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Abstract. Coastal services are fundamental for society, with approximately 60% of the world’s population living within 60 13 

km of the coast. Thus, predicting ocean variables with high accuracy is a challenge that requires numerical models able to 14 

simulate from mesoscale to submesoscale processes, to capture shallow water dynamics influenced by wetting-drying and 15 

resolve the ocean variables in very high-resolution spatial domains. This paper introduces key aspects of coastal modelling, 16 

such as vertical structure of the mixed layer depth, parameterization of bottom roughness and the dissipation of kinetic energy 17 

in coastal areas. It stresses the need for models to account for the nonlinear interactions between tidal currents, wind waves, 18 

and small-scale weather patterns, emphasizing their significance in refining coastal predictions. In addition, observational 19 

advancements, such as high-frequency (HF) radar and satellite missions like SWOT, provide unique opportunities to observe 20 

coastal dynamics. This integration enhances our ability to model physical and dynamical peculiarities in coastal waters, 21 

estuaries, and ports. Coastal models not only benefit from such high-resolution observations but also contribute to evolving 22 

observational systems, creating feedback loops that refine monitoring and prediction capabilities. Modelling strategies are also 23 

examined, including downscaling and upscaling approaches, and numerical challenges like implementing robust data 24 

assimilation schemes to refine estimations of coastal ocean states are addressed. Emerging techniques, such as advanced 25 

turbulence closure models and dynamic vegetation drag parameterization, are highlighted for their role in enhancing the 26 

realism of modeled coastal processes. Furthermore, the integration of atmospheric forcing, tidal asymmetries, and estuarine 27 

dynamics underlines the necessity for models that span the complexities of the coastal continuum.  It also demonstrates the 28 

critical importance of accurately modelling coastal and estuarine systems to capture interactions between mesoscale and 29 

submesoscale processes, their connections to broader oceanic systems, and their implications for sustainable coastal 30 

management and climate resilience. This work underscores the potential of advancing coastal forecasting systems through 31 

interdisciplinary innovation, paving the way for enhanced scientific understanding and practical applications. 32 
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1 Introduction 34 

 35 

High resolution observation and modelling are needed so that marine services can be compliant with small-scale processes in 36 

the ocean, particularly in coastal areas where these processes have a significant impact on dynamics and biogeochemistry 37 

(Figure 1). The importance of high resolution in coastal services is underscored by the coastal ocean’s significance to humanity, 38 

not least because about 60% of the world's population lives within 60 km of the coast (Rao et al., 2008).  These areas are highly 39 

dynamic, subject to both direct and indirect anthropogenic impacts, respectively, such as eutrophication, overfishing, offshore 40 

wind farm development, dredging, and pollution, global warming, sea level rise and changes in meteorological and 41 

hydrological conditions. These combined influences frequently trigger regime shifts, coastal erosion, flooding, and the 42 

introduction of invasive species, underscoring the vulnerability and complexity of these systems.  43 

Accurately predicting ocean variables in coastal environments is challenging due to the need to resolve mesoscale to 44 

submesoscale dynamics and their interactions with atmospheric and hydrological processes. The inherent variability of these 45 

systems requires models that can account for a wide range of phenomena, including tidal asymmetries, wetting-drying cycles, 46 

nonstationary river and atmospheric forcing, and nonlinear feedback mechanisms between tidal currents and wind waves 47 

(Staneva et al., 2017). These processes influence mixing, ocean circulation, and the accuracy of sea surface temperature 48 

predictions. Thus, high-resolution models are indispensable for capturing the fine-scale interactions that drive coastal dynamics 49 

and shape biogeochemical responses. 50 

Observational data play a pivotal role in advancing coastal modelling. High-frequency (HF) radar and novel high resolution 51 

satellite missions offer unprecedented opportunities to observe and understand coastal processes with fine spatial and temporal 52 

resolution (De Mey-Frémaux et al., 2019). These data sources are integral to improving the representation of physical and 53 

biogeochemical variability in the models, bridging the gap between observations and predictive frameworks. By integrating 54 

data from remote sensing and in situ platforms, coupled with advanced data assimilation techniques, models can better capture 55 

the complexity of estuarine and nearshore processes. 56 

Science-based services in the coastal ocean are essential for ensuring efficient management, sustainable use of coastal systems, 57 

and the development of strategies that are adaptable to the changing climate, including sea-level rise. These efforts, for 58 

example, align with the marine strategy framework directive in the European context (Hyder et al., 2015). 59 

The aim of this paper is to introduce high-resolution ocean forecasting services that address the challenges of coastal dynamics 60 

by improving predictions of physical and biogeochemical processes. It focuses on the integration of advanced modelling 61 

techniques and modern observational tools to enhance understanding of small-scale dynamics and their connections to larger 62 

ocean systems. The paper first describes the spatial scales and processes that high-resolution models address, focusing on local, 63 

regional, and transitional zones. It then explores advanced observational tools, such as satellite missions and HF radars, and 64 

their role in improving coastal forecasts. Following this, the discussion highlights numerical modelling techniques, including 65 

turbulence modelling and bottom drag parameterization, which are essential for capturing small-scale coastal dynamics. It also 66 
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examines the role of data assimilation techniques and observing system experiments in improving prediction accuracy and 67 

guiding the design of observation networks. Finally, the paper concludes with a summary of findings, identifies current 68 

challenges, and outlines future directions for advancing coastal forecasting systems. By addressing these topics, the paper aims 69 

to support the development of more robust and adaptable tools for coastal forecasting, which are critical for sustainable 70 

management and improving resilience to environmental changes. 71 

 72 

 73 

Figure 1: Schematic representation of the coastal zone, hazards (e.g. HAB (harmful algea bloom), metocean and biogeochemical 74 
variables, as well as observations and applications (adapted from Melet et al., 2020). 75 

