
1 
 

Numerical Models for Monitoring and Forecasting Ocean 
Ecosystems: a short description of present status 

Simone Libralato1 
1Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Department of Oceanography, Trieste, Italy 
 5 
Correspondence to: Simone Libralato (slibralato@ogs.it) 
 
 
Abstract. Understanding and managing marine ecosystems under potential stress from human activities or climate change 

requires the development of models with different degree of sophistication in order to be capable of predicting changes in 10 

living components and in relation to human pressures and environmental variables. Recent advances in ecosystem modelling 

are the focus of this paper, which reviews numerical approaches to analyse the characteristics of marine conditions in terms of 

typical units, i.e., individuals, populations, communities and ecosystems. In particular, Iit specifically examines the current 

classification of numerical models of increasing complexity – from individuals and population and stock assessment models 

to models representing the whole ecosystem by covering all trophic levels – and presents examples and their operational 15 

maturity and readiness, finally demonstrating their use for supporting marine resource management, conservation, planning 

and mitigation actions. 

1 Introduction 

In recent decades, a Understanding and managing marine ecosystems under potential stress from human activities and climate 

change requires the development of modelling tools able to monitor and forecast ocean ecosystem dynamics, from physics to 20 

fish (De Young et al., 2004). The challenge is to relate processes occurring at individual, population or community levelies 

with environmental variables, i.e., to connect the dynamics of marine ecosystem with the quite well established physical and 

biogeochemical products that exists for the ocean (Fennel et al., 2022). A large variety of numerical ecosystem models have 

been developed to predict the growth and dynamics of individuals and populations of marine resources. According to the scope 

the approaches are very diverse ranging from single- to multi-species and might include the effects of various environmental 25 

changes and human impacts on marine biological resources  (Hollowed et al., 2013; Nielsen et al., 2018).  

To illustrate In order to shed light on approaches that have the potential to become the next generation operational tools for 

ocean ecosystem forecast, this paper provides a structured synthesis of models applied to marine higher trophic levels (i.e., 

from zooplankton to fish and top predators) that can be connected with lower trophic level models (physics and 

biogeochemistry).  30 
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A comprehensive analysis is challenging, although but models can be mapped in terms of their main scope and distinguishing 

approaches that can incorporatinge age structure, environmental factors, represent trophic interactions, and spatial structure 

(Hollowed et al., 2000; Plaganyi, 2007). Based on the above characteristics, numerical models for marine ecosystems can be 

divided into six broad classes: 

 Bioenergetic models representing the processes related to growth, respiration, excretion of an individual; 35 

 population and stock assessment fisheries models (typically for single species without trophic interactions and 

possibly age-structured); 

 connectivity models (considering propagules dispersal, larval cycle, spatial structures, and environmental factors); 

 species distribution models (statistical models based on representation of spatial environmental variables and biota); 

 minimal realistic models (typically age-structured, with representing a few species  with trophic interactions); 40 

 whole ecosystem models (typically covering all trophic levels and based on trophic interactions, which may include 

size structure and spatial variation). 

These six five classes of models are reviewed in the following sections below, considering also available syntheses and reviews 

(e.g., Plaganyi, 2007; Cowen et al., 2009; Stock et al., 2011; Hilborn and Walters, 2013; Itoh et al., 2018; Nielsen et al., 2018; 

Rose et al., 2024). The work does not pretend to be exhaustive and readers are referred to original reviews that are providing 45 

in depth analyses of each class of models. It aims to provide a synthetic integration across different classes, with examples 

provided to illustrate their application in operational coupling with lower trophic level models. The work intends to 

synthetically bridge across classes and examples are provided to shed light on their usage for operational coupling with lower 

trophic level models. For this purpose, readiness and maturity of each model was subjectively elaborated on the basis ofbased 

on its current application. The mMaturity of each example werewas assessed on the basis of based on the availability of code, 50 

documentation, test cases, routines for assessing model performances, diagnostics, and isare used by a community of 

developers that can provide support, updates and advancement. Stock assessment models routinely applied for fisheries 

management, for example, were considered more mature because the code is publicly available and documented and input and 

output test cases are developed and accessible. Readiness for operational purposes was defined on the basis ofbased on existing 

knowledge abouton possible connection of the model example to physical and biogeochemical spatio-temporal models. 55 

