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Abstract. Understanding and managing marine ecosystems under potential stress from human activities or climate change 

requires the development of models with different degree of sophistication in order to be capable of predicting changes in 10 

living components and environmental variables. Recent advances in ecosystem modelling are the focus of this paper, which 

reviews numerical approaches to analyse the characteristics of marine conditions in terms of typical units, i.e., individuals, 

populations, communities and ecosystems. In particular, it examines the current classification of numerical models of 

increasing complexity – from individuals and population and stock assessment models to models representing the whole 

ecosystem by covering all trophic levels – and presents examples and their operational maturity, finally demonstrating their 15 

use for supporting marine resource management, conservation, planning and mitigation actions. 

1 Introduction 

In recent decades, a variety of numerical models have been developed to predict the effects of various environmental changes 

and human impacts on marine biological resources. A comprehensive analysis is challenging, although models can be mapped 

in terms of their main scope and distinguishing approaches that can incorporate age structure, environmental factors, represent 20 

trophic interactions, and spatial structure (Hollowed et al., 2000; Plaganyi, 2007). Based on the above characteristics, numerical 

models can be divided into six broad classes: 

• Bioenergetic models representing the processes related to growth, respiration, excretion of an individual; 

• population and stock assessment models (typically for single species without trophic interactions and possibly age-

structured); 25 

• connectivity models (considering propagules dispersal, larval cycle, spatial structures, and environmental factors); 

• species distribution models (statistical models based on representation of spatial environmental variables and biota); 

• minimal realistic models (typically age-structured, with a few species trophic interactions); 

• whole ecosystem models (typically covering all trophic levels and based on trophic interactions, which may include 

size structure and spatial variation). 30 
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These five classes of models are reviewed in the following sections, considering also available syntheses and reviews (e.g., 

Plaganyi, 2007; Stock et al., 2011; Itoh et al., 2018). For each class of models some examples are reported and their 

characteristics in terms of typical units, elemental structure, number of species, representation of trophic interactions are 

reported in Table 1. It also contains synthetic information on primary model focus and main output, as well as if each model 

is operational or not. 35 

2 Bioenergetic models 

A bioenergetic model is any mechanicistic model describing how individuals take energy from the environment and allocate 

it to different processes (Kooijman, 2010; Sibly et al., 2013). Bioenergetic models are typically used for representing the 

growth of the individual, while accounting for respirations, excretions and other losses. Energy intake can be a model input or 

output, depending on whether it’s modeled dynamically or derived from energy requirements (Pirotta et al., 2022). Acquisition 40 

and allocation can vary based on the individual's state and environmental conditions (e.g., Libralato and Solidoro, 2009; Nisbet 

et al., 2012) 

Indeed, bioenergetic models can account of external oceanographic conditions influencing uptakes, such as light, nutrients and 

temperature for autotrophs (e.g., Bocci et al., 1997) or food availability and temperature for heterotrophs (e.g., Libralato and 

Solidoro, 2009), while losses are usually related to temperature and internal conditions (Koojiman, 2010). Bioenergetic models 45 

can also consider explicitly the gonadic development and egg release (Pastres et al., 2000).  

Traditional bioenergetic models describe energy intake from feeding and its allocation to maintenance, activity, growth, 

reproduction, and excretion. These models are advantageous due to their clear empirical interpretation and measurable units 

but tend to be parameter-heavy and difficult to generalize across species. A widely used approach for fish and invertebrates is 

represented by the Dynamic Energy Budget (DEB, Koojiman, 2010) which is characterized by an explicit representation of 50 

somatic, gonadic and storage tissues.  Dynamic Energy Budget (DEB) theory offers a more general approach by using mass-

energy balance principles to link sub-organismal processes with overall organismal performance (Koojiman, 2010; Nisbet et 

al., 2012). However, this generality leads to abstract concepts that are more challenging to measure empirically (Pirotta et al., 

2022). The presence of the storage in DEB allow representation of delayed use of energy in the individual development. DEB 

has been developed into a theory for scaling the parameters for all life cycles of the individual (from eggs to larvae to juveniles 55 

and adults) and setting parameters for a large number of marine species (Nisbet et al., 2012), thus it has a maturity for being 

used routinely and adapted to operational applications. 

