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Abstract. Understanding and managing marine ecosystems under potential stress from human activities or climate change 

requires the development of models with different degree of sophistication in order to be capable of predicting changes in 10 

living components in relation to human pressures and environmental variables. Recent advances in ecosystem modelling are 

the focus of this paper, which reviews numerical approaches to analyse the characteristics of marine conditions in terms of 

typical units, i.e., individuals, populations, communities and ecosystems. It specifically examines the current classification of 

numerical models of increasing complexity – from individuals and population and stock assessment models to models 

representing the whole ecosystem by covering all trophic levels – and presents examples and their operational maturity and 15 

readiness, finally demonstrating their use for supporting marine resource management, conservation, planning and mitigation 

actions. 

1 Introduction 

Understanding and managing marine ecosystems under potential stress from human activities and climate change requires the 

development of modelling tools able to monitor and forecast ocean ecosystem dynamics, from physics to fish (De Young et 20 

al., 2004). The challenge is to relate processes occurring at individual, population or community level with environmental 

variables, i.e., to connect the dynamics of marine ecosystem with the quite well established physical and biogeochemical 

products that exists for the ocean (Fennel et al., 2022). A large variety of numerical ecosystem models have been developed 

to predict the growth and dynamics of individuals and populations of marine resources. According to the scope the approaches 

are very diverse ranging from single- to multi-species and might include the effects of various environmental changes and 25 

human impacts  (Hollowed et al., 2013; Nielsen et al., 2018).  

To illustrate approaches that have the potential to become the next generation operational tools for ocean ecosystem forecast, 

this paper provides a structured synthesis of models applied to marine higher trophic levels (i.e., from zooplankton to fish and 

top predators) that can be connected with lower trophic level models (physics and biogeochemistry).  
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A comprehensive analysis is challenging, but models can be mapped in terms of their main scope and distinguishing approaches 30 

incorporating age structure, environmental factors, represent trophic interactions, and spatial structure (Hollowed et al., 2000). 

Based on the above characteristics, numerical models for marine ecosystems can be divided into six broad classes: 

• Bioenergetic models representing the processes related to growth, respiration, excretion of an individual; 

• population and fisheries models (typically for single species without trophic interactions and possibly age-structured); 

• connectivity models (considering propagules dispersal, larval cycle, spatial structures, and environmental factors); 35 

• species distribution models (statistical models based on representation of spatial environmental variables and biota); 

• minimal realistic models (typically age-structured, representing a few species with trophic interactions); 

• whole ecosystem models (typically covering all trophic levels and based on trophic interactions, which may include 

size structure and spatial variation). 

These six  classes of models are reviewed in the sections below, considering available syntheses and reviews (e.g., Plaganyi, 40 

2007; Cowen et al., 2009; Stock et al., 2011; Hilborn and Walters, 2013; Itoh et al., 2018; Nielsen et al., 2018; Rose et al., 

2024).The work does not pretend to be exhaustive and readers are referred to original reviews that are providing in depth 

analyses of each class of models. It aims to provide a synthetic integration across different classes, with examples provided to 

illustrate their application in operational coupling with lower trophic level models. For this purpose, readiness and maturity of 

each model was subjectively elaborated based on its current application. The maturity of each example was assessed based on 45 

the availability of code, documentation, test cases, routines for assessing model performances, diagnostics, and is used by a 

community of developers that can provide support, updates and advancement. Stock assessment models routinely applied for 

fisheries management, for example, were considered more mature because the code is publicly available and documented and 

input and output test cases are developed and accessible. Readiness for operational purposes was defined based on existing 

knowledge about possible connection of the model example to physical and biogeochemical spatio-temporal models. Existence 50 

of such applications, even if scarce, might show the difficulties in connecting (one-way or two-way) with low trophic level 

models.  Operational readiness may be regarded as more tentative and less precise, owing to the challenges in establishing a 

clearly objective definition, particularly in light of its potentially limited application.  

For each class of models some examples are shown in Table 1., including their characteristics in terms of typical units, 

elemental structure, number of species typically represented, eventual trophic interactions. The table also contains synthetic 55 

information on primary model focus and main output, as well as maturity and readiness for operational purposes.  