Existence of such applications, even if scarce, might shed light on theshow the difficulties in connecting (one- way or two- 

way) with low trophic level models.  Operational readiness may be regarded as more tentative and less precise, owing to the 

challenges in establishing a clearly objective definition, particularly in light of its potentially limited application. Readiness 

for operational purposes might be considered more tentative and less precise, because it is more difficult to define in a very 

objective way also for the potentially very sparse  application. 60 

For each class of models some examples are reported shown in Table 1., includingand their characteristics in terms of typical 

units, elemental structure, number of species typically represented, representation of eventual trophic interactions are reported 

in Table 1. The tableIt also contains synthetic information on primary model focus and main output, as well as if each model 

is maturity and readiness for operational or not purposes.  
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2 Bioenergetic models 65 

Traditional bioenergetic models describe energy intake from feeding and its allocation to maintenance, activity, growth, 

reproduction, and excretion (for a review see: Rose et al., 2024). A bioenergetic model is any mechanicistic model describing 

how individuals take energy from the environment and allocate it to different processes (Kooijman, 2010; Sibly et al., 2013). 

Bioenergetic models are typically used for representing the growth of the individual, while accounting for respirations, 

excretions and other losses. Energy intake can be a model input or output, depending on whether it’s modeled dynamically or 70 

derived from energy requirements (Pirotta et al., 2022). Acquisition and allocation can vary based on the individual's state and 

environmental conditions (e.g., Libralato and Solidoro, 2009; Nisbet et al., 2012) 

Indeed, bioenergetic models and can account of for external oceanographic conditions influencing uptakes, such as light, 

nutrients and temperature for autotrophs (e.g., Bocci et al., 1997) or food availability and temperature for heterotrophs (e.g., 

Libralato and Solidoro, 2009), while losses are usually related to temperature and internal conditions (Koojiman, 2010). 75 

Bioenergetic models can also consider explicitly the gonadic development and egg release (Pastres et al., 2000). Because of 

these characteristics, bioenergetic models, other than providing realistic individual-level response to environmental conditions, 

permits to project responses at the population and food web levels and can support other classes of approaches (Rose et al., 

2024).  

 80 

Traditional bioenergetic models describe energy intake from feeding and its allocation to maintenance, activity, growth, 

reproduction, and excretion. These models are advantageous due to their clear empirical interpretation and measurable units 

but tend to be parameter-heavy and difficult to generalize across species. A widely used bioenergetic approach for fish and 

invertebrates is represented by the Dynamic Energy Budget (DEB, Koojiman, 2010) which is characterized by an explicit 

representation of energy dynamics into somatic, gonadic and storage tissues (Koojiman, 2010).  Dynamic Energy Budget 85 

(DEB) theory offers a more general approach by using mass-energy balance principles to link sub-organismal processes with 

overall organismal performance (Koojiman, 2010; Nisbet et al., 2012). However, this generality leads to abstract concepts that 

are more challenging to measure empirically (Pirotta et al., 2022). Although, Tthe presence of the storage in DEBis challenging 

to be measured empirically (Pirotta et al., 2022), it allows  allow representation of delayed use of energy in the individual 

development resulting in improved generality of the approach (Koojiman, 2010; Nisbet et al., 2012). Thus DEB has been 90 

developed into a theory for scaling the parameters for all life cycles of the individual (from eggs to larvae to juveniles and 

adults) and, provides setting parameters for a large number of marine species (see also 

https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/) and is well documented  (Nisbet et al., 2012; Koojiman, 2020). Thus DEB 

is considered of high maturity for being used routinely and adapted to operational applications, and because it is seldom 

connected to spatiotemporal physical and biogeochemical models the readiness is considered of intermediate level (Table 1)., 95 

thus it has a maturity for being used routinely and adapted to operational applications. 
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3 Population and stock assessment fisheries models 

Various types of numerical models of single populations are used worldwide to support fisheries management by determining 

the population at sea and the current status of exploited marine populations, thus providing insight for management in a process 100 

called stock assessment (for a review see Hilborn and Walters, 2013). Such sStock assessment models typically represent the 

biomass or abundance of one individual species (Table 1), are routinely used by management agencies, and include probability 

models to incorporate various sources of observational data (Maunder and Punt, 2013). In cases where stock assessments are 

based on limited observations, i.e., no catch by age or size, surplus production models are used. The general underlying 

assumption of these models is a theta-logistic function for the evolution of biomass (B; but it can also be applied to the number 105 

of individuals) over time: 
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where F is the fishing mortality, so 𝐹௧𝐵௧ corresponds to the catches Ct, while r is the population growth rate, and K is the 

capabilities of the system to support the population (through living space, habitat, food, etc.), and generally called as carrying 110 

capacity. The parameter ϴ allows generalization of the equation (in the case of ϴ=2, the classical logistic curve is obtained). 