2 Typical spatial scales and processes solved by high-resolution services 76 

High-resolution services in the coastal ocean operate at various spatial scales depending on the specific applications and 77 

objectives. These scales can range from local to regional levels, aiming to capture fine-scale processes and variations. Here 78 

are some typical spatial scales for high-resolution services:   79 

1. Local Scale: At the local scale, high-resolution services focus on small coastal areas, such as individual bays, estuaries, or 80 

nearshore zones. These services aim to provide detailed information and predictions for specific locations of interest. Spatial 81 

resolutions in this range can be on the order of meters to a few kilometers, allowing for precise observations and modelling of 82 

localized processes.  83 

2. Coastal Scale: High-resolution services at the coastal scale cover larger coastal regions, spanning multiple bays, estuaries, 84 

and coastal zones. These services provide a broader view of the coastal environment and its dynamics. Spatial resolutions in 85 

this range typically range from meters to a kilometer, enabling the capture of coastal- to regional-scale variations and 86 

interactions.  87 

3. Transition Zones: Transition zones refer to areas where coastal and open ocean processes interact. These zones often exhibit 88 

complex dynamics and are of particular interest for high-resolution services. Spatial resolutions in transition zones can vary 89 
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depending on the specific characteristics and objectives, but they generally aim to capture the intricate interactions between 90 

coastal and open ocean processes.  91 

A collection of 11 recent studies on operational coastal services utilizing high-resolution models offers significant insights into 92 

the relevant spatial scales, objectives, and applications, thereby strengthening the analysis in this context (Sotillo, 2022). Eddies 93 

or isolated vortices, meandering currents or fronts and filaments are characteristic features of oceanic mesoscale processes. 94 

These processes typically exhibit spatial scales ranging from 10 to 500 kilometers, depending on geographic latitude and 95 

stratification, and time scales ranging from several days to approximately 100 days.  Submesoscale processes in the ocean, on 96 

the other hand, are characterized by smaller scales, typically ranging from 1 to 10 kilometers (McWilliams, 2016). These scales 97 

are smaller than the Rossby radius of deformation. Submesoscale processes also have shorter temporal scales, usually lasting 98 

only a few hours, and their relative vorticity is greater than the Coriolis parameter f. In contrast, for mesoscale motion, the 99 

relative vorticity is comparable to f. Overall, studying and observing submesoscale processes require advanced techniques and 100 

methods to overcome their small scale and rapid variability, but their understanding is crucial for comprehending the intricate 101 

dynamics of the ocean. 102 

The surface and bottom mixed layers in the open ocean occupy just a tiny part of the ocean volume because these layers are 103 

much thinner than the almost viscousless ocean interior. However, in the coastal zone, drag parameterizations become 104 

increasingly important in shallow water, and even more so where the impact of vegetation is significant. Furthermore, a large 105 

part of kinetic energy in the ocean is dissipated in the coastal zone, which necessitates an adequate modelling of this important 106 

small-scale process, vital for the global energy balance (Munk and Wunsch, 1998).  To accurately represent the coastal 107 

dynamics and the fine structure of these layers, models need to resolve the vertical structure of the mixed layers. This 108 

requirement necessitates the use of turbulence closure models, which account for the effects of turbulence and mixing in these 109 

regions. Additionally, models for coastal processes need to consider the impact of bottom drag. The parameterization of bottom 110 

roughness, often based on the grain size distribution, allows for the inclusion of bottom drag effects. In cases where vegetation 111 

is present, drag parameterizations become even more important.  A significant portion of the kinetic energy in the ocean is 112 

dissipated in the coastal zone. Therefore, it is crucial to adequately model these small-scale processes in order to maintain a 113 

balanced representation of the global energy dynamics. Understanding and accurately simulating the dissipation of kinetic 114 

energy in coastal areas contribute to a comprehensive understanding of the ocean's energy budget. 115 

In shallow water, the variability of surface elevation caused by tides and storms becomes comparable to the water depth itself. 116 

In some coastal areas, shallow-water tides play a significant role in the overall tidal dynamics. To improve the accuracy of 117 

tidal predictions in shelf regions, it is necessary to consider higher harmonics and assess the ability of ocean models to fully 118 

resolve the tidal spectrum. 119 

Some important processes, such as the nonlinear feedback between strong tidal currents and wind waves, cannot be ignored in 120 

the coastal zone (Staneva et al., 2016a, 2016b, 2017). Wave-current coupling tends to decrease strong winds through wave-121 

dependent surface roughness (Wahle et al., 2017), affects mixing and ocean circulation, and improves predictions for sea 122 

surface temperature. Further examples of the value of the incorporation of coupling in the numerical models in the coastal 123 
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ocean are given by De Mey-Frémaux et al. (2019). These scientific developments of operational oceanography are in pace 124 

with the trend in the Earth System modelling to seamlessly couple different environmental prediction components of 125 

atmosphere, waves, hydrology, and ice. 126 

The small spatial scales characteristic of coastal and estuarine systems requires coastal models to consider ageostrophic 127 

(deviating from the Earth's rotation) and three-dimensional dynamics, primarily driven by boundary-layer processes (Fringer 128 

et al., 2019). Understanding these small-scale processes is crucial, particularly the interactions between mesoscale and sub-129 

mesoscale dynamics and their connection to larger-scale processes. It is essential to improve the representation of exchanges 130 

between the coastal and open ocean, as well as their coupling with estuaries and catchment areas, in order to capture the 131 

complexity of coastal systems. Accounting for high-resolution atmospheric forcing in the coastal models is essential for 132 

accurately capturing local meteorological dynamics, including wind patterns, temperature gradients, and precipitation rates. 133 