2 Bioenergetic models 

Traditional bioenergetic models describe energy intake from feeding and its allocation to maintenance, activity, growth, 

reproduction, and excretion (for a review see: Rose et al., 2024). Bioenergetic models are typically used for representing the 

growth of the individual and can account for external oceanographic conditions influencing uptakes, such as light, nutrients 60 

and temperature for autotrophs (Bocci et al., 1997) or food availability and temperature for heterotrophs (Libralato and 
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Solidoro, 2009), while losses are usually related to temperature and internal conditions (Koojiman, 2010). Bioenergetic models 

can also consider explicitly the gonadic development and egg release (Pastres et al., 2000). Because of these characteristics, 

bioenergetic models, other than providing realistic individual-level response to environmental conditions, permit to project 

responses at the population and food web levels and can support other classes of approaches (Rose et al., 2024).  65 

A widely used bioenergetic approach for fish and invertebrates is represented by the Dynamic Energy Budget (DEB) which is 

characterized by an explicit representation of energy dynamics into somatic, gonadic and storage tissues (Koojiman, 2010). 

Although, the storage is challenging to be measured empirically (Pirotta et al., 2022), it allows representation of delayed use 

of energy in the individual development resulting in improved generality of the approach (Koojiman, 2010; Nisbet et al., 2012). 

Thus DEB has been developed into a theory for scaling the parameters for all life cycles of the individual (from eggs to larvae 70 

to juveniles and adults), provides setting parameters for a large number of marine species (see also 

https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/) and is well documented  (Nisbet et al., 2012; Koojiman, 2020). Thus DEB 

is considered of high maturity for being used routinely and adapted to operational applications, and because it is seldom 

connected to spatiotemporal physical and biogeochemical models the readiness is considered of intermediate level (Table 1). 

 75 

3 Population and fisheries models 

Various types of numerical models of single populations are used worldwide to support fisheries management by determining 

the population at sea and the current status of exploited marine populations, thus providing insight for management in a process 

called stock assessment (for a review see Hilborn and Walters, 2013). Stock assessment models typically represent the biomass 

or abundance of one species (Table 1), are routinely used by management agencies, and include probability models to 80 

incorporate various sources of observational data (Maunder and Punt, 2013).  

The Stochastic surplus Production model in Continuous Time (SPiCT), for example, provides estimates of exploitable biomass 

and fishing mortality at any point in time from catch and survey data collected at arbitrary and possibly irregular intervals 

(Pedersen and Berg, 2017). SPiCT is available as an R package (R Core Team 2015) in the online GitHub repository: 

https://github.com/mawp/spict.  85 

More sophisticated approaches use catch by age or size classes (catch-at-age or catch-at-length models; Maunder and Punt, 

2013) to reconstruct the cohorts assuming natural mortality for each class, and considering information on species growth, 

fecundity, and fisheries selectivity (Methot and Wetzel, 2013). Stock synthesis (SS3; Anderson et al., 2014) is an example of 

catch-at-age model that can incorporate age or length composition information from surveys, abundance indices, multi-gear 

effort, selectivity, and spatial data in the most recent and advanced applications (e.g., Punt, 2019; Privitera-Johnson et al., 90 

2022). Projections from stock assessment models are generally made for annual to decadal time periods and SS3 provides 

estimates for biological reference points for management decisions (indicators based on maximum sustainable yield; Hilborn 

and Walters, 2013). As for many stock assessment fisheries models, SS3 is routinely used in formal assessments, well 

https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/
https://github.com/mawp/spict
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documented and easily accessible  (https://github.com/nmfs-ost/ss3-source-code ), thus it has a very high degree of maturity. 

Nevertheless, it is not spatially explicit and it does not consider explicitly oceanographic forcings and might be considered of 95 

intermediate readiness for operational oceanographic applications (Table 1). 

4 Connectivity models 

The distribution and survival of small eggs and larvae of marine fishes and invertebrates, as well as propagules of algae and 

seagrass’ seeds are advected and thus are strongly influenced by currents, which can disperse individuals both near spawning 

sites and in distant areas (Cowen et al., 2007). Therefore, biophysical dispersal (advection, diffusion, and migratory behaviour 100 

of organisms) is fundamental to explaining marine population dynamics and connectivity (for a review see Cowen et al., 2009). 