Several packages use the surplus production model as principal approach, are used routinely to perform stock assessment and 

are including several useful diagnostics. Among them the most used are the CMSY (Froese et al., 2023) and the SPiCT  

(Pedersen and Berg, 2017) models.  CMSY uses a time series of catch data and fishing effort to estimate parameters, reconstruct 

biomass and establish reference points using a Bayesian approach (Froese et al., 2023). The Stochastic surplus Production 115 

model in Continuous Time (SPiCT), for example,  provides estimates of exploitable biomass and fishing mortality at any point 

in time from catch and survey data collected at arbitrary and possibly irregular intervals (Pedersen and Berg, 2017). The model 

allows the inclusion of prior distributions for parameters that are difficult to estimate such as growth rate and carrying capacity. 

SPiCT is available as an R package (R Core Team 2015) in the online GitHub repository: https://github.com/mawp/spict.  

Surplus production models are simplistic representation of the population that is lumped with no size and/or age details. More 120 

sophisticated approaches (such as SS3, a4a, XSA, etc.) are used when use catch data by age or size classes are available for 

the exploited population (catch-at-age or catch-at-length models; Maunder and Punt, 2013). These stock assessment models 

reconstruct the number of individuals in to reconstruct the cohorts based on catch and assuming natural mortality for each class 

by age class, as well as and considering information on species growth, fecundity, and fisheries selectivity (Methot and Wetzel, 

2013). The basic dynamics are described by the number of individuals N at time t and age a, as in the following: 125 

𝑁 ൌ  𝑅௧  ൬𝑁௧ିଵ,ୀଵ𝑒
ିெଶ െ 𝐶௧ିଵ,ୀଵ൰ 𝑒

ିெଶ  ൬𝑁௧ିଵ,ୀଶ𝑒
ିெଶ െ 𝐶௧ିଵ,ୀଶ൰ 𝑒

ିெଶ ⋯൬𝑁௧ିଵ,௫ିଵ𝑒
ିெଶ െ 𝐶௧ିଵ,௫ିଵ൰ 𝑒

ିெଶ

 ൬𝑁௧ିଵ,௫𝑒
ି
ெ
ଶ െ 𝐶௧ିଵ,௫൰ 𝑒

ି
ெ
ଶ       ሺ𝐸𝑞. 2ሻ 

 



5 
 

where each year the population comprises all age classes from the new juvenile individuals entering the population as recruits 

the same year ( R, age 0 ), all age classes a, from 1 up to the oldest age modelled (age x) surviving from the year before. The 130 

number of individuals are decreasing through time on the basis of catches C at age and time, and assuming instantaneous 

natural mortality M. 

 Typically, these models report juvenile recruitment R as a function of a combination of fecundity by age class estimated from 

data (Stock et al., 2011). This class of models includes, for example, the a4a tool (assessment for all, Jadim et al., 2014), a 

modeling framework for fitting statistical age-structured fishery models using nonlinear statistical submodels. The submodels 135 

can include linear functions of age and year, smoothing splines with fixed degrees of freedom that vary with age and/or year 

and environmental indicators as covariates. The tool a4a is implemented in R Fishery Library and includes the optimization 

procedure. Stock synthesis (SS3; Anderson et al., 2014) is the most an example widely used of catch-at-age stock assessment 

model that can incorporate age or length composition information from surveys, abundance indices, multi-gear effort, 

selectivity, and spatial data in the most recent and advanced applications (e.g., Punt, 2019; Privitera-Johnson et al., 2022). In 140 

all cases, pProjections of from stock assessment models are generally made for annual to decadal time periods and . Catch or 

effort limitation scenarios can be used to SS3 provides estimates for biological reference points for management decisions 

(indicators based on maximum sustainable yield; Hilborn and Walters, 2013). As for many stock assessment fisheries models, 

Although in most cases,SS3 stock assessment models areis routinely used in formal assessments, well documented and easily 

accessible  (https://github.com/nmfs-ost/ss3-source-code ), thus it has a very high degree of maturity.  Nevertheless, it is not 145 

spatially explicit and it does not consider explicitly oceanographic forcings they are routinely used in formal assessments for 

management and might be considered of intermediate readiness as ready for operational oceanographic applications (Table 1). 