3 Population and stock assessment models 

Various types of numerical models of single populations are used worldwide to support management by determining the 

population at sea and the current status of exploited marine populations, thus providing insight for management. Such stock 60 
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assessment models typically represent the biomass or abundance of individual species, are routinely used by management 

agencies, and include probability models to incorporate various sources of observational data (Maunder and Punt, 2013). In 

cases where stock assessments are based on limited observations, i.e., no catch by age or size, surplus production models are 

used. The general underlying assumption of these models is a theta-logistic function for the evolution of biomass (B; but it can 

also be applied to the number of individuals) over time: 65 
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where F is the fishing mortality, so 𝐹𝐹𝑡𝑡𝑑𝑑𝑡𝑡 corresponds to the catches Ct, while r is the population growth rate, and K is the 

capabilities of the system to support the population (through living space, habitat, food, etc.), and generally called as carrying 

capacity. The parameter ϴ allows generalization of the equation (in the case of ϴ=2, the classical logistic curve is obtained). 

Several packages use the surplus production model as principal approach, are used routinely to perform stock assessment and 70 

are including several useful diagnostics. Among them the most used are the CMSY (Froese et al., 2023) and the SPiCT  

(Pedersen and Berg, 2017) models.  CMSY uses a time series of catch data and fishing effort to estimate parameters, reconstruct 

biomass and establish reference points using a Bayesian approach (Froese et al., 2023). The Stochastic surplus Production 

model in Continuous Time (SPiCT) provides estimates of exploitable biomass and fishing mortality at any point in time from 

data collected at arbitrary and possibly irregular intervals (Pedersen and Berg, 2017). The model allows the inclusion of prior 75 

distributions for parameters that are difficult to estimate such as growth rate and carrying capacity. SPiCT is available as an R 

package (R Core Team 2015) in the online GitHub repository: https://github.com/mawp/spict.  

Surplus production models are simplistic representation of the population that is lumped with no size and/or age details. More 

sophisticated approaches (such as SS3, a4a, XSA, etc.) are used when data by age or size classes are available for the exploited 

population (catch-at-age or catch-at-length models; Maunder and Punt, 2013). These stock assessment models reconstruct the 80 

number of individuals in cohorts based on catch and natural mortality by age class, as well as information on species growth, 

fecundity, and fisheries selectivity (Methot and Wetzel, 2013). The basic dynamics are described by the number of individuals 

N at time t and age a, as in the following: 
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where each year the population comprises all age classes from the new juvenile individuals entering the population as recruits 

the same year ( R, age 0 ), all age classes a, from 1 up to the oldest age modelled (age x) surviving from the year before. The 

number of individuals are decreasing through time on the basis of catches C at age and time, and assuming instantaneous 

natural mortality M. 90 
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Typically, these models report juvenile recruitment R as a function of a combination of fecundity by age class estimated from 

data (Stock et al., 2011). This class of models includes, for example, the a4a tool (assessment for all, Jadim et al., 2014), a 

modeling framework for fitting statistical age-structured fishery models using nonlinear statistical submodels. The submodels 

can include linear functions of age and year, smoothing splines with fixed degrees of freedom that vary with age and/or year 

and environmental indicators as covariates. The tool a4a is implemented in R Fishery Library and includes the optimization 95 

procedure. Stock synthesis (SS3; Anderson et al., 2014) is the most widely used catch-at-age stock assessment model that can 

incorporate age or length composition information from surveys, abundance indices, multi-gear effort, selectivity, and spatial 

data in the most recent and advanced applications (e.g., Punt, 2019; Privitera-Johnson et al., 2022). In all cases, projections of 

stock assessment models are generally made for annual to decadal time periods. Catch or effort limitation scenarios can be 

used to estimate biological reference points for management decisions (indicators based on maximum sustainable yield). 100 

Although in most cases, stock assessment models are not spatially explicit and do not consider explicitly oceanographic 

forcings they are routinely used in formal assessments for management and might be considered as ready for operational 

oceanographic applications. 

4 Connectivity models 

The distribution and survival of small eggs and larvae of marine fishes and invertebrates, as well as propagules of algae and 105 

seagrass’ seeds are advected and thus are strongly influenced by currents, which can disperse individuals both near spawning 

sites and in distant areas (Cowen et al., 2007). Therefore, biophysical dispersal (advection, diffusion, and migratory behavior 

of organisms) is fundamental to explaining population dynamics and connectivity (Cowen et al., 2009). Numerical models are 

used to quantitatively integrate the large spatial and temporal variability of oceanographic processes (physical connectivity) 

with processes inherent in the biology of marine organisms (life history traits) to investigate connectivity between and within 110 

populations and also across larval stages (Gawarkiewicz et al., 2007; Melaku Canu et al., 2021). Connectivity models typically 

use offline physical parameters (velocity, density, temperature, and salinity) obtained from hydrodynamic models and estimate 

the distribution of organisms: since in most of the cases living organisms have negligible influences on physical oceanographic 

processes parameters, modeling the biophysical dispersion offline from the hydrodynamic models is considered a reliable 

strategy also considering time evolutions. The advection–diffusion–reaction equation is typically used for biomass distribution 115 

(e.g., Sibert et al., 1999; Faugeras and Maury, 2005), while Lagrangian approaches are used to track particles and thus distribute 

individuals (e.g., Laurent et al., 2020). These approaches take into account life history traits such as growth, mortality and the 

behavior of target organisms in terms of seasonal variability, spawning sites, vertical movement and settlement preferences 

[e.g., Melaku Canu et al., 2021; Paris et al., 2013; Lett et al., 2008]. Connected with oceanographic variables and spatially 

explicit these models however, appear less mature for operational applications.  120 

https://doi.org/10.5194/sp-2024-42

Discussions

Preprint. Discussion started: 24 October 2024
c© Author(s) 2024. CC BY 4.0 License.



