 

seas 

0.3 – 22 km RIAM Ocean 

Model 

Coastal precipitation is directly 

converted into the amount of 

river discharges. The integration 

distance was optimized by using 

model Green's functions 

(Hirose, 2011). 

Grid point value (GPV) 

precipitation data of Japan 

Meteorological Agency (JMA) 

 
22 https://dreams-c1.riam.kyushu-u.ac.jp/vwp/  

https://dreams-c1.riam.kyushu-u.ac.jp/vwp/
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FOAM-

AMM15 23 

(Forecast Ocean 

Assimilation 

Model– Atlantic 

Margin model 

1.5km) 

UK Met Office Northwest 

European 

Shelf Seas 

1.5 km NEMO v3.6 For each river input location, a 

daily freshwater flux is 

assigned, with depth determined 

by the average ratio of runoff to 

tidal range (as per the estuary 

classifications of Cameron and 

Pritchard, 1963). The runoff 

temperature is assumed to align 

with the local sea surface 

temperature (SST), as the 

climatology does not include 

temperature data (Graham et al., 

2018).  

River runoff is primarily 

derived from a daily 

climatology of gauge 

measurements averaged for 

1980–2014. UK data were 

processed from raw data 

provided by the Environment 

Agency, the Scottish 

Environment Protection 

Agency, the Rivers Agency 

(Northern Ireland), and the 

National River Flow Archive 

(gauge data were provided by 

Sonja M. van Leeuwen, 

CEFAS, Lowestoft, UK, 

personal communication, 

2016). For major rivers that 

were missing from this data set 

(e.g. along the French and 

Norwegian coasts), data have 

been provided from an earlier 

climatology (Vörösmarty et al., 

2020; Young and Holt, 2007), 

based on a daily climatology of 

gauge data averaged for the 

period 1950–2005 (Tonani et 

al., 2019). 

 
23 https://www.metoffice.gov.uk/services/data/met-office-data-for-reuse/model  

https://www.metoffice.gov.uk/services/data/met-office-data-for-reuse/model
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FOAM-

AMM7 24 

(Forecast Ocean 

Assimilation 

Model– Atlantic 

Margin model 

7km) 

UK Met Office Northwest 

European 

Shelf Seas 

7 km NEMO v3.6 

(coupled to 

ERSEM 20.10 

for 

biogeochemis

try) 

For each river input location, a 

daily freshwater flux is 

assigned, with depth determined 

by the average ratio of runoff to 

tidal range (as per the estuary 

classifications of Cameron and 

Pritchard, 1963). The runoff 

temperature is assumed to align 

with the local sea surface 

temperature (SST), as the 

climatology does not include 

temperature data (Graham et al., 

2018).  

Daily timeseries of river 

discharge, nutrient loads 

(nitrate, phosphate, silicate, 

ammonia), alkalinity 

(bioalkalinity, dissolved 

organic carbon) and oxygen 

were produced from an updated 

version of the river dataset used 

in Lenhart et al. (2010), 

combined with climatology of 

daily discharge data from the 

Global River Discharge 

Database (Vörösmarty et al., 

2020) and from data prepared 

by the Centre for Ecology and 

Hydrology as used by Young 

and Holt, 2007. The 

climatology has an annually-

varying component until 2018 

to account for historic changes 

in nutrient loads, values for 

2018 are used as a climatology 

in the operational system (Kay 

et al., 2020). 

DOPPIO25 

Rutgers 

University and 

Rutgers 

University 

Northeast 

USA and 

7 km ROMS Discharge is introduced as 

volume flux divergence 

(method LwSrc in ROMS) at 

Daily USGS discharge data are 

scaled for ungauged portions of 

the watershed based on the 

 
24 https://www.metoffice.gov.uk/services/data/met-office-data-for-reuse/model  
25 https://gmd.copernicus.org/articles/13/3709/2020/  

https://www.metoffice.gov.uk/services/data/met-office-data-for-reuse/model
https://gmd.copernicus.org/articles/13/3709/2020/
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MARACOOS26 

(Mid-Atlantic 

Regional 

Association 

Coastal Ocean 

Observing 

System) 

Nova Scotia, 

Canada 

27 point sources in model cells 

adjacent to the coast.  

statistics of a 10-year 

hydrological model analysis.  

