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Abstract. The ability to model biogeochemical features in the ocean is a key factor in predicting the health of the ocean: it 

involves the representation of processes and cycles of chemical elements (such as carbon, nutrients and oxygen) and the 

dynamics of living organisms such as phytoplankton, zooplankton and bacteria. This paper gives an overview of the main 

modelling aspects aimed at describing the low trophic levels of marine ecosystems and shows how they can be coupled with 15 

advection and diffusion models to simulate the dynamics and distribution in the ocean. The complexity of biogeochemical 

models can vary considerably depending on the topics of interest, assumed hypothesis and simplification of the numerical 

parameterization. The paper also discusses the uncertainties in the numerical solution due to the lack of knowledge about the 

parameterizations, the initial and boundary conditions, the lack of a robust observation network and the high computational 

cost of running such models. 20 

1 Introduction 

Marine biogeochemistry refers to the cycling of chemical elements (e.g., carbon, nutrients, oxygen) resulting from physical 

transport, chemical reaction, uptake, and processing by living organisms (e.g., phytoplankton, zooplankton, bacteria). 

Biogeochemical models describe the low trophic levels of marine ecosystems and are usually coupled with advection and 

diffusion models. Operational biogeochemical models have generally been developed by incorporating biogeochemical models 25 

developed for research and process-base study into existing physical forecasting systems (Gehlen et al., 2015) and are used to 

assess (i) past and current marine ecosystem states and trends (reanalysis, hindcast and nowcast) and (ii) short-term (days to 

weeks) or seasonal (months) forecasts (Le Traon et al., 2019; Fennel et al., 2019). Biogeochemical models can have a wide 

range of complexity, from single parameterizations of processes to fully explicit representations of several nutrients, trophic 

levels, and functional groups. They can also include carbonate systems, pollutants and other features, depending on the specific 30 

goals and domains for which they were developed. This chapter provides a brief introduction to biogeochemical modelling in 

the context of operational oceanography, while detailed descriptions and discussions can be found in the following articles 
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(Gutknecht et al., 2022; Fennel et al., 2022; Ford et al., 2018). The focus is on the levels of model complexity in existing 

biogeochemical prediction systems, with examples taken mainly from the Copernicus Marine Service (Le Traon et al., 2019). 

2 Basic formulation and processes of biogeochemical model 35 

In general, biogeochemical models solve a system of partial differential equations Eq.(1) describing the rate of change of a set 

of state variables C representing biogeochemical tracers: dissolved inorganic substances (e.g., nutrients), living organic 

compartmens (e.g., primary producers and secondary consumers), and nonliving organic dissolved and particulate matter 

(Gutknecht et al., 2022; Fennel et al., 2022). The first three terms on the right side of Eq.(1) represent the physical terms: 

advection (first term), diffusion (second - horizontal - and third - vertical - terms) of biogeochemical tracers, where KH and 40 

KV are the horizontal and vertical diffusivities, respectively, which act on different spatial scales. The remaining terms describe 

the sinking processes that affect biological particles (fourth term) and biogeochemical reactions (fifth term). 
𝜕𝐶
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The last term, Rbio, represents the local source-minus-sink terms for the biogeochemical tracers and is based on the principle 

of conservation of mass to simulate the cycling of chemical elements through various marine compartments. Biogeochemical 45 

models (Eq.1) are generally discretized on a grid covering a spatial region of interest and they are solved numerically by using 

appropriate initial and boundary conditions for each of the tracers. The physical parts of Eq.(1) can be solved directly by the 

advective-diffusion component of ocean dynamic models (i.e., on-line coupling). Alternatively, the output of the ocean 

dynamics model is used to force the biogeochemistry off-line (Heinze and Gehlen, 2013). Different schemes can be used to 

solve the coupling between physical and biogeochemical processes to optimize accuracy and computational cost (Bruggeman 50 

and Bolding, 2014; Cossarini et al., 2017). Operational biogeochemical models include also data assimilation schemes 

(Brasseur et al., 2009; Fennel et al., 2019), with ocean color chlorophyll being the most commonly assimilated variable (Nerger 

and Gregg, 2008; Ciavatta et al., 2011; Fontana et al., 2013; Teruzzi et al., 2014; Ciavatta et al., 2016). The emergence of 

autonomous underwater sensors (biogeochemical gliders  and  Argo floats) has opened the possibility to better constrain 

biogeochemical dynamics below the water surface (Cossarini et al., 2019; Teruzzi et al., 2021; Skakala et al., 2021). 55 

Unlike physical models based on Navier-Stokes equations (see Chapter 8), there are no  fundamental laws and principles for 

the biogeochemical term (Rbio). Rather, equations describing biogeochemical processes rely on empirical relationships based 

on laboratory experiments (e.g., nutrient limitation experiments, grazing dilution experiments), biological theories, and 

ecological principles based also on biogeographic relationships. 

