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Abstract. The ability to model biogeochemical features in the ocean is a key factor in predicting the health of the ocean: it 

involves the representation of processes and cycles of chemical elements (such as carbon, nutrients and oxygen) and the 

dynamics of living organisms such as phytoplankton, zooplankton and bacteria. This paper gives an overview of the main 

modelling aspects aimed at describing the low trophic levels of marine ecosystems and shows how they can be coupled with 15 

advection and diffusion models to simulate the dynamics and distribution in the ocean. The complexity of biogeochemical 

models can vary considerably depending on the topics of interest, assumed hypotheses and simplifications of the numerical 

parameterizations. The paper also discusses the uncertainties in the numerical solution due to the lack of knowledge about the 

parameterizations, the initial and boundary conditions, the lack of a robust observation network and the high computational 

cost of running such models. 20 

1 Introduction 

Marine biogeochemistry refers to the cycling of chemical elements (e.g., carbon, nutrients, oxygen) resulting from physical 

transport, chemical reactions, uptake and processing by living organisms (e.g., phytoplankton, zooplankton, bacteria). 

Biogeochemical models describe the low trophic levels of marine ecosystems and are usually coupled with advection and 

diffusion models. Operational biogeochemical models have generally been developed by incorporating biogeochemical models 25 

developed for research and process-base process-based studies into existing physical forecasting systems (Gehlen et al., 2015) 

and are used to assess (i) past and current marine ecosystem states and trends (reanalysis, hindcast and nowcast) and (ii) short-

term (days to weeks) or seasonal (months) forecasts (Le Traon et al., 2019; Fennel et al., 2019). When observations are 

assimilated, simulations of a past period are called reanalysis, while unconstrained simulations of a past period are called 

hindcast. When the simulations are carried forward to the present, they are referred to as nowcasts. (Fennel et al., 2023). By 30 

providing timely information for the current state and a consistent reconstruction of the past, biogeochemical operational 

models can support ocean carbon sequestration and storage estimations, monitoring effects of acidification and deoxygenation, 
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marine spatial planning, and, as input for habitat and food web modelling, marine biodiversity conservation and fisheries 

management. 

Biogeochemical models can have a wide range of complexity, from a single nutrient and simple parameterizations of processes 35 

to fully explicit representations of several nutrients, trophic levels, and functional groups. They can also include carbonate 

systems, pollutants (e.g. Hg, persistent organic pollutants -POPs) and other features, depending on the specific goals and 

domains for which they were developed. This chapter provides a brief introduction to biogeochemical modelling in the context 

of operational oceanography, while more detailed descriptions and discussions can be found in the following articles 

(Gutknecht et al., 2022; Fennel et al., 2022; Ford et al., 2018). The focus is on the levels of model complexity in existing 40 

biogeochemical prediction systems, with examples taken mainly from the Copernicus Marine Service (Le Traon et al., 2019). 

2 Basic formulation and processes of biogeochemical model 2.1 Formulations, processes and elements of biogeochemical 
models  

 

In general, biogeochemical models solve a system of partial differential equations Eq. (1) describing the rate of change of a 45 

set of state variables C representing biogeochemical tracers: dissolved inorganic substances (e.g., nutrients), living organic 

compartmens compartments (e.g., primary producers and secondary consumers), and nonliving organic dissolved and 

particulate matter (Gutknecht et al., 2022; Fennel et al., 2022). The first three terms on the right side of Eq. (1) represent the 

physical terms: advection (first term), diffusion (second - horizontal - and third - vertical - terms) of biogeochemical tracers, 

where KH KH and KV KV are the horizontal and vertical diffusivities, respectively, which act on different spatial scales. The 50 

remaining terms describe the sinking processes that affect biological particles (fourth term) and biogeochemical reactions (fifth 

term). 
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The last term, Rbio Rbio, represents the local source-minus-sink terms for the biogeochemical tracers and is typically based on 

the principle of conservation of mass to simulate the cycling of chemical elements through various marine compartments. 55 