4 Connectivity models 

The distribution and survival of small eggs and larvae of marine fishes and invertebrates, as well as propagules of algae and 

seagrass’ seeds are advected and thus are strongly influenced by currents, which can disperse individuals both near spawning 150 

sites and in distant areas (Cowen et al., 2007). Therefore, biophysical dispersal (advection, diffusion, and migratory 

behaviorbehaviour of organisms) is fundamental to explaining marine population dynamics and connectivity (for a review see 

Cowen et al., 2009). NumericalConnectivity models are used to quantitatively integrate the large spatial and temporal 

variability of oceanographic processes (physical connectivity) with processes inherent in the biology of marine organisms (life 

history traits) to investigate connectivity between and within populations and alsoand across larval stages (Gawarkiewicz et 155 

al., 2007; Melaku Canu et al., 2021). Connectivity models such as Larval TRANSport Lagrangian model (LTRANS, North et 

al., 2008) typically uses offline physical parameters (velocity, density, temperature, and salinity) obtained from hydrodynamic 

models and estimate the distribution of organisms. The advection–diffusion–reaction equation is typically used for biomass 

distribution (e.g., Sibert et al., 1999; Faugeras and Maury, 2005), while Lagrangian approaches are used to track particles and 

thus distribute individuals (e.g., Laurent et al., 2020). These approaches take into accountconsider life history traits such as 160 
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growth, mortality and the behavior of target organisms in terms of seasonal variability, spawning sites, vertical movement and 

settlement preferences (Melaku Canu et al., 2021; Paris et al., 2013; Lett et al., 2008). : since in most of the cases living 

organisms have negligible influences on physical oceanographic processes parameters, modeling the biophysical LTRANS is 

frequently applied and well documented,, applied and the code is available at (https://github.com/LTRANS/LTRANSv.2b) 

makingdesignating it asof intermediate level of maturity. It is coupled dispersion offline from thewith hydrodynamic models 165 

is considered a reliable strategy also considering time evolutions, and can includeincorporate several biological features (North 

et al., 2008) that makesplacing its operational readiness for operational purposes of at an intermediate level (Table 1). The 

advection–diffusion–reaction equation is typically used for biomass distribution (e.g., Sibert et al., 1999; Faugeras and Maury, 

2005), while Lagrangian approaches are used to track particles and thus distribute individuals (e.g., Laurent et al., 2020). These 

approaches take into account life history traits such as growth, mortality and the behavior of target organisms in terms of 170 

seasonal variability, spawning sites, vertical movement and settlement preferences [e.g., Melaku Canu et al., 2021; Paris et al., 

2013; Lett et al., 2008]. Connected with oceanographic variables and spatially explicit these models however, appear less 

mature for operational applications.  

5 Species distribution models 

Species distribution models (SDM, also called habitat suitability models) are statistical models that predict the occurrence, 175 

abundance, or biomass of organisms using geoposition, biotic and environmental data (for a review see: Elith and Leathwick, 

2009Brodie et al., 2020). Particularly useful when applied to standardized, spatio-temporal scientific monitoring and surveys 

of  biotic dataspecies abundance, these approaches can also exploit publicly available opportunistic biological datasets (e.g., 

OBIS, www.obis.org; GBIF, www.gbif.org). SDMs are implemented using various statistical approaches approaches, 

including linear models (LM), generalized linear models (GLM), generalized additive models (GAM) (Melo-Merino et al., 180 

2020; Maravelias et al., 2003; Melo-Merino et al., 2020; Brodie et al., 2020), machine learning,  artificial neural networks 

methods such as random forest (RF, Breiman et al., 2018) or artificial neural networks (ANN),  (Catucci et al., 2025) and 

maximum entropy (Jones et al., 2012; Pittman and Brown, 2011; Reiss et al., 2011). The inclusion of physical and 

biogeochemical oceanographic covariates, which can have direct and indirect effects on species distributions, can improve the 

capabilities of SDMs to explain observed biotic data compared to using only geopositional variables (Panzeri et al., 2021; 185 

Thorson et al., 2015). Recent advances include combining the approaches into an ensemble (Jones et al., 2012; Panzeri et al., 

2024) and including multiple species as covariates into the so called Joint-Species Distribution Models (JSDM, Pollock et al., 

2015; Thorson et al., 2016). These classes of SDMs are increasingly being used to describe current and future distributions of 

exploited and endangered species, identify hotspots, map essential fish habitat, support conservation development, and feed 

other ecosystem models (Jones et al., 2012; Colloca et al.,  2015; Grüss et al., 2014; Dolder et al., 2018). 190 

The Dynamic Bioclimate Envelope Model (DBEM) estimates species distributions based on environmental preferences and 

considers population dynamics and dispersal (Cheung et al., 2009). The DBEM makes predictions of future envelopes using 
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physical and biogeochemical data from oceanographic models and also considers the response of organisms to 

natural/anthropogenic environmental changes such as growth, mortality, larval dispersal, and migration (Cheung et al., 2013).  