Such detailed atmospheric data drive fundamental processes like heat and momentum fluxes, profoundly influencing coastal 134 

hydrodynamics, sediment transport, and ecosystem responses. The implementation of a novel high-resolution atmospheric 135 

forcing, combined with the refinement of bulk formulae for surface flux computations, significantly enhances the performance 136 

of various high-resolution modelling systems for port environments (García-León et al.). Coastal models need to accurately 137 

account for frictional balances, taking into consideration the effects of friction on the movement of water. They must also 138 

address wetting and drying processes, as well as hydrological forcing, to capture the transitions between shallow environments 139 

and larger regional scales. By incorporating these factors, models can provide a more realistic representation of coastal 140 

dynamics. In addition, the grid characteristics used in coastal models should be carefully selected to accurately represent the 141 

dominant spatial scales present in the coastal environment. Choosing grid resolutions that capture the essential features of the 142 

coastal system is crucial for obtaining reliable and meaningful results. 143 

In the coastal ocean, characteristic time scales are significantly shorter compared to the global ocean. These time scales, 144 

typically around 1 day, are determined by various processes, including tides, inertial motion, diurnal cycles, and synoptic 145 

weather patterns. The fast-paced dynamics of the coastal ocean require models to accurately capture these shorter time scales. 146 

In estuaries, the periodicity becomes more complex due to strong tidal asymmetries and the presence of secondary circulation 147 

patterns. The interactions between tidal forcing, river flow and estuarine geometry result in intricate and variable periodic 148 

patterns. (as shown in Campuzano et al. 2022 for the Western Iberian Buoyant Plume, Sotillo et al. 2021 for the whole European 149 

Atlantic façade, Pein et al. 2021 for the Elbe Estuary). The periodicity observed in coastal seas is mainly influenced by external 150 

forcing signals, such as atmospheric conditions or remote ocean signals. These external signals propagate in the coastal models 151 

through the specification of lateral boundary conditions, which is a crucial aspect of modelling in coastal areas. Unlike global 152 

models that can operate without open boundaries, coastal models require careful consideration of these boundary conditions 153 

to accurately represent the interactions between the coastal and open ocean. 154 

The predictability limit of models depends on the geophysical processes. For synoptic processes in the open ocean, this limit 155 

is on the order of weeks to months. For the coastal ocean, it is on the order of hours to days. The loss of predictability, associated 156 

with nonlinear processes, is exemplified by the growth of errors in predictive models. Assimilation of data containing spatial 157 



6 
 

and temporal scales below the predictability limit is needed to address this issue. Simulations at grid resolutions that would 158 

sufficiently resolve the coastal submesoscale would require horizontal grid resolutions of approximately 1-10 meters in 159 

estuaries and 0.1-1 kilometer in coastal shelf domains. However, achieving such high resolutions poses significant 160 

computational challenges and resource demands.  161 

By employing high-resolution services with appropriate spatial scales, scientists and stakeholders can gain a more detailed and 162 

accurate understanding of coastal processes, improve forecasting capabilities, and support effective coastal management and 163 

decision-making. 164 

3 State-of-the-art data and tools for coastal forecasting 165 

3.1 Required observations 166 

Observing systems are spatiotemporally sparse in coastal regions compared to the small scales of ecosystem variability found 167 

there. A crucial challenge in observations is addressing the variety of important spatial and temporal scales within the coastal 168 

continuum, which encompasses the seamless transition from the deep ocean to estuaries through the shelf. In order to achieve 169 

this, observations should sample the multiscale, two-way interactions of estuarine, nearshore, and shelf processes with open 170 

ocean processes. Additionally, they need to account for the different pace of circulation drivers, such as fast atmospheric and 171 

tidal processes, as well as the slower general ocean circulation and climate forcing. It is also important to accurately sample 172 

the gradients of biological production, ranging from mesotrophic estuaries to oligotrophic oceans. Given the current situation, 173 

observational practices and strategies need to be strongly coupled with numerical modelling to effectively extract the 174 

information contained in the data and advance the quality of coastal services. 175 

Most global and regional prediction products use a combination of satellite observations and in situ observations. Traditionally, 176 

in situ observations constituted the major data source for coastal ocean monitoring. During the end of the past century, satellite 177 

observations contributed significantly to the understanding of spatial variabilities. Novel instruments, such as the acoustic 178 

Doppler current profiler (ADCP), which measures current profiles throughout the water column, enhanced our understanding 179 

of current shear and bottom stress. Nowadays, high-resolution numerical simulations in the coastal ocean are keeping pace 180 

with high-resolution observations. A similar trend is observed in coastal waters, estuaries, and ports, which are rich in different 181 

activities and interests: fishing, recreational activities, search and rescue, protection of habitats, storm forecasts, maritime 182 

industries, as well as routine maintenance operations (De Mey-Frémaux et al., 2019).  183 

The coastal ocean observations only are not sufficient to fully support the present-day need for high-quality ocean forecasting 184 

and monitoring because measurements may represent very localized and short scale dynamics, and it is not straightforward to 185 

know how fully they describe the complex coastal system. Therefore, recent practices employ the synergy between 186 

observations and numerical modelling, which ensures valuable research advancements and practical implementations 187 

(Kourafalou et al., 2015a, 2015b). The core components of operational oceanographic systems consist of a multi-platform 188 

observation network, a data management system, a data assimilative prediction system, and a dissemination/accessibility 189 
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system (Kourafalou et al., 2015a; De Mey-Frémaux et al., 2019; Davidson et al., 2019). By combining observations and models 190 

through data assimilation methods, ranging from coastal to global and from in situ to satellite-based, we can assess ocean 191 

conditions and create reliable forecasts. This integration adds value to coastal observations and enables a wide range of 192 

applications (De Mey-Frémaux et al., 2019; Ponte et al., 2019), as well as providing decision-making support. For a 193 

comprehensive review of ocean monitoring and forecasting activities in both the open and coastal oceans, please refer to 194 