The NPZD approach, which stands for nutrient-phytoplankton-zooplankton-detritus (Fasham et al., 1990), is the basis of most 60 

marine biogeochemical models. In its simplest form, the cycling of a single nutrient (e.g., nitrogen) is represented by four 

marine compartments: inorganic nutrient and living (phytoplankton and zooplankton) and nonliving (detritus) organic 

compartments. The nutrient fluxes between the compartments are the uptake of the nutrient as a function of phytoplankton 
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growth, the mortality and grazing of phytoplankton and zooplankton, and the remineralization of the detritus compartment. In 

the original Fasham model (Fasham et al., 1990), the nutrient inorganic pool (nitrogen) is divided into ammonium and nitrate, 65 

and the remineralization process includes bacteria and dissolved organic nitrogen, increasing the number of state variables 

from four to seven and nearly doubling the number of processes described. 

Increasing model complexity (e.g., greater number of state variables and processes) enables the expansion of the model 

objectives and the range of applications, but is accompanied by larger uncertainties in the parameterization and higher 

computational costs. There is no general consensus on the level of complexity of biogeochemical models and the priority for 70 

new components to be added. This often depends on the specific objectives for which a model is being built. In recent years, 

the complexity of biogeochemical models used in operational oceanography has increased, as have their applications. These 

span multiple objectives: monitoring ocean state and variability, assessing ocean health (acidification, eutrophication, 

deoxygenation), supporting resource management, and studying pollutant impacts. 

The number of chemical elements is often increased, to include typically carbon, other macronutrients such as phosphorus and 75 

silicon, and micronutrients (e.g., iron). The increase in model complexity allows modellers to represent a wider range of 

chemical and biological processes such as nitrification, denitrification, calcification, competition for the limiting nutrients and 

DMS dynamics. Another typical tracer included in biogeochemical models is oxygen because of its importance to define ocean 

health (e.g., deoxygenation, Schmidtko et al., 2017; Gregoire et al., 2021; Bopp et al., 2013) and the effects of low oxygen 

concentrations (hypoxia) in changing ecosystem functions (Baird et al., 2004). 80 

Fixed or variable nutrient stoichiometry can then be formulated within the simulated organisms, e.g. phytoplankton . Typical 

values of fixed nutrient ratios are 138[O2] : 106[C] : 16[N] : 15[Si] : 1[P] : 0.1-0.001[Fe] (Redfield, 1934; Lenton et al., 2000). 

When models include variable stoichiometry (e.g., Vichi et al., 2007; Tagliabue et al., 2011), multiple state variables are 

required to represent the living organic compartments, and a formulation of intracellular ratios can be used to simulate the 

multiple nutrient limitation of phytoplankton growth (Klausmeier et al., 2004). Primary production, the basis of the marine 85 

food web, is the chemical synthesis of organic compounds from dissolved carbon dioxide through chlorophyll-mediated 

photosynthesis. When chlorophyll is explicitly included in models, photosynthesis and acclimation to light can be dynamically 

simulated to balance growth rate and variable chlorophyll-carbon ratios as a function of light, nutrient limitation, and 

temperature (Geider et al., 1997). 

Complexity of biogeochemical models can be measured by the number of plankton functional groups (PFTs) used to simulate 90 

the trophic food web. The autotrophic community can be conceptually grouped considering various ecological functions (e.g., 

silicifiers, calcifiers, nitrogen fixers, and DMS producers), cell size (e.g., pico-, nano-, and micro-phytoplankton), and specific 

physiological traits such as optical absorption, light use, growth rate and affinity for nutrients (Hood et al., 2006). To improve 

the representation of the dynamics of phytoplankton functional groups , biogeochemical models can include a spectral radiative 

component which resolves solar radiation penetration in the water column (Dutkiewicz et al., 2015; Skakala et al., 2020; 95 

Álvarez et al., 2022). The zooplankton community can be subdivided by size (nano-, micro-, meso-, or macro-), grazing 

strategy (herbivorous versus carnivorous), and its role within an end-to-end ecosystem approach (Mitra et al., 2014). A rigid 
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partition between autotrophs and heterotrophs is not exhaustive, and the food web can incorporate mixotrophs to account for 

organisms that obtain energy through both photosynthesis and consumption of others (Flynn et al., 2013; Mitra et al., 2014). 