Connectivity models are used to quantitatively integrate the large spatial and temporal variability of oceanographic processes 

(physical connectivity) with processes inherent in the biology of marine organisms (life history traits) to investigate 

connectivity between and within populations and across larval stages (Gawarkiewicz et al., 2007; Melaku Canu et al., 2021). 

Connectivity models such as Larval TRANSport Lagrangian model (LTRANS, North et al., 2008) typically uses offline 105 

physical parameters (velocity, density, temperature, and salinity) obtained from hydrodynamic models and estimate the 

distribution of organisms. The advection–diffusion–reaction equation is typically used for biomass distribution (e.g., Sibert et 

al., 1999; Faugeras and Maury, 2005), while Lagrangian approaches are used to track particles and thus distribute individuals 

(e.g., Laurent et al., 2020). These approaches consider life history traits such as growth, mortality and the behavior of target 

organisms in terms of seasonal variability, spawning sites, vertical movement and settlement preferences (Melaku Canu et al., 110 

2021; Paris et al., 2013; Lett et al., 2008). LTRANS is frequently applied and well documented, and the code is available at 

(https://github.com/LTRANS/LTRANSv.2b) designating it as intermediate level of maturity. It is coupled offline with 

hydrodynamic models, and can incorporate several biological features (North et al., 2008) placing its operational readiness at an 

intermediate level (Table 1). 

5 Species distribution models 115 

Species distribution models (SDM, also called habitat suitability models) are statistical models that predict the occurrence, 

abundance, or biomass of organisms using geoposition, biotic and environmental data (for a review see: Elith and Leathwick, 

2009). Particularly useful when applied to spatio-temporal scientific surveys of species abundance, these approaches can also 

exploit opportunistic biological data (e.g., www.obis.org; www.gbif.org). SDMs are implemented using various statistical 

approaches (Maravelias et al., 2003; Melo-Merino et al., 2020; Brodie et al., 2020), machine learning, artificial neural networks 120 

methods (Catucci et al., 2025) and maximum entropy (Jones et al., 2012; Pittman and Brown, 2011; Reiss et al., 2011). The 

inclusion of physical and biogeochemical oceanographic covariates, which can have direct and indirect effects on species 

distributions, can improve the capabilities of SDMs to explain observed biotic data compared to using only geopositional 

https://github.com/nmfs-ost/ss3-source-code
https://github.com/LTRANS/LTRANSv.2b
http://www.obis.org/
http://www.gbif.org/
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variables (Panzeri et al., 2021; Thorson et al., 2015). Recent advances include combining the approaches into an ensemble 

(Jones et al., 2012; Panzeri et al., 2024) and including multiple species as covariates into the so called Joint-Species Distribution 125 

Models (JSDM, Pollock et al., 2015; Thorson et al., 2016). The SDMs are increasingly being used to describe current and 

future distributions of exploited and endangered species, identify hotspots, map essential fish habitat, support conservation 

development, and feed other ecosystem models (Jones et al., 2012; Colloca et al., 2015; Grüss et al., 2014; Dolder et al., 2018). 

The Dynamic Bioclimate Envelope Model (DBEM) estimates species distributions based on environmental preferences and 

considers population dynamics and dispersal (Cheung et al., 2009). The DBEM makes predictions of future envelopes using 130 

physical and biogeochemical data from oceanographic models and considers the response of organisms to 

natural/anthropogenic environmental changes such as growth, mortality, larval dispersal, and migration (Cheung et al., 2013).  