Siddorn et al. (2016). 195 

High-frequency radars (HFR) offer unique spatial resolution by providing reliable directional wave information and gridded 196 

data of surface currents in almost real time. The use of HFR networks has become an essential element of coastal ocean 197 

observing systems, contributing to high-level coastal services (Stanev et al., 2016; Rubio et al., 2017; Reyes et al., 2022). The 198 

outputs from prediction systems extend the utility of HFR observations beyond the immediate observation area (Stanev et al., 199 

2015), enabling adequate estimates even where no direct observations have been made. This demonstrates how models connect 200 

observations, synthesize them, and assist in the design of observational networks. In turn, observations can guide the 201 

development of coastal models (De Mey-Frémaux et al., 2019). 202 

Alongside ADCP data, HFR data are used for skill assessment of operational wave and circulation models (Lorente et al., 203 

2016). Another valuable source of fine-resolution data in the coastal region is provided by color data from satellites. In terms 204 

of sea level observations, some challenges associated with the use of altimeter data in the coastal zone are expected to be 205 

overcome through the use of wide-swath Surface Water and Ocean Topography (SWOT) technology. SWOT is a landmark 206 

satellite mission that delivers two-dimensional sea surface height observations at high resolution across a 120 km swath. It 207 

represents a major step forward in resolving mesoscale and submesoscale features critical to coastal dynamics. Recent 208 

Observing System Simulation Experiments (OSSEs) have demonstrated that wide-swath altimetry substantially enhances 209 

ocean forecasting capabilities. For instance, a constellation of two SWOT-like wide-swath altimeters provides a ~14% 210 

reduction in sea surface height forecast error compared to a 12-nadir altimeter constellation and also improves estimates of 211 

surface currents and Lagrangian trajectories (Benkiran et al., 2024). These results highlight the importance of SWOT-type 212 

observations for resolving small-scale coastal variability and improving model-data integration. 213 

Further advances in coastal observations are enabled by autonomous platforms such as Slocum gliders. These gliders can carry 214 

a wide array of physical and biogeochemical sensors and perform repeated transects, thus providing high-resolution 215 

observations of dynamic features such as eddies, frontal systems, and upwelling events. Their operational flexibility and ability 216 

to collect subsurface data make them valuable for both sustained monitoring and adaptive sampling strategies (Rudnick, 2016; 217 

Testor et al., 2019). In parallel, satellite technologies continue to evolve. Moreover, the Japanese geostationary meteorological 218 

satellite Himawari-8 provides high-frequency (every 10 minutes) and high-resolution (up to 500 m) visible and infrared 219 

imagery. These capabilities allow for near-real-time monitoring of sea surface temperature (SST), making it possible to track 220 

rapidly evolving coastal phenomena such as diurnal warming, river plumes, and thermal fronts (Kurihara et al., 2016). 221 

These complementary in situ and remote sensing platforms represent essential components of integrated coastal observing 222 

systems, supporting the growing demand for accurate forecasts, early warnings, and data-driven decision-making tools. 223 
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 224 

3.2 Numerical models 225 

Addressing specific processes in the coastal ocean and accurately modelling the transition between regional and coastal scales 226 

cannot be achieved solely by adjusting the model resolution. Certain processes, such as shallow-water tides, which are often 227 

overlooked in global and regional forecasting, play a dominant role in coastal ocean dynamics. The previous sections have 228 

highlighted the importance of a tailored approach in observational practices and numerical models for the coastal ocean. For 229 

further information on other popular coastal models, refer to the comprehensive discussion by Fringer et al. (2019). 230 
Table 1: Circulation models in alphabetical order, which can be used for coastal and regional studies and/or provision of services. 231 

Model Citationan 
C: Coastal, R: 

Regional, G: Global 

Finte-volume (FV) or 

Finite-element (FE) 

ADCIRC 
Luettich et al. (1992) 

Westerink et al. (1994) 
C FE 

COAWST 
Warner et al. (2008, 

2010) 
C/R FV 

COMPAS Herzfeld et al. (2020) C/R FV 

CROCO 
Marchesiello et al. 

(2021) 
C/R FV 

Delft3D 
Delft3D-Flow User 

Manual (2024) 
C FV 

FVCOM Chen et al. (2003) C/R/G FV 

GETM 
Burchard and Bolding 

(2002) 
C FV 

MITgcm Marshall et al. (1997) C/R/G FV 

MPAS Ringler et al. (2013)   R/G FV 

NEMO Madec et al., (2016) C/R/G FV 

POMS 
Blumberg and Mellor 

(1987), Mellor (2004)  
C/R FV 

ROMS 
Shchepetkin and 

McWilliams (2005) 
R FV 

SCHISM Zhang et al. (2016) C/R/G FV/FE 

SELFE 
Zhang and Baptista, 

2008 
C FV/FE 
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SHYFEM Umgiesser et al. (2004) C FE 

SUNTANS Fringer et al. (2006) C FV 

TRIM/UnTRIM 

Casulli (1999), Casulli 

and Zanolli (2002, 

2005) 

C FV 

3.3 Fine resolution nested models, downscaling and upscaling 232 

High-resolution coastal services must properly resolve interactions between various coastal processes, including nearshore, 233 

estuarine, shelf, drying, and flooding dynamics. Achieving this requires a resolution of approximately 10-100 meters. 234 

Simultaneously, it is essential to capture open ocean processes at a resolution of around 1 kilometer or coarser. Common 235 

approaches employed in addressing this challenge include downscaling and multi-nesting techniques (e.g., Debreu et al., 2012; 236 

Kourafalou et al., 2015b; Trotta et al., 2017) as well as the use of unstructured-grid models (e.g., Zhang et al., 2016a, 2016b; 237 