Biogeochemical models (Eq.1) are generally discretized on a grid covering a spatial region of interest and they are solved 

numerically by using appropriate initial and boundary conditions for each of the tracers. The physical parts of Eq.(1) can be 

solved directly by the advective-diffusion component of ocean dynamic models (i.e., on-line coupling). Alternatively, the 

output of the ocean dynamics model is used to force the biogeochemistry off-line (Heinze and Gehlen, 2013). Different 

schemes can be used to solve the coupling between to couple the physical and biogeochemical processes to optimize accuracy 60 

and computational cost (Bruggeman and Bolding, 2014; Cossarini et al., 2017). Operational biogeochemical models include 

also data assimilation schemes (Brasseur et al., 2009; Fennel et al., 2019)., with ocean color chlorophyll being the most 

commonly assimilated variable (Nerger and Gregg, 2008; Ciavatta et al., 2011; Fontana et al., 2013; Teruzzi et al., 2014; 

Ciavatta et al., 2016) with satellite observations being the most commonly used due to their spatial coverage and time 
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availability, even in near real time. Ocean colour chlorophyll is the variable most typically assimilated in biogeochemical 65 

models (Nerger and Gregg, 2008; Ciavatta et al., 2011; Fontana et al., 2013; Teruzzi et al., 2014; Ciavatta et al., 2016) but 

other remote sensing variables have also been tested: diffuse attenuation coefficient (Ciavatta et al., 2014), phytoplankton 

functional type chlorophyll (Ciavatta et al., 2018; Skákala et al., 2018, Pradhan et al. 2020) and inherent optical properties 

(Jones et al., 2016). While ocean colour provides unique information about the surface of the ocean, the transfer of surface 

information to deeper layers usually requires approximations. The emergence of autonomous underwater sensors 70 

(biogeochemical gliders  and  Argo floats) has opened the possibility to better constrain biogeochemical dynamics below the 

water surface (Cossarini et al., 2019; Teruzzi et al., 2021; Skakala et al., 2021). (Verdy and Mazloff, 2017; Cossarini et al., 

2019; Teruzzi et al., 2021; Skákala et al., 2021). Oxygen, chlorophyll and nitrate profiles are currently used in forecast systems 

for assimilation (Amadio et al., 2024), but also for parameters tuning (Wang et al., 2021, Yumruktepe et al., 2023, Falls et al., 

2022), validation of operational systems (Salon et al., 2019; Mignot et al., 2023) and adaptive monitoring of phytoplankton 75 

blooms (Ford et al., 2022). 

Unlike physical models based on Navier-Stokes equations (Bell et al., 2024), there are no fundamental laws and principles for 

the biogeochemical term (Rbio). Rather, equations describing biogeochemical processes rely on empirical relationships based 

on laboratory experiments (e.g., nutrient limitation experiments, grazing dilution experiments), biological theories, and 

ecological principles based also on biogeographic relationships. 80 

The NPZD approach, which stands for nutrient-phytoplankton-zooplankton-detritus (Fasham et al., 1990), is the basis of most 

marine biogeochemical models. In its simplest form, the cycling of a single nutrient (e.g., nitrogen) is represented by four 

marine compartments: inorganic nutrient and living (phytoplankton and zooplankton) and nonliving (detritus) organic 

compartments. The nutrient fluxes between the compartments are the uptake of the nutrient as a function of phytoplankton 

growth, the mortality and grazing of phytoplankton and zooplankton, and the remineralization of the detritus compartment. In 85 

the original Fasham model (Fasham et al., 1990), the nutrient inorganic pool (nitrogen) is divided into ammonium and nitrate, 

and the remineralization process includes bacteria and dissolved organic nitrogen, increasing the number of state variables 

from four to seven and nearly doubling the number of processes described. 

A schematic representation of the cycles of multiple chemical elements (e.g., nutrients) among living and non-living 

compartments together with some additional features presented below is shown in Figure 1. 90 
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Figure 1: simplified scheme of compartments (boxes) and processes (arrows) representing the cycles of multiple chemical 

elements typically included in a biogeochemical model. The symbol ... indicates the increase of the number of compartments 

and variables (e.g., multiple plankton functional types, multiple size compartment of non-living organic matter or additional 

variables resolved by the carbonate system. 95 

 

 

Increasing model complexity (e.g., greater number of state variables and processes) enables the expansion of the model 

objectives and the range of applications, but is accompanied by larger uncertainties in the parameterization and higher 

computational costs. There is no general consensus on the level of complexity of biogeochemical models and the priority for 100 

new components to be added. This often depends on the specific objectives for which a model is being built. In recent years, 

the complexity of biogeochemical models used in operational oceanography has increased, as have their applications. These 

span multiple objectives: monitoring ocean state and variability, assessing ocean health (acidification, eutrophication, 

deoxygenation), supporting resource management, and studying pollutant impacts. 