3.3A.3 Coastal systems 

Table A.3: Examples of river forcing methods and data sources in coastal OOFS. 

System  Institution Domain(s) Resolution Circulation Model Method for river forcing Data sources 

DFO's Port 

Ocean 

Prediction 

Systems27 

Government of 

Canada’s 

Department of 

Fisheries and 

Oceans (DFO) 

Kitimat Fjord, 

Vancouver 

Harbour, Lower 

Fraser River, St 

Lawrence 

Estuary, Port of 

Canso, Saint 

John harbour 

20 – 200 m NEMO 3.6 NEMO's runoff feature for 

some rivers, and a SSH open 

boundary condition for 

others 

Gauge data (from 

Environment and Climate 

Change Canada, ECCC) 

where available, 

climatology elsewhere 

CIOPS 28 

(Coastal Ice-

Ocean 

Prediction 

System) 

Environment and 

Climate Change 

Canada (ECCC) 

East/West + 

SalishSea500 

1/36° + 

500m for 

SS500 

NEMO 3.6 Same as DFO port models Gauge data for Fraser 

River, climatology 

elsewhere 

 
26 https://maracoos.org/  
27 https://publications.gc.ca/site/eng/9.905464/publication.html  
28 https://eccc-msc.github.io/open-data/msc-data/nwp_ciops/readme_ciops_en/  

https://maracoos.org/
https://publications.gc.ca/site/eng/9.905464/publication.html
https://eccc-msc.github.io/open-data/msc-data/nwp_ciops/readme_ciops_en/
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FANGAR _ 

BAY29 

Universitat 

Politècnica de 

Catalunya 

Ebro Delta 350m / 70m COAWST (ROMS/ 

SWAN) 

Climatological freshwater 

from Ebro River 

In situ data 

NARF 30 

(Northern 

Adriatic 

Reanalysis 

and 

Forecasting 

system) 

Istituto Nazionale 

di Oceanografia e 

di Geofisica 

Sperimentale 

Northern 

Adriatic Sea 

(Mediterranean 

Sea) 

1/128°  

(~750 m) 

MITgcm-BFM 

(coupled 

hydrodynamic-

biogeochemical) 

The downstream end of the 

rivers flowing into the basin 

is simulated as a narrow 

channel: one or two cells in 

the horizontal direction and 

a few vertical levels. 

Freshwater discharge rates 

from NRT data or 

climatologies are converted 

into horizontal velocities 

(the section of the riverbed 

is known) and applied as 

lateral open boundary 

conditions. Salinity is 

constant (5 PSU), 

temperature has a yearly 

sinusoidal cycle (maxima 

and minima in summer and 

winter, respectively) and 

biogeochemical 

concentrations are derived 

from 

literature/climatologies. 

In-situ NRT discharge data 

for the Po River (main 

contributor), climatologies 

for the others (with 

sinusoidal modulation: 

maxima in spring/fall, 

minima in summer/winter). 

Daily frequency. 

 
29 https://doi.org/10.5194/egusphere-egu24-11220  
30 https://medeaf.ogs.it/got  

https://doi.org/10.5194/egusphere-egu24-11220
https://medeaf.ogs.it/got
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3.3A.4 Inland systems 450 

Table A.4: Example of river forcing methods and data sources in inland OOFS. 

System  Institution Domain(s) Resolution Circulation 

Model 

Method for river forcing Data sources 

WCPS 31 

(Water 

Cycle 

Prediction 

System) 

Environment and 

Climate Change 

Canada (ECCC) 

Great-Lakes+ 

Northwest 

Atlantic (NWA) 

1/36° + 1km NEMO 3.6 Fully coupled hydrologic model for 

GL, climatology for NWA 

Hydrological model uses 

gauge data 

 

 
31 https://eccc-msc.github.io/open-data/msc-data/nwp_wcps/readme_wcps_en/  

https://eccc-msc.github.io/open-data/msc-data/nwp_wcps/readme_wcps_en/
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