Federico et al., 2017; Stanev et al., 2017; Ferrarin et al., 2018; Maicu et al., 2018). Another important aspect to consider is 238 

upscaling (Schulz-Stellenfleth and Stanev, 2016), which becomes relevant when addressing the two-way interaction between 239 

coastal and open-ocean systems. 240 

Most coastal models are one-way nested, relying heavily on forcing data from larger-scale models as the coastal system is 241 

primarily influenced by the atmosphere, the hydrology and the open ocean. Enhancing the horizontal resolution of the North 242 

Sea operational model from 7 to 1.5 kilometers (Tonani et al., 2019) has shown improvements in off-shelf regions, but biases 243 

persist over the shelf area, indicating the need for further enhancements in surface forcing, vertical mixing, and light 244 

attenuation. 245 

An important consideration in downscaling and coastal modelling is the treatment of open boundary conditions (OBCs), which 246 

play a critical role in determining model fidelity near the boundaries. OBCs are typically derived from larger-scale models but 247 

often require case-specific tuning to ensure dynamic consistency and minimize reflection or spurious signals. The choice and 248 

configuration of OBCs—such as Flather-type, radiation conditions, or relaxation zones—can significantly affect the transport 249 

and energy balance within the coastal model domain. Given the diversity of physical processes and geometries encountered in 250 

coastal environments (Marchesiello et al., 2001). Models equipped with a wide suite of configurable boundary condition types 251 

offer a practical advantage, particularly in multi-scale coupled frameworks. Ensuring consistency across nested domains while 252 

preserving physical realism remains an ongoing challenge, motivating continued development and intercomparison of OBC 253 

strategies in operational and research settings. 254 

While the downscaling of information from coarser global or regional models to high-resolution coastal models is well-255 

established, the reverse process of upscaling is more challenging and continues to be a subject of research. Two-way nested 256 

models allow assimilated information from coastal observations, typically not assimilated by larger-scale forecasting systems, 257 

to propagate beyond the coastal region while maintaining dynamic consistency. This upscaling capability has the potential to 258 
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benefit regional models. Coastal observations have demonstrated their potential to improve boundary forcing or surface wind 259 

forcing in regional models.  260 

The coupling of a coarse-resolution regional model with a fine-resolution coastal model using a two-way nesting approach has 261 

been studied in the context of the straits connecting the North and Baltic Seas. The intricate topography and narrow cross-262 

sections of the straits result in the dominance of small-scale motions, which play a vital role in the exchange between the two 263 

seas and significantly influence Baltic Sea stratification. The two-way nesting method, design to exchange information 264 

between the child model in the straits and the parent model in the seas, incorporates elements of data assimilation and allows 265 

for different vertical discretizations in each model. The Adaptive Grid Refinement in FORTRAN (AGRIF), originally 266 

developed by Debreu et al. (2008; 2012), has found wide application as a library for seamless spatial and temporal refinement 267 

over rectangular regions in the NEMO modelling framework  (Madec et al., 2024, Debreu et al., 2008)  268 

Recent advancements in two-way nesting frameworks have demonstrated their effectiveness in improving multi-scale model 269 

accuracy. The implementation of a general two-way nesting framework has enhanced the exchange of physical properties 270 

between nested grids while preserving numerical stability and computational efficiency. Additionally, the integration of two-271 

way nesting in a global ocean model has significantly improved surface tidal accuracy, refining regional tidal dynamics without 272 

compromising large-scale coherence (Herzfeld & Rizwi, 2019; Jeon et al., 2019). Further applications of AGRIF have 273 

demonstrated improvements in hydrodynamic simulations and the estimation of environmental indicators in coastal systems, 274 

underscoring its potential to refine fine-scale hydrodynamics while ensuring consistency with larger-scale ocean processes 275 

(Petton et al., 2023). 276 

The organization of these multi-model studies is identified by the coastal modelling community as a need. Firstly, to tackle 277 

common assessments of the wide range of overlapping (global/basin/regional and local) models that are available for users in 278 

some costal zones. Secondly, these multi-model validation exercises, comparing the performance of global/regional “core” 279 

model forecasts (i.e. from services such as the Copernicus Marine one) and coastal model solutions, nested into the formers, 280 

are useful to identify the potential added value (and the limitations) of performed coastal downscaling with respect to the 281 

“parent” core operational solutions, in which high-resolution coastal models are nested.  282 

Frishfelds et al. (2025) highlight the benefits of on-demand coastal modeling employing two-way nesting, emphasizing its 283 

capacity to dynamically refine coastal processes while maintaining consistency with larger-scale ocean simulations. This 284 

approach enhances the accuracy and reliability of high-resolution forecasting systems, facilitating improved representation of 285 

fine-scale coastal dynamics. 286 

In that sense, these multi-model intercomparison exercises are key elements for many initiatives, such as the  Horizon Europe 287 

Project FOCCUS (Forecasting and Observing the Open-to-Coastal Ocean for Copernicus Users, https://foccus-project.eu/) 288 

Project, that have in their core the enhancing of existing coastal downscaling capabilities, developing innovative coastal 289 

forecasting products based on a seamless numerical forecasting from regional models of the Copernicus Marine Service 290 

covering the EU regional seas, to Member States coastal forecasting systems (Espino et al. ,2022) emphasized the significance 291 

of extending Copernicus Marine Environmental Monitoring Service (CMEMS) products to coastal regions, highlighting the 292 
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integration of high-resolution models and observational data to improve coastal forecasting capabilities. Their work 293 

underscores the importance of tailoring operational ocean models to better capture nearshore dynamics, ensuring more accurate 294 

and actionable predictions for end-users.  295 

Furthermore, and from an end-user perspective, multi-model studies focused on extreme event simulations provide valuable 296 

input on the performance of operational forecasting systems. For instance, Sotillo et al. (2021) examined the record-breaking 297 