The number of chemical elements is often increased, to include typically carbon, other macronutrients such as phosphorus and 105 

silicon, and micronutrients (e.g., iron). The increase in model complexity allows modellers to represent a wider range of 

chemical and biological processes such as nitrification, denitrification, calcification, competition for the limiting nutrients and 

dimethylsulfide (DMS) dynamics. Another typical tracer included in biogeochemical models is oxygen because of its 

importance to define for ocean health (e.g., deoxygenation, Schmidtko et al., 2017; Gregoire et al., 2021; Bopp et al., 2013) 

and the effects of low oxygen concentrations (hypoxia) in changing ecosystem functions (Baird et al., 2004). 110 

Fixed or variable nutrient stoichiometry can then be formulated within the simulated organisms, e.g. phytoplankton. Typical 

values of fixed nutrient ratios are 138[O2] : 106[C] : 16[N] : 15[Si] : 1[P] : 0.1-0.001[Fe] (Redfield, 1934; Lenton and Watson, 

2000). When models include variable stoichiometry (e.g., Vichi et al., 2017; Tagliabue et al., 2011), multiple state variables 

are required to represent the living organic compartments, and a formulation of intracellular ratios can be used to simulate the 
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multiple nutrient limitation of phytoplankton growth (Klausmeier et al., 2004). Primary production, the basis of the marine 115 

food web, is the chemical synthesis of organic compounds from dissolved carbon dioxide through chlorophyll-mediated 

photosynthesis. When chlorophyll is explicitly included in models, photosynthesis and acclimation to light can be dynamically 

simulated to balance growth rate and variable chlorophyll-carbon ratio as a function of light, nutrient limitation, and 

temperature (Geider et al., 1997). 

Complexity of biogeochemical models can be measured by the number of plankton functional groups types (PFTs) used to 120 

simulate the trophic food web. The autotrophic community can be conceptually grouped considering various ecological 

functions (e.g., silicifiers, calcifiers, nitrogen fixers, and dimethylsulfide -DMS- producers), cell size (e.g., pico-, nano-, and 

micro-phytoplankton), and specific physiological traits such as optical absorption, light use, growth rate and affinity for 

nutrients (Hood et al., 2006). To improve the representation of the dynamics of phytoplankton functional groups, 

biogeochemical models can include a spectral radiative component which resolves solar radiation penetration in the water 125 

column (Dutkiewicz et al., 2009; Skákala et al., 2020; Álvarez et al., 2022). The zooplankton community can be subdivided 

by size (nano-, micro-, meso-, or macro-) and grazing strategy (herbivorous versus carnivorous), and its role within an end-to-

end ecosystem approach (Mitra et al., 2014). Additionally, a rigid partition between autotrophs and heterotrophs is not 

exhaustive, and the food web can incorporate mixotrophs to account for organisms that obtain energy through both 

photosynthesis and consumption of others (Flynn et al., 2013; Mitra et al., 2014). 130 

Biogeochemical models can target biodiversity (Litchman and Klausmeier, 2008) if the number of functional plankton groups 

is large enough to deterministically represent niches based on certain factors (e.g., adaptation to the light spectrum; Álvarez et 

al., 2022), or by including tens or hundreds of PFTs with randomly prescribed parameters so that the most fitted fittest groups 

can prevail in the resulting ecosystem (Follows et al., 2007). 

Assessing ocean carbon uptake and the associated ocean acidification requires modeling of the marine carbonate system: the 135 

two prognostic variables are typically dissolved inorganic carbon and alkalinity, and carbonate chemistry is solved to determine 

water acidity and to calculate the air-sea CO2 gas exchange (Zeebe and Wolf-Gladrow, 2001; Artioli et al., 2012; Cossarini et 

al., 2015a). 

The microbial loop describes the role of bacteria in decomposing organic matter that is converted back to nutrients. It also 

includes the channelling of energy and matter to higher trophic levels by microzooplankton, which can be an important pathway 140 

in oligotrophic conditions (Legendre and Rassoulzadegan, 1995; Hood et al., 2006). In addition, models can describe the 

dynamics of multiple pools of dissolved organic matter (e.g., labile, semilabile, and refractory) characterized by turnover 

timescales ranging from days to years (Anderson et al., 2015; Glibert and Mitra, 2022). In coastal and shallow water 

applications, a benthic model allows to represent the mutual interaction and nutrients, carbon and oxygen exchanges between 

the water column and the sediment (Soetaert et al., 2000).  145 

Biogeochemical models can be linked or coupled to higher trophic level or ecosystem models (see Chapter 12 Libralato, 2024). 