In general SDMs are widely applied, well documented and available (see for example: https://github.com/helixcn/sdm_r_packages) 

thus have an intermediate level of maturity but giving their direct integration with physical-biogeochemical models they have 

a good readiness level for operational use (Table 1). 135 

6 Minimal realistic models 

Dynamic multispecies models or Minimal Realistic Models (MRM) are approaches that represent a limited number of species 

(usually less than 10 species) that have important interactions with a target species (for a review see Plaganyi, 2007). MRMs 

often represent an evolution of single species stock assessment models: for example, GADGET (Globally applicable Area-

Disaggregated General Ecosystem Toolbox) is an extension of stock synthesis in the multispecies framework, where 140 

populations can be partitioned by species, size classes, age groups, areas, and time steps (Andonegi et al., 2011). In particular, 

GADGET is flexible, allowing easy addition/replacement of alternative model components for biological processes such as 

growth, maturation, and predator-prey interactions representing some species in age classes. GADGET provides estimates of 

population dynamics under fisheries and biological interactions with the ability to use different growth functions and fitness 

functions (Plaganyi, 2007). Although well documented (see https://gadget-framework.github.io/gadget2/userguide/) its fitting 145 

is quite complex and thus has few applications: for these reasons maturity is considered intermediate and readiness for 

operational purposes is low because of lack of interactions with physical and biogeochemical models (Table 1). 

An example of minimum realistic model is the Spatial Environmental POpulation Dynamics Model (SEAPODYM), which is 

a two-dimensional coupled physical-biological model originally developed for tropical tuna in the Pacific (Lehodey et al., 

2003). SEAPODYM includes an age-structured population model for top predators and a movement model based on a 150 

diffusion-advection equation modelled as a function of habitat quality (sea surface temperature, ocean currents, and primary 

production) obtained from oceanographic models and satellites (Lehodey et al., 2015; Senina et al., 2020). SEAPODYM is 

well documented and already used for operational global projections (https://github.com/PacificCommunity/seapodym-codebase) 

thus can be considered to have a high degree of maturity and readiness for operational purposes (Table 1). 

https://github.com/helixcn/sdm_r_packages
https://gadget-framework.github.io/gadget2/userguide/
https://github.com/PacificCommunity/seapodym-codebase
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7 Whole ecosystem models 155 

Whole ecosystem models (WEM) are designed to represent all trophic levels in an ecosystem, from primary producers to top 

predators and take advantage of data collected in different disciplines (Agnetta et al., 2022). The main distinguishing feature 

between the different WEM is the way in which the ecosystem is described: i) through compartments representing species of 

groups of species (Christensen and Walters, 2004; Fulton et al., 2011); ii) through compartments that represent size-structured 

communities, typically benthic and pelagic communities (Shin and Cury, 2004; Travers et al., 2010); iii) in a mixture of size-160 

structured and trophic communities(Maury, 2010); iv) using dynamic spectra of trophic levels (e.g., Gashe and Gascuel, 2013). 

All these models are based on biomass and consider rules such as biomass conservation (Table 1; for a review see Plaganyi, 

2007). 

Ecopath with Ecosim (EwE; Christensen and Walters, 2004) is the most widely used WEM, freely available (www.ecopath.org 

) and has a flexible structure. It represents a suite of models developed in more than 30 years for the whole ecosystem 165 

description. EwE has been used to analyze past and future impacts of fisheries, nutrient inputs, invasive species, and climate 

change (e.g., Heymans et al., 2014; Libralato et al., 2015; Serpetti et al., 2017; Piroddi et al., 2021). It consists of three different 

interconnected main modules, i) a static mass-balanced ecosystem network (Ecopath, Christensen and Pauly, 1992), ii) a 

temporally dynamic simulation module (Ecosim, Walters et al., 2000), and iii) a spatially and temporally dynamic module 

(Ecospace, Walters et al., 1999). EwE contains many additional modules for calibration, uncertainty analysis, calculation of 170 

indicators, and simulation of pollutant dynamics (Steenbeek et al., 2016). Recent advances allow the direct embedding of two-

dimensional monthly results from oceanographic physical-biogeochemical models (Steenbeek et al., 2013). EwE can be 

considered an approach of high maturity and intermediate degree of readiness for operational applications (Table 1). A large 

set of WEM models (Table 1) are used increasingly to address the need for holistic ecosystem approaches, and their framework 

is often applied to answer strategic medium-term questions related to management strategies, fisheries issues, and climate or 175 

environmental change (e.g., Tittensor et al., 2021). Notably, WEM can be coupled with other classes of models (population 

dynamic, SDM, connectivity models), as well as with biogeochemical models, which is why most of the approaches in this 

class have a high to intermediate level of maturity and readiness (Table 1). 