Western Mediterranean Storm Gloria by evaluating five different model systems, including Copernicus Marine Service 298 

products (global, regional Mediterranean, and Atlantic IBI solutions) alongside two coastal nested models. Such studies play 299 

a crucial role in assessing model accuracy, leveraging local HF radar observations, and informing future improvements to 300 

regional and coastal forecasting services. In addition, it contributed for increasing the knowledge about the model systems in 301 

operations, and outlining future model service upgrades (both in the regional and coastal services) aimed at achieving a better 302 

coastal forecasting, especially during the extreme events. 303 

3.4 Unstructured-Grid Models for Cross-Scale Coastal Dynamics 304 

The use of unstructured-grid models is crucial for cross-scale modelling and effectively addressing the interactions between 305 

estuaries and the open ocean. One key aspect is the accurate representation of freshwater transformation from rivers, which is 306 

often oversimplified in ocean models by specifying river runoff as a point source. Unstructured-grid models, while often 307 

employing lower-order spatial discretizations due to interpolation complexities on irregular meshes, provide enhanced 308 

flexibility in resolution placement and transition zones. This allows them to effectively capture subtidal, tidal, and intermittent 309 

processes in coastal and estuarine environments, supporting a more realistic representation of estuarine dynamics and improved 310 

coupling with estuarine models. 311 

 Compared to curvilinear and Cartesian grids, unstructured grids excel in resolving complex bathymetric features without 312 

significant grid stretching. Since bathymetry plays a fundamental role in governing the dynamics of estuaries and the near 313 

coastal zone, unstructured grid models offer greater accuracy and computational efficiency in numerical forecasting. Their 314 

flexibility also enables more effective resolution of multiscale dynamic features. Fine spatial resolution in unstructured-grid 315 

models allows for the resolution of secondary (transversal) circulation in estuaries and straits, thereby improving mixing and 316 

enhancing the representation of long-channel changes in stratification, as demonstrated by Haid et al. (2020). Zhang et al.  317 

(2016) have emphasized the role of cross-scale modeling in capturing multi-scale hydrodynamic interactions, particularly in 318 

tidal straits, where unstructured-grid models enhance the representation of exchange flows and stratification dynamics. As 319 

Ilicak et al. (2021) have shown, these advancements contribute to more precise simulations of estuarine and strait dynamics. 320 

Recent research has further elucidated the mechanisms governing secondary circulation in tidal inlets. Chen et al. (2023) 321 

demonstrated that subtidal secondary circulation can arise due to the covariance between eddy viscosity and velocity shear, 322 

even in predominantly well-mixed tidal environments. This finding highlights the necessity of incorporating high-resolution 323 

turbulence parameterizations within unstructured-grid models to accurately capture sub-mesoscale and cross-channel 324 

processes, thereby improving the fidelity of numerical simulations in complex coastal and estuarine systems. 325 
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However, the construction of grids and ensuring reproducibility in unstructured grid modelling still present challenges. Grid 326 

generation is not always fully automated, and subjective decisions are often made based on the specific research problem, 327 

applications, and intended services. The development of more objective grid construction methods and reproducibility 328 

standards is an ongoing concern in unstructured-grid modelling (Candy and Pietrzak, 2018).  One significant advancement is 329 

the introduction of the JIGSAW mesh generator (Engwirda, 2017), which enables the creation of high-quality unstructured 330 

grids designed to satisfy specific numerical requirements. JIGSAW produces centroidal Voronoi tessellations with well-331 

centred, orthogonal cell geometries that are particularly suitable for mimetic finite-volume schemes. JIGSAW incorporates 332 

mesh optimisation strategies tailored to geophysical fluid dynamics and has been increasingly adopted in ocean modelling 333 

applications. 334 

Moreover, the generation of unstructured meshes is a critical component in configuring coastal and estuarine ocean models, 335 

as it directly influences numerical accuracy, computational efficiency, and the ability to represent complex shoreline and 336 

bathymetric features. Tools such as OceanMesh2D offer MATLAB-based workflows for high-quality, two-dimensional 337 

unstructured mesh generation, facilitating user control over mesh density and coastal geometry resolution (Roberts et al., 2019). 338 

Similarly, OPENCoastS provides an open-access, automated service that streamlines the setup of coastal forecast systems, 339 

integrating mesh generation, model configuration, and forecast production (Oliveira et al., 2019, 2021). The OCSMesh 340 

software developed by NOAA represents another important advancement. It enables data-driven, automated unstructured mesh 341 

generation tailored for coastal ocean modeling, offering a robust framework to ensure mesh quality, reproducibility, and 342 

interoperability with NOAA modeling systems (Mani et al., 2021). Together, these developments represent the ongoing 343 

progress toward objective, reproducible, and user-oriented mesh generation in support of high-resolution coastal ocean 344 

modelling. 345 

3.5 Observing System Simulation Experiments, Observing System Experiments and Data Assimilation 346 

Data assimilation in coastal regions presents challenges due to the presence of multiple scales and competing forcings from 347 

open boundaries, rivers, and the atmosphere, which are often imperfectly known (Moore and Martin, 2019).  Data assimilation 348 

is particularly challenging in tidal environments (especially for meso- and macro-tidal environments; and not so in micro-tidal 349 

coastal zones (De Mey et al., 2017, Stanev et al, 201, Holt et al, 2005). Studies by Oke et al. (2002), Wilkin et al. (2005), 350 