Biogeochemical models can target biodiversity (Litchman and Klausmeier, 2008) if the number of functional plankton groups 100 

is large enough to deterministically represent niches based on certain factors (e.g., adaptation to the light spectrum; Álvarez et 

al., 2022), or by including tens or hundreds of PFTs with randomly prescribed parameters so that the most fitted can prevail in 

the resulting ecosystem (Follows et al., 2007). 

Assessment of ocean carbon uptake and associated ocean acidification impacts requires modeling of the marine carbonate 

system: the two prognostic variables are typically dissolved inorganic carbon and alkalinity, and carbonate chemistry is solved 105 

to determine water acidity and calculate air-sea CO2 gas exchange (Zeebe and Wolf-Gladrow, 2001; Artioli et al., 2012; 

Cossarini et al., 2015). 

Microbial loop describes the role of bacteria in decomposing organic matter that is converted back to nutrients. It also includes 

the channeling of energy and matter to higher trophic levels by microzooplankton, which can be an important pathway in 

oligotrophic conditions (Legendre and Rassoulzadegan, 1995; Hood et al., 2006). In addition, models can describe the 110 

dynamics of multiple pools of dissolved organic matter (e.g., labile, semilabile, and refractory) characterized by turnover 

timescales ranging from days to years (Anderson et al., 2015; Glibert and Mitra, 2022). In coastal and shallow water 

applications, a benthic model allows to represent the mutual interaction and nutrients, carbon and oxygen exchanges between 

the water column and the sediment (Soetaert et al., 2000).  

Biogeochemical models can be linked or coupled to higher trophic level or ecosystem models (see Chapter 12). This requires 115 

parameterization or explicit representation of the link of phytoplankton productivity and zooplankton mortality with higher 

trophic level compartments such as nekton organisms and fishes, and possibly the feedbacks from HTL to biogeochemical 

processes (e.g., Travers et al., 2009). 

An additional component of biogeochemical models includes the fate, dynamics, and transport of metals and POPs (Melaku 

Canu et al., 2015; Wagner et al., 2019), including bioaccumulation in low trophic level compartments and cumulative impacts 120 

on marine species and ecosystems (Rosati et al., 2022; Zhang et al., 2020). 

Unlike ocean dynamics, where a limited number of numerical models are used in operational applications (e.g., NEMO, 

ROMS, MitGCM, see Alvarez-Fanjul et al., 2022), there is a long list of biogeochemical models that have varying level of 

complexity in response to specific regions and topics of interest for which were developed. Some of the most commonly used 

biogeochemical operational models are briefly described below roughly ordered for increased complexity. 125 

HadOCC (Palmer and Totterdell, 2001): a model of low complexity (10 variables) with a single pythoplankton and single 

zooplankton, fixed stoichiometry used to produce global reanalysis of the carbon cycle (Ford and Barciela, 2017). 

SCOBI: used for reanalysis of nutrient cycling in the Baltic Sea (Liu et al, 2017), it has fixed nutrients stoichiometry in three 

phytoplankton and one zooplankton and includes anaerobic processes and a sediment module for oxygen and nutrient dynamics 

(Eilola et al., 2009). 130 
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NEMURO: (Kishi et al., 2007) a relatively simple low trophic level model of the Pacific Ocean (11 state variables) based on 

N dynamics with two phytoplankton and two zooplankton, that has been coupled with HLT model (e.g., bioenergetic fish 

model; Kishi et al., 2011).  

ECB: (Feng et al., 2015) developed to study eutrophication in the Chesapeake Bay, it consists of 11 variables (C and N cycles) 

with one single phytoplankton and single zooplankton and processes applicable for estuarine ecosystems, such as inorganic 135 

suspended solid dynamics and the impact on light attenuation (Feng et al., 2015; Irby et al., 2019; Irby et al., 2018). 