5 
 

5 Species distribution models 

Species distribution models (SDM, also called habitat suitability models) are statistical models that predict the occurrence, 

abundance, or biomass of organisms using geoposition, biotic and environmental data (Brodie et al., 2020). Particularly useful 

when applied to standardized, scientific monitoring and surveys of biotic data, these approaches can also exploit publicly 

available datasets (e.g., OBIS, www.obis.org; GBIF, www.gbif.org). SDMs are implemented using various approaches, 125 

including linear models (LM), generalized linear models (GLM), generalized additive models (GAM) (Melo-Merino et al., 

2020; Maravelias et al., 2003), machine learning methods such as random forest (RF, Breiman et al., 2018) or artificial neural 

networks (ANN), and maximum entropy (Jones et al., 2012; Pittman and Brown, 2011; Reiss et al., 2011). The inclusion of 

physical and biogeochemical oceanographic covariates, which can have direct and indirect effects on species distributions, can 

improve the capabilities of SDMs to explain observed biotic data compared to using only geopositional variables (Panzeri et 130 

al., 2021; Thorson et al., 2015). Recent advances include combining the approaches into an ensemble (Jones et al., 2012) and 

including multiple species as covariates into the so called Joint-Species Distribution Models (Pollock et al., 2015). These 

classes of SDMs are increasingly being used to describe current and future distributions of exploited and endangered species, 

identify hotspots, map essential fish habitat, support conservation development, and feed other ecosystem models (Jones et al., 

2012; Colloca et al.,  2015; Grüss et al., 2014; Dolder et al., 2018). 135 

The Dynamic Bioclimate Envelope Model (DBEM) estimates species distributions based on environmental preferences and 

considers population dynamics and dispersal (Cheung et al., 2009). The DBEM makes predictions of future envelopes using 

physical and biogeochemical data from oceanographic models and also considers the response of organisms to 

natural/anthropogenic environmental changes such as growth, mortality, larval dispersal, and migration (Cheung et al., 2013).  

In general SDMs are widely applied, and although at the moment they are not used operationally, they can be easily 140 

implemented within an operational chain. 

6 Minimal realistic models 

Dynamic multispecies models or Minimal Realistic Models (MRM, Punt and Butterworth, 1995) are approaches that represent 

a limited number of species (usually less than 10 species) that have important interactions with a target species. The MRMs 

often represent an evolution of single species stock assessment models: for example, Multispecies Virtual Population Analysis 145 

(MSVPA) is an extension of virtual population analysis (Gislason, 1999), while GADGET (Globally applicable Area-

Disaggregated General Ecosystem Toolbox) is an extension of stock synthesis in the multispecies framework, where 

populations can be partitioned by species, size classes, age groups, areas, and time steps (e.g., Andonegi et al., 2011). In 

particular, GADGET is flexible, allowing easy addition/replacement of alternative model components for biological processes 

such as growth, maturation, and predator-prey interactions representing some species in age classes. GADGET provides 150 

estimates of population dynamics under technical and biological interactions with the ability to use different growth functions 

and fitness functions (Plaganyi, 2007). 
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MICE ("Models of intermediate complexity for ecosystem assessment"; Plagányi et al., 2014) are developed considering the 

specific problem and data availability. MICE represents a limited number of populations (usually 10) exposed to fisheries or 

anthropogenic interactions and includes ecological processes (Angelini et al., 2016). These models have different levels of 155 

detail for the species represented: MICE can  simultaneously represent focal populations in age-structured classes, while others 

take a surplus production approach (Morello et al., 2014). MICE can be a fairly complex but flexible tool that overcomes the 

many complexities of whole ecosystem models and is useful for providing tactical advice for focal species management 

(Plagányi et al., 2014). Spatial Environmental POpulation Dynamics Model (SEAPODYM) is a two-dimensional coupled 

physical-biological model originally developed for tropical tunas in the Pacific (Lehodey et al., 2003). SEAPODYM includes 160 

an age-structured population model for tuna species and a movement model based on a diffusion-advection equation such that 

swimming behavior is modeled as a function of habitat quality (sea surface temperature (SST), ocean currents, and primary 

production) predicted from oceanographic models (Lehodey et al., 2015). This model describes spatial structures that are 

essential to account for the distribution of fishing effort, swimming behavior, and environmental variations typically 

determined by ocean circulation models or derived from satellites (Lehodey et al., 2015; Senina et al., 2020). 165 

7 Whole ecosystem models 

Whole ecosystem models (WEM) are designed to represent all trophic levels in an ecosystem, from primary producers to top 

predators. Thus, WEMs typically use a very large set of data collected from a variety of disciplines, including results from 

oceanographic models and stock assessments (e.g., Agnetta et al., 2022). 