Shulman and Paduan (2009), Stanev et al. (2015, 2016), and others have demonstrated the value of assimilating HF radar 351 

observations to improve the estimation of the coastal ocean state. 352 

Observing System Simulation Experiments (OSSE) and Observing System Experiments (OSE) are widely used techniques for 353 

assessing and optimizing ocean observational systems. OSSEs involve numerical simulations that test the potential impact of 354 

hypothetical observations on forecast models before actual observations are made, enabling improved planning and cost-355 

effective observational strategies. In contrast, OSEs assess the impact of existing observations by systematically removing 356 

certain datasets from assimilation systems and evaluating the resulting degradation in model performance. OSSE and OSE 357 

have the capability to incorporate diverse observing systems, including satellite-based observations, HF radars, buoys with 358 
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low-cost sensors, autonomous vehicles, and more.  These approaches is useful for refining data assimilation techniques and 359 

guiding the development of future observational networks. For further details, we refer readers to Oke and Sakov (2012) and 360 

Fujii et al. (2019), who provide comprehensive discussions on the methodologies and applications of OSSEs and OSEs in 361 

operational oceanography. an in-depth review of OSSE methodologies and insights into how OSSE and OSE methodologies 362 

contribute to improving ocean forecasting, designing observational systems, and refining numerical models is given in Zeng 363 

et al (2020). These approaches can help identify gaps in existing coastal observing networks, assess operational failure 364 

scenarios, and evaluate the potential of future observation types. Pein et al. (2016) used an OSE-type approach to investigate 365 

the impact of salinity measurements in the Ems Estuary on the reconstruction of the salinity field, identifying observation 366 

locations that are more suitable for model-data synthesis. This type of analysis can contribute to the design and optimization 367 

of both existing and future observational arrays, especially in coastal regions where fine resolution is required. 368 

3.5 Riverine forcing and its role in coastal ocean Modeling  369 

Rivers play a critical role in shaping coastal circulation and stratification by delivering freshwater, nutrients, and sediments 370 

that influence estuarine and shelf dynamics. The treatment of riverine inputs in ocean models remains a key source of 371 

uncertainty, especially when estuarine plume dynamics and mixing processes are unresolved. In many coarse-resolution 372 

systems, river discharge is prescribed via simplified surface or salinity fluxes, which may misrepresent the spatial structure 373 

and strength of river plumes (Sun et al., 2017; Verri et al., 2020). To address this, high-resolution and regional-scale models 374 

increasingly incorporate momentum-carrying river inflows or artificial estuarine channels (Herzfeld, 2015; Sobrinho et al., 375 

2021). For instance, Nguyen et al. (2024) demonstrated how high-resolution modeling in the German Bight captures the 376 

hydrodynamic and biogeochemical responses to extreme river discharge events, showing significant implications for salinity, 377 

stratification, and nutrient dispersion during floods. These findings underscore the importance of resolving riverine inflow 378 

variability and extreme events in coastal ocean prediction systems. 379 

Recent work has also focused on operational strategies for river forcing (Matte et al., 2024), including real-time discharge data 380 

integration (e.g., from GloFAS; Harrigan et al., 2020), and estuary box models that approximate sub-grid plume behavior (Sun 381 

et al., 2017). These approaches aim to enhance predictive capabilities while maintaining computational feasibility in global-382 

to-coastal modeling chains. Choosing the appropriate river input strategy is therefore application-dependent and strongly 383 

influenced by spatial resolution and target phenomena. 384 

3.6 Integration of AI in Coastal Modeling and Forecasting  385 

The integration of artificial intelligence (AI) and machine learning (ML) techniques in ocean and coastal forecasting has rapidly 386 

evolved, providing novel methodologies for improving predictive accuracy, computational efficiency, and data assimilation in 387 

operational models. Recent advances in AI-based approaches for parameterizing subgrid-scale processes, hybrid modelling 388 

techniques, and ensemble forecasting highlight the transformative potential of these methods in coastal modelling (Heimbach 389 

et al., 2024). 390 
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Machine learning applications in coastal ocean modeling primarily focus on two domains: (1) enhancing conventional physical 391 

models by integrating ML-based parameterizations and error corrections, and (2) fully data-driven approaches that employ 392 

neural networks as surrogate models (Zanna & Bolton, 2020; Bolton & Zanna, 2019). The former leverages ML techniques to 393 

optimize numerical model performance by improving subgrid parameterizations, bias correction, and data assimilation 394 

strategies, while the latter explores the potential of deep learning algorithms such as Fourier Neural Operators (FNOs) and 395 

Transformer-based architectures for high-resolution ocean forecasting (Bire et al., 2023; Wang et al., 2024). 396 

Data assimilation, a critical component of operational forecasting, benefits from AI-enhanced methodologies that improve 397 

state estimation and predictive skill. AI-driven data assimilation frameworks, such as the combination of deep learning with 398 

variational assimilation (4D-VarNet) (Fablet et al., 2022), have demonstrated superior performance in coastal and regional 399 

models. Hybrid approaches incorporating AI techniques into numerical models have been applied to refine coastal simulations, 400 

allowing for better representation of multi-scale interactions (Brajard et al., 2021). Furthermore, convolutional neural networks 401 

(CNNs) have been successfully used for downscaling sea surface height and currents in coastal areas, addressing challenges 402 

related to observational gaps and improving model resolution (Yuan et al., 2024). 403 

Coastal high-resolution models often suffer from errors stemming from inaccuracies in numerics, forcing (e.g., open 404 

boundaries, meteorological inputs), and unresolved physical processes. AI-based methods have been increasingly applied to 405 

address these challenges, particularly in the realm of subgrid-scale parameterization. AI-enabled parameterizations of 406 

mesoscale and submesoscale processes using deep learning techniques, such as residual networks and generative adversarial 407 

networks (GANs), have shown promising results in reducing bias in numerical simulations (Gregory et al., 2023; Brajard et 408 

al., 2021). Additionally, hybrid methods combining physics-based models with ML correction schemes have demonstrated 409 

improved predictive skill for regional and coastal ocean models (Perezhogin et al., 2023). 410 

The use of ML for extreme event prediction has gained increasing attention in the context of operational coastal forecasting. 411 