Conclusions 

A wide range of models are used to represent ocean ecosystems at different level of organisations, including individuals, 180 

populations, communities and entire ecosystems. Although categorised into 6 classes for clarity, some modelling approaches 

are not confined to a single class. For instance, the DEB modelling approach is used to also represent the growth of individuals 

in Connectivity models and MRM classes (see for example Maury 2010). Conversely MICE ("Models of intermediate 

complexity for ecosystem assessment"; Plagányi et al., 2014) of the MRM class, are developed using different levels of detail 

for the species represented by combining for example age-structured and surplus production approaches (Morello et al., 2014).  185 

http://www.ecopath.org/
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These models have been developed for specific societal issues, i.e., effects of climate change, pollution, nutrient enrichment 

and fisheries.  

The numerical approaches analysed here have characteristic spatio-temporal resolutions that are generally decreasing when 

moving from individual species models to whole ecosystem models (Table 1). Increased represented complexity with MRM 

and WEM classes result in a general improvement of realism at the cost of accuracy (generally declining from individual 190 

models to WEM). Overall, the first set of approaches (bioenergetic and population models) are more adapted for tactical 

analyses while especially the WEM are currently considered useful especially in strategic analyses (see Table 1). Although 

very few of the reviewed approaches are currently used operationally (i.e., SEAPODYM), many approaches are routinely 

applied for supporting management (e.g., fisheries stock assessment models). Most of the approaches reviewed have repository 

for documentation, code and testing cases, thus have high degree of maturity (Table 1). Conversely, approaches under the 195 

MRM class are not widely applied, are often quite complex to fit and therefore were categorised to be at a poor level of 

readiness for operational purposes (Table 1). Nevertheless, all the tools have some degree of coupling (mainly off-line) with 

physical and biogeochemical variables, thus have a great potential for becoming operational, and to be used for analysing 

ecosystem dynamics and scenarios, which can be useful for a very wide range of issues and management actions that could be 

eventually prioritized.   200 
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Table 1: Main characteristics of some widely used numerical models of marine biological resources divided into the six classes 

 Bioenergetic models  Rose et al., 2024 

Acronym Model Elemental 
structure Model Units Time 

units 
Spatial 

structure 
Number 
of species 

Trophic 
interactions 

Primary model 
focus, output Maturity 

Readiness for 
operational 

use 
Physical/biogeochem

ical processes 
Repository 

(if open access) Reference 

DEB Dynamic Energy Budget  Individual Individual weight (gww, 
gC or others) or length day No 1 No growth High Good 

Yes used as forcings 
(temperature, light, 

food, nutrients) 

https://www.bio.v
u.nl/thb/deb/debla

b/add_my_pet/ 
Koojiman, 2020 

 Population and fisheries models  Hilborn and Walters, 2013 

Acronym Model Elemental 
structure Model Units Time 

units 
Spatial 

structure 
Number 
of species 

Trophic 
interactions 

Primary model 
focus, output Maturity 

Readiness for 
operational 

use 
Physical/biogeochem

ical processes 
Repository 

(if open access)  

SPICT 
Stochastic surplus 

Production model In 
Continuous Time 

Surplus 
prodution Biomass Year No 1 No Biological reference 

points for fisheries High Poor No https://github.co
m/mawp/spict. Pedersen and Berg, 2017 

CMSY Catches at Maximum 
sustainable Yield 

Surplus 
prodution (tonn) Year No 1 No Biological reference 

points for fisheries Intermediate Poor No https://github.com/
SISTA16/cmsy Froese et al., 2023 