This requires parameterization or explicit representation of the link of phytoplankton productivity and zooplankton mortality 
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with higher trophic level (HTL) compartments such as nekton organisms and fishes, and possibly the feedbacks from HTL to 

biogeochemical processes (e.g., Travers et al., 2009). 

An additional component of biogeochemical models includes the fate, dynamics, and transport of metals and POPs (Melaku 150 

Canu et al., 2015; Wagner et al., 2019), including bioaccumulation in low trophic level compartments and cumulative impacts 

on marine species and ecosystems (Rosati et al., 2022; Zhang et al., 2020). Although not yet ready to be integrated into an 

operational prediction system, additional - and useful to society - components of biogeochemical models could include the 

fate, dynamics and transport of metals and POPs (Melaku Canu et al., 2015; Wagner et al., 2019, Bieser et al., 2023), including 

bioaccumulation in low trophic level compartments and cumulative impacts on marine species and ecosystems (Rosati et al., 155 

2022; Zhang et al., 2020). 

2.2 main models used in operational systems  

Unlike ocean dynamics, where a limited number of numerical models are used in operational applications (e.g., NEMO, 

ROMS, MITGCM, see Alvarez-Fanjul et al., 2022), there is a long list of biogeochemical models that have varying level of 

complexity in response to specific regions and topics of interest for which were developed. As part of the UN Decade of Ocean 160 

Science for Sustainable Development program, the Ocean Prediction Decade Collaborative Center (Alvarez-Fanjul et al., 

2024) is promoting the Atlas of Operational Systems, which also describes their biogeochemical component 

(oceanprediction.org). Some of the biogeochemical models used in operational prediction systems are briefly presented below, 

roughly ordered by increasing complexity. Some of the most commonly used biogeochemical operational models are briefly 

described below roughly ordered for increased complexity.  165 

HadOCC (Palmer and Totterdell, 2001): a model of low complexity (10 variables) with a single phytoplankton and single 

zooplankton, fixed stoichiometry used to produce global reanalysis of the carbon cycle (Ford and Barciela, 2017). 

SCOBI: used for reanalysis of nutrient cycling in the Baltic Sea (Liu et al, 2017), it has fixed nutrients stoichiometry in three 

phytoplankton and one zooplankton and includes anaerobic processes and a sediment module for oxygen and nutrient dynamics 

(Eilola et al., 2009). 170 

NEMURO: (Kishi et al., 2007) a relatively simple low trophic level model of the Pacific Ocean (11 state variables) based on 

N dynamics with two phytoplankton and two zooplankton, that has been coupled with HLT model (e.g., bioenergetic fish 

model; Kishi et al., 2011).  

ECB: (Feng et al., 2015) developed to study eutrophication in the Chesapeake Bay, it consists of 11 variables (C and N cycles) 

with one single phytoplankton and single zooplankton and processes applicable for estuarine ecosystems, such as inorganic 175 

suspended solid dynamics and the impact on light attenuation (Feng et al., 2015; Irby et al., 2019; Irby et al., 2018). 

GulfMexico: developed to investigate eutrophication and acidification in the Gulf of Mexico, it is a model of intermediate 

complexity (15 variables) that simulates N, P, O2 and C dynamics with a single phytoplankton and single zooplankton group, 

a sediment-water fluxes  parameterization, and the carbonate system (Fennel et al., 2011; Laurent et al., 2017). 
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PISCES: is a model of intermediate complexity (24 state variables) with five nutrients, fixed-stoichiometry, two phytoplankton 180 

and two zooplankton size classes and includes carbonate system and dissolved oxygen dynamics. (Aumont et al., 2015). It is 

currently used in regional (north-eastern Atlantic, Gutknecht et al., 2019) and global operational systems (Mignot et al., 2023). 

A version with variable stoichiometry (PISCES-QUOTA) also exists and is used for climate scenario studies (Kwiatkowski et 

al., 2018). 

ECOSMO: (Daewel and Schrum, 2013), its operational version in use for Northern Atlantic and Artic Ocean (Yumruktepe et 185 

al., 2022) has two phytoplankton, two zooplankton, multiple nutrients (N, P an Si) and fixed molar Redfield ratio but a variable 

chlorophyll-to-carbon dynamics and it includes a nutrient sediment layer.  