AI models trained on historical storm data and high-resolution numerical simulations have been utilized to enhance storm 412 

surge predictions and improve early warning systems (Xie et al., 2023). Transformer-based models, originally developed for 413 

atmospheric forecasting, have been adapted for ocean applications, achieving competitive skill in eddy-resolving ocean 414 

simulations (Wang et al., 2024). 415 

The integration of AI in ensemble forecasting further contributes to uncertainty quantification, providing probabilistic 416 

predictions for extreme coastal events. Bayesian inference techniques, combined with ML-based ensemble prediction, offer a 417 

framework for optimizing multi-model ensembles and reducing systematic errors in operational forecasts (Bouallègue et al., 418 

2024; Penny et al., 2022). The synergy between ML-driven emulators and traditional ensemble forecasting techniques has the 419 

potential to enhance coastal hazard predictions, particularly in regions prone to high-impact events. 420 

Despite the advancements in AI for coastal modeling, several challenges remain. The interpretability and robustness of ML-421 

based solutions need further improvement, particularly for operational applications requiring high levels of reliability 422 

(Bonavita, 2023). Additionally, integrating ML models with real-time observational data streams, including remote sensing 423 

and high-frequency radar (HFR) networks, remains an ongoing area of research (Reichstein et al., 2019). The extension of 424 
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ML-based ocean forecasting to seasonal and interannual time scales also poses challenges related to long-term stability and 425 

physical consistency (Beucler et al., 2024). 426 

4 Summary and outlook 427 

The critical importance of high-resolution coastal modelling is demonstrated in addressing the complexities of dynamic coastal 428 

systems. Coastal areas are shaped by the interplay of mesoscale and submesoscale processes, strong tidal currents, atmospheric 429 

and hydrologic forcing, and significant anthropogenic pressures. Advanced techniques, including turbulence closure models 430 

for capturing vertical mixing and parameterizations of bottom roughness and vegetation drag for representing energy 431 

dissipation, are essential for accurately modelling these systems. The nonlinear interactions between tidal currents and wind 432 

waves emerge as a particularly influential factor, affecting ocean circulation and improving the accuracy of sea surface 433 

temperature predictions.   434 

It is shown that the integration of high-resolution observational data, such as HF radar for surface currents and the SWOT 435 

satellite mission for sea surface topography, has the potential of substantially enhancing the resolution and reliability of coastal 436 

models. These data facilitate a detailed characterization of processes in transition zones spanning estuaries, nearshore areas, 437 

and the open ocean. Improved coupling between regional and local models has advanced the representation of boundary 438 

conditions and enabled simulations of small-scale dynamics, essential for capturing the complexity of the coastal continuum. 439 

The application of data assimilation techniques addresses the rapid variability inherent in coastal processes, highlighting the 440 

challenges and limitations of predictability in these highly dynamic environments. Strategies to extend the accuracy of short-441 

term and localized forecasts are provided, leveraging multiscale data integration to refine predictions. The ability to simulate 442 

interactions between atmospheric conditions, hydrological inputs, and oceanographic processes strengthens the foundation for 443 

more accurate modelling.  This contribution underscores the importance of bridging observational and modelling gaps to 444 

achieve a comprehensive understanding of coastal systems. It highlights the necessity of integrating small-scale dynamics with 445 

broader processes to better inform sustainable coastal management practices. By aligning advanced techniques with high-446 

resolution data, this work offers a pathway for more robust representations of coastal ocean dynamics and supports informed 447 

decision-making in the face of growing environmental and societal challenges. 448 

Several directions for advancing coastal ocean modelling to address evolving environmental and societal challenges are 449 

highlighted. Future efforts should focus on integrating emerging observational technologies, such as high-resolution satellites 450 

(e.g., SWOT), autonomous platforms like gliders and drones, and hyperspectral imaging. These tools, combined with machine 451 

learning techniques for data analysis, can bridge gaps in spatial and temporal data coverage, providing a richer understanding 452 

of coastal dynamics.   453 

Developing coupled modelling systems that seamlessly integrate atmospheric, hydrological, and oceanographic processes will 454 

be essential for capturing the complexities of the land-ocean continuum. Incorporating river runoff, estuarine dynamics, and 455 

nearshore processes into such systems will significantly enhance the scope and accuracy of predictions. Addressing 456 

computational challenges associated with high-resolution modelling is equally critical; this includes leveraging high-457 
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performance computing, cloud-based processing, and optimizing numerical schemes to achieve efficient and precise 458 

simulations. 459 

Improving data assimilation techniques through ensemble approaches and probabilistic forecasting is another priority. These 460 

methods will better integrate multiscale observational data, reduce uncertainties, and enhance the reliability of predictions in 461 

dynamic environments. Concurrently, there is a pressing need to explore the impacts of climate change on coastal systems, 462 

including sea-level rise, increased storm intensity, and shifting precipitation patterns. Understanding these impacts will guide 463 

the development of adaptive strategies and strengthen resilience in vulnerable coastal zones. 464 

The future of coastal modelling also depends on fostering interdisciplinary collaboration, engaging expertise from 465 

oceanography, meteorology, hydrology, and ecology. By aligning scientific research with societal needs and practical 466 

applications, collaborative frameworks can ensure the relevance and effectiveness of modelling efforts. Additionally, applying 467 

artificial intelligence to optimize model parameterization, grid design, and predictive analyses will unlock new capabilities for 468 

simulating small-scale processes like sediment transport and ecosystem responses. 469 

Finally, enhancing global and regional coordination for coastal monitoring and modelling will be vital. Strengthening networks 470 

to ensure consistency in data and modelling approaches can foster international collaboration, facilitating the exchange of best 471 

practices and resources. These collective advancements promise to deepen our understanding of coastal systems and provide 472 

robust tools to manage and protect these critical areas sustainably in the face of ongoing and future challenges. 473 

 474 

 475 

 476 

 477 

 478 
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