GulfMexico: developed to investigate eutrophication and acidification in the Gulf of Mexico, it is a model of intermediate 

complexity (15 variables) that simulates N, P, O2 and C dynamics with a single phytoplankton and single zooplankton group, 

a sediment-water fluxes  parameterization, and the carbonate system (Fennel et al., 2011; Laurent et al., 2017). 

PISCES: is a model of intermediate complexity (24 state variables) with five nutrients, two phytoplankton and two zooplankton 140 

size classes and includes carbonate system and dissolved oxygen dynamics. (Aumont et al., 2015). It is currently used in 

regional (north-eastern Atlantic, Gutkenecht et al., 2019) and global operational systems (Mignot et al., 2023).  

ECOSMO: (Daewl and Schrum, 2013), its operational version in use for Northern Atlantic and Artic Ocean (Yumruktepe et 

al., 2023) has two phytoplankton, two zooplankton, multiple nutrients (N, P an Si) and fixed molar Redfield ratio but a variable 

chlorophyll-to-carbon dynamics and it includes a nutrient sediment layer.  145 

ERGOM: used in the Baltic Sea operational system, it is a model of intermediate complexity (25 variables) with three 

phytoplankton and two zooplankton groups, and includes processes related to hypoxia and anoxia, carbonate system and a 

radiative model with CDOM dynamics (Neumann, 2000; Neumann et al., 2015). 

BAMHBI: developed for the Black Sea which is characterized by an anoxic deep layer, the model includes 33 pelagic state 

variables, with multinutrients and multi-plankton several, and explicitly describes processes in the anoxic layer. It also includes 150 

dynamics of the sedimentary stocks of organic C, N, P and biogenic Si (Grégoire et al., 2008; Grégoire and Soetaert, 2010; 

Capet et al., 2016, Ciliberti et al., 2022) 

eReefs/vB3p0: designed for water quality in the Australian Great Barrier marine ecosystem, it is a complex model resolving 

N, P, C, O2 cycles  in pelagic (four phytoplankton and two zooplankton) and sediment (seagrass and coral) environments. It 

includes carbonate chemistry (Mongin et al., 2016), bio-optics and bleaching (Baird et al., 2016; Baird et al., 2020). 155 

BFM: a multi-nutrient and multi-plankton model (Vichi, 2015; Alvarez et al., 2022) with more than 50 variables, it includes 

carbonate chemistry (Cossarini et al., 2015; Cossarini et al., 2017), bio-optics (Lazzari et al., 2021) and pollutants (Rosati et 

al., 2022) and is currently used in the operational system and reanalysis of the Mediterranean Sea (Salon et al., 2019; Cossarini 

et al., 2021).  

ERSEM: developed for regional (north-eastern Atlantic and North Sea) and global studies, it is a complex model (more than 160 

50 state variables) including multi nutrients, multi-plankton, carbonate system and a sediment layer (Baretta et al., 1995; 

Butenschön et al., 2016). 
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3 Conclusions 

Given the complexity of marine ecosystems, the development of biogeochemical models  is the result of compromises and 

simplifications, and no single approach can realistically encompass all relevant aspects of marine ecosystem dynamics. 165 

Determining the appropriate level of complexity depends on the specific objectives and supporting information for each 

application, while standard assessment frameworks (Hernandez et al., 2018) represent essential tools to assess model 

performance. Increasing model complexity does not necessarily mean better performance (Xiao and Friedrichs, 2014; 

Kwiatkowski et al., 2014; Gehlen et al., 2015; Séférian et al., 2020). Indeed, despite recent significant technological advances 

in observing systems, the lack of biogeochemical observations, both in terms of number of variables and spatiotemporal 170 

availability, remains the major obstacle for thorough validation and optimization (e.g., tuning parameters). 

In addition to inherent uncertainties in model structures and parameterizations, important sources of uncertainty arise from 

numerical solution settings in spatially discretized domains: e.g, initial conditions, lateral conditions for open boundaries, 

inputs of chemical compounds and suspended matter from rivers and atmospheric deposition, and ocean dynamics driving the 

transport of biogeochemical tracers. Despite major advances in high performance computing, the computational cost of a 175 

model still constitutes an issue when resolution of the numerical solution and complexity (e.g., the number of biogeochemical 

tracers) are increased. Finally, many of the biogeochemical models have emerged as community models that should guarantee 

a distributed and affordable effort to keep them up to date with the advancement in marine ecology knowledge and the 

requirements of evolving computer science and of the coupling with physical and earth system models and data assimilation 

frameworks. 180 
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