The main distinguishing feature between the different WEM is the way in which the ecosystem is described: i) in flexible 170 

compartments representing species, ecologically meaningful groups of species, or size- and age-structured populations, such 

as Ecopath with Ecosim (hereafter EwE, Christensen and Walters, 2004) and ATLANTIS (Fulton et al., 2005); ii) in size-

structured communities, typically benthic and pelagic communities, such as Osmose (Shin and Cury, 2001), Feisty (Petrik et 

al., 2019), and DBEM (Blanchard et al., 2009), for example; iii) in a mixture of size-structured communities (typically pelagic, 

mesopelagic migratory, and non-migratory) and age-structured species as in Apecosm (Maury, 2010); iv) the ecosystem is 175 

described by dynamic spectra of trophic levels as in Ecotroph (Gasche and Gascuel, 2013). All these models are based on 

biomass and consider rules such as biomass conservation. 

EwE, undoubtedly the most widely used WEM, is a free, general model for whole ecosystems that have been developed over 

35 years (Christensen and Walters, 2004) and has been used to analyze past and future impacts of fisheries, nutrient inputs, 

invasive species, and climate (e.g., Heymans et al., 2014; Libralato et al., 2015; Serpetti et al., 2017; Piroddi et al., 2021). It 180 

consists of three different interconnected main modules, i) a static mass-balanced ecosystem network (Ecopath, Christensen 

and Pauly, 1992), ii) a temporally dynamic simulation module (Ecosim, Walters et al., 2000), and iii) a spatially and temporally 

dynamic module (Ecospace, Walters et al., 1999). EwE contains a large number of additional modules for calibration, 

uncertainty analysis, calculation of indicators, and simulation of pollutant dynamics (Steenbeek et al., 2016). Recent advances 
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allow the direct embedding of two-dimensional monthly results from oceanographic physical-biogeochemical models 185 

(Steenbeek et al., 2013). 

ATLANTIS spatially resolves the full trophic spectrum of ecosystem types, including age-structured formulations for high 

trophic levels, potentially in multiple vertical layers (Fulton et al., 2011). ATLANTIS includes a nutrient pool formulation that 

can be used to test effects such as nutrient inputs (Audzijonyte et al., 2019). The model has been used for site-specific analyses 

and to examine general aspects of fishery’s impacts on fish communities (Link et al., 2010). 190 

OSMOSE (Objected-oriented Simulator of Marine ecOSystems Exploitation; Shin and Cury, 2004) is an individual-based 

ecosystem model that simulates size-based communities on a 2-D spatial cell grid and can be coupled with a planktonic 

ecosystem model (Travers et al., 2010). The model has been used to study the effects of various aspects of fisheries on the 

food web (e.g., Shin and Cury, 20019. 

These models WEM are increasingly being used to address the need for holistic ecosystem approaches, and their framework 195 

is often used to answer strategic medium-term questions related to management strategies, fisheries issues, and climate or 

environmcental change (e.g., Tittensor et al., 2021). Notably, WEM can be coupled with other classes of models (population 

dynamic, SDM, connectivity models), as well with biogeochemical models. 

Conclusions 

A large set of models exist that were developed for representing individuals, populations, communities and whole ecosystem. 200 

These models have been developed for specific objectives that embrace many issues important for society, i.e., from effects of 

climate change, pollution, nutrient enrichment, fisheries etc. The numerical approaches analysed here have characteristic 

spatio-temporal resolution (Table 1) generally decreasing when moving from individual species models to whole ecosystem 

models. Moreover, while increasing complexity with MRM and WEM there is general improvement of realism but also lower 

accuracies. Overall the first set of approaches (bioenergetic and population models) are more adapted for tactical analyses 205 

while especially the WEM are at the moment considered useful especially in strategic analyses (see Table 1). Although very 

few of the reviewed approaches are currently used in operational approaches (e.g., stock assessments), all the tools have great 

potentials for becoming operationally used for analyse ecosystem dynamics and make useful scenarios, on a very wide range 

of issues and management actions that might be eventually prioritized.   
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