A4a All for all Catch-at-age Biomass (tonn) Year No 1 No Biological reference 
points for fisheries Intermediate Intermediate No https://github.com/

a4a Jardim et al., 2014 

SS3  Stock Synthesis Catch-at-age Number of Individuals; 
biomass (ton) Year Potentially 

yes 1 No Biological reference 
points for fisheries High Intermediate Potentially yes 

https://github.com/
nmfs-ost/ss3-
source-code 

Anderson et al., 2014 

VPA Virtual population analysis Catch-at-age Number of Individuals; 
biomass (ton) Year no 1 No Biological reference 

points for fisheries Poor Poor No 

https://noaa-
fisheries-

integrated-
toolbox.github.io/

VPA 

Gislason, 1999 

 Connectivity models  Cowen et al., 2009 

Acronym Model Elemental 
structure Model Units Time 

units 
Spatial 

structure 
Number 
of species 

Trophic 
interactions 

Primary model 
focus, output Maturity 

Readiness for 
operational 

use 
Physical/biogeochem

ical processes 
Repository 

(if open access)  

LTRANS Lagrangian Transport Agents (super 
individuals) Number of individuals days Yes 

Typically 
one 

species 
No 

Distribution of 
species and 

connectivity among 
sites 

Intermediate Intermediate Yes (physical 
processes) 

https://github.com/
LTRANS/LTRAN

Sv.2b 
North et al., 2008 

Ichthyop 
Lagrangian tool for 

simulating ichthyoplankton 
dynamics 

Individuals 
(early life 

stages) 
Number of individuals days Yes 

Typically 
one 

species 
No 

Study effects of 
physical and 

biological factors on 
ichthyoplankton 

dynamics 

Intermediate Intermediate Yes (physical 
processes) 

https://ichthyop.or
g/ Lett et al., 2008 

IBM/ABM Individual-based and Agent 
Based Models Individual  Biomass days Yes 

Typically 
a few 

species 
Efficient 
predator 

Ecosystem effects on 
target population and 

connectivity 
Poor 

 

Poor 
(computationa
lly complex) 

Yes  NA Rose et al., 2015 

https://github.com/mawp/spict
https://github.com/mawp/spict
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 Species Distribution Models  Elith and Leathwick, 2009 

Acronym Model Elemental 
structure Model Units Time 

units 
Spatial 

structure 
Number 
of species 

Trophic 
interactions 

Primary model 
focus, output Maturity 

Readiness for 
operational 

use 
Physical/biogeochem

ical processes 
Repository 

(if open access)  

Enseamble of SDM Ensamble of Species 
Distribution models 

Species 
adundance, 
presence or 

biomass 

Number of individuals or 
weight per unit surface or 

presence/absence 

Month, 
year, 

climatolo
gy 

Yes 1 No Species distribution; 
essential fish habitats Good Good Environmental factors 

can be included 
https://github.com/
helixcn/sdm_r_pac

kages 
Panzeri et al., 2024 

Joint-SDM Joint Species Distribution 
models 

Species 
adundance, 
presence or 

biomass 

Number of individuals or 
weight per unit surface 

Month, 
year Yes A few 

species implicit Distribution of target 
species 

Intermediate 
 

Poor 
(computationa
lly intensive) 

Environmental factors 
can be included 

https://github.com/
James-

Thorson/spatial_D
FA 

Thorson et al., 2016 

DEBM Dynamic Bioclimate 
Envelope Model Species biomass biomass year Yes Several 

species No Distribution of 
multiple species Intermediate Good 

Yes included for 
developing the 

bioenvelope 
NA Cheung et al., 2013 

 Minimal Realistic models  Plagányi 2007 

Acronym Model Elemental 
structure Model Units Time 

units 
Spatial 

structure 
Number 
of species 

Trophic 
interactions 

Primary model 
focus, output Maturity 

Readiness for 
operational 

use 
Physical/biogeochem

ical processes 
Repository 

(if open access)  

GADGET 
Globally applicable Area 
Disaggregated General 

Ecosystem Toolbox 
Population in 
age structure 

Biomass derived from 
population size structure Year Yes, can be 

included 
Typically 

3-4 
species 

Yes, 
suitability-

based, 
flexible  

Ecosystem effects on 
target population; 

yearly biomass 
Intermediate low 

Can be coupled with 
physical-

biogeochemical 
model 

https://gadget-
framework.github.
io/gadget2/usergui

de/ 

Andonegi et al., 2011 

MSVPA and 
MSFOR 

Multi-species Virtual 
population Analysis and 

multi-species Forecasting 
Model 

Populations in 
age structure Numbers at age; Biomass Year No 

Typically 
3-4 

species 

Yes; 
Suitability-

based; 
Efficient 
predator 

Ecosystem effects on 
target population; 

yearly biomass 
Poor 

Poor 
(seldom 
applied) 