ERGOM: used in the Baltic Sea operational system, it is a model of intermediate complexity (25 variables) with three 

phytoplankton and two zooplankton groups, and includes processes related to hypoxia and anoxia, carbonate system and a 

radiative model with CDOM dynamics for coloured dissolved organic matter (Neumann, 2000; Neumann et al., 2015). 190 

BAMHBI: developed for the Black Sea which is characterized by an anoxic deep layer, the model includes 33 pelagic state 

variables, with multinutrients, and multi-plankton several, eight plankton functional types and explicitly describes processes 

in the anoxic layer. It also includes dynamics of the sedimentary stocks of organic C, N, P and biogenic Si (Grégoire et al., 

2008; Grégoire and Soetaert, 2010; Capet et al., 2016, Ciliberti et al., 2022) 

eReefs/vB3p0: designed for water quality in the Australian Great Barrier marine ecosystem, it is a complex model resolving 195 

N, P, C, O2 cycles  in pelagic (four phytoplankton and two zooplankton) and sediment (seagrass and coral) environments. It 

includes carbonate chemistry (Mongin et al., 2016), bio-optics and bleaching (Baird et al., 2016; Baird et al., 2020). 

BFM: a multi-nutrient and multi-plankton model (Álvarez et al., 2022) with more than 50 variables, it includes carbonate 

chemistry (Cossarini et al., 2015b; Cossarini et al., 2017), bio-optics (Lazzari et al., 2021) and pollutants (Rosati et al., 2022) 

and is currently used in the operational system and reanalysis of the Mediterranean Sea (Salon et al., 2019; Cossarini et al., 200 

2021).  

ERSEM: developed for regional (north-eastern Atlantic and North Sea) and global studies, it is a complex model (more than 

50 state variables) including multi nutrients, multi-plankton, carbonate system and a sediment layer (Baretta et al., 1995; 

Butenschön et al., 2016). 

DARWIN: a complex multi-nutrient model in which the plankton community comprises hundreds of groups by taking into 205 

account cell size and functional traits to study the biodiversity and biogeography (Dutkiewicz et al., 2009). 

3 Conclusions 

Given the complexity of marine ecosystems, the development of biogeochemical models is the result of compromises and 

simplifications, and no single approach can realistically encompass all relevant aspects of marine ecosystem dynamics. 

Determining the appropriate level of complexity depends on the specific objectives and supporting information for each 210 

application, while standard assessment frameworks (Hernandez et al., 2018) represent essential tools to assess model 
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performance. Increasing model complexity does not necessarily mean better performance (Xiao and Friedrichs, 2014; 

Kwiatkowski et al., 2014; Gehlen et al., 2015; Séférian et al., 2020). Indeed, despite recent significant technological advances 

in observing systems, the lack of biogeochemical observations, both in terms of number of variables and spatiotemporal 

availability, remains the major obstacle for thorough validation and optimization (e.g., tuning parameters). 215 

In addition to inherent uncertainties in model structures and parameterizations, important sources of uncertainty arise from 

numerical solution settings in spatially discretized domains: e.g, initial conditions, lateral conditions for open boundaries, 

inputs of chemical compounds and suspended matter from rivers and atmospheric deposition, and ocean dynamics driving the 

transport of biogeochemical tracers. Despite major advances in high performance computing, the computational cost of a 

model still constitutes an issue when resolution of the numerical solution and complexity (e.g., the number of biogeochemical 220 

tracers) are increased. Finally, Many of the biogeochemical models have emerged as community models that should guarantee 

a distributed and affordable effort to keep them up to date with the advancement in marine ecology knowledge and the 

requirements of evolving computer science and of the coupling with physical and Earth system models and data assimilation 

frameworks. Rapidly evolving applications of artificial intelligence in marine biogeochemistry can assist in optimising model 

parameters, developing hybrid models to improve predictions and operational system efficiency, and detecting patterns in large 225 

data sets from reanalysis. Linking microbial community dynamics to ecosystem processes through metagenomic data can 

improve models describing nutrient cycling, carbon fluxes and diversity. New coupling paradigms are needed to promote the 

integration of biogeochemical models with the dynamics of pollutants, high trophic levels and Earth system components. 

In addition to science-driven developments, operational biogeochemical systems can evolve to respond to societal demands to 

assess the impacts of heat waves, oxygen depletion and acidification on marine resources and the role of the oceans in achieving 230 

the goal of carbon neutrality. 
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