Not usually included 

https://noaa-
fisheries-

integrated-
toolbox.github.io/

MSVPA_X2 

Gislason, 1999 

MICE 
Model of Intermediate 

Complexity for Ecosystem 
assessments   

Populations in 
surplus 

production and 
age structure 

Numbers at age, Biomass Year No 
Typically 

6-7 
species 

 Efficient 
predator 

Dynamics of focal 
species and their 

predators or preys 

Difficult to 
establish: 

programmed on 
purpose 

Poor (only 
few 

applications) 
Environmental effects 

can be included NA Plagányi et al., 2014 

SEAPODYM 
Spatial Ecosystem, and 
population Dynamics 

Model 
Populations in 
age structure Biomass Year Yes 

Typically 
3-4 

species 
Efficient 
predator 

Ecosystem effects on 
target population High 

High (already 
applied for top 
predators, i.e., 
tunas) 

Can be coupled with 
physical-

biogeochemical 
model 

https://github.com/
PacificCommunity

/seapodym-
codebase 

Lehodey et al., 2015 

ERSEM II 
Commission for the 

Conservation of Antarctic 
Marine Living Resources 

Functional 
group approach Nutrient month Yes 

Limited 
number of 

HTL 
groups 

Type II Effects in both 
directions Intermediate Too complex Yes, detailed 

https://github.com/
pmlmodelling/erse

m 
Butenschön et al., 2018 

Apecosm Apex Predators 
ECOSystem Model 

Size spectra 
approach Biomass month Yes Few 

species 
Few top 
predators 

Top predator group 
dynamics 

Poor 
(few applications) 

Poor  
(model 

complexity) 
Tes, included 

https://github.com/
apecosm/python-

apecosm 
Maury, 2010 

 Whole Ecosystem Models  Plagányi 2007 

Acronym Model Elemental 
structure Model Units Time 

units 
Spatial 

structure 
Number 
of species 

Trophic 
interactions 

Primary model 
focus, output Maturity 

Readiness for 
operational 

use 
Physical/biogeochem

ical processes 
Repository 

(if open access)  
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ATLANTIS Atlantis 
Functional 

group approach; 
Populations in 
age structure 

Nutrient month Yes 

Can be a 
very large 
number; 
typically 
order 40 

Flexible, 
Type II, type 
III or other 

Effects of ecosystem 
and fisheries in both 

directions; yearly 
outputs 

High 
poor  

(model 
complexity) 

Yes, detailed https://github.com/
runatlantis/atlantis Fulton et al., 2011 

EwE Ecopath with Ecosim 
Functional 

group approach; 
Populations also 
in age structure 

Biomass, Nutrient month Yes 
(ECOSPACE) 

Can be a 
very large 
number; 
typically 
order 40 

Foraging 
arena, flexible 

approach 

Effects of ecosystem 
and fisheries in both 

directions; yearly 
outputs 

High 
Poor 

(model 
complexity) 

Included as off-line 
coupling 

https://ecopath.org
/ Christensen and Walters, 2004 

OSMOSE 
Object-oriented Simulator 

of marine ecosystem 
Exploitation 

Size spectra 
approach 

Biomass at different 
levels of aggregation year Yes 

Large 
number of 

species 

Efficient 
predator but 
can starve 

Multispecies 
dynamics Intermediate 

Intermediate  
(model 

complexity) 

Included as off-line 
coupling 

https://osmose-
model.org/ Shin and Cury, 2004; 

FEISTY FishErIes Size and 
functional TYpe model 

Size spectra 
approach 

Biomass at different 
levels of aggregation year Yes 

Large 
number of 

species 

Flexible 
approach 

Multispecies 
dynamics Intermediate Intermediate Included as off-line 

coupling 

https://github.com/
Kenhasteandersen/

FEISTY 
Blanchard et al., 2009 
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