In general SDMs are widely applied, well documented and available (see for example: https://github.com/helixcn/sdm_r_packages) 195 

thus have an intermediate level of maturity but giving their direct integration with physical-biogeochemical models they have 

a good readiness level for operational use (Table 1)and although at the moment they are not used operationally, they can be 

easily implemented within an operational chain. 

6 Minimal realistic models 

Dynamic multispecies models or Minimal Realistic Models (MRM), Punt and Butterworth, 1995) are approaches that represent 200 

a limited number of species (usually less than 10 species) that have important interactions with a target species (for a review 

see Plaganyi, 2007). The MRMs often represent an evolution of single species stock assessment models: for example, 

Multispecies Virtual Population Analysis (MSVPA) is an extension of virtual population analysis (Gislason, 1999), while 

GADGET (Globally applicable Area-Disaggregated General Ecosystem Toolbox) is an extension of stock synthesis in the 

multispecies framework, where populations can be partitioned by species, size classes, age groups, areas, and time steps (e.g., 205 

Andonegi et al., 2011). In particular, GADGET is flexible, allowing easy addition/replacement of alternative model 

components for biological processes such as growth, maturation, and predator-prey interactions representing some species in 

age classes. GADGET provides estimates of population dynamics under technical fisheries and biological interactions with 

the ability to use different growth functions and fitness functions (Plaganyi, 2007). Although well documented (see 

https://gadget-framework.github.io/gadget2/userguide/) its fitting is quite complex and thus hasve few applications: for these 210 

reasons maturity is considered intermediate and readiness for operational purposes is low because of lack of interactions with 

physical and biogeochemical models (Table 1). 

MICE ("Models of intermediate complexity for ecosystem assessment"; Plagányi et al., 2014) are developed considering the 

specific problem and data availability. MICE represents a limited number of populations (usually 10) exposed to fisheries or 

anthropogenic interactions and includes ecological processes (Angelini et al., 2016). These models have different levels of 215 

detail for the species represented: MICE can  simultaneously represent focal populations in age-structured classes, while others 

take a surplus production approach (Morello et al., 2014). MICE can be a fairly complex but flexible tool that overcomes the 

many complexities of whole ecosystem models and is useful for providing tactical advice for focal species management 

(Plagányi et al., 2014). An example of minimum realistic model is the Spatial Environmental POpulation Dynamics Model 

(SEAPODYM), which  is a two-dimensional coupled physical-biological model originally developed for tropical tunas in the 220 

Pacific (Lehodey et al., 2003). SEAPODYM includes an age-structured population model for tuna species top predators and a 

movement model based on a diffusion-advection equation such that swimming behavior is modeledmodelled as a function of 

habitat quality (sea surface temperature (SST), ocean currents, and primary production) predicted obtained from oceanographic 

models and satellites (Lehodey et al., 2015). This model describes spatial structures that are essential to account for the 
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distribution of fishing effort, swimming behavior, and environmental variations typically determined by ocean circulation 225 

models or derived from satellites (Lehodey et al., 2015; Senina et al., 2020). SEAPODYM is well documented and already 

used for operational global projections (https://github.com/PacificCommunity/seapodym-codebase) thus can be considered to have 

a high degree of maturity and readiness for operational purposes (Table 1). 

7 Whole ecosystem models 

Whole ecosystem models (WEM) are designed to represent all trophic levels in an ecosystem, from primary producers to top 230 

predators and take advantage of . Thus, WEMs typically use a very large set of data collected infrom different disciplines a 

variety of disciplines, including results from oceanographic models and stock assessments (e.g., Agnetta et al., 2022).  

The main distinguishing feature between the different WEM is the way in which the ecosystem is described: i) through 

compartments representing in flexible compartments representing species of groups of species (Christensen and Walters, 2004; 

Fulton et al., 2011), ecologically meaningful groups of species, or size- and age-structured populations, such as Ecopath with 235 

Ecosim (hereafter EwE, Christensen and Walters, 2004) and ATLANTIS (Fulton et al., 2005); ii) through compartments that 

represent in size-structured communities, typically benthic and pelagic communities (Shin and Cury, 2004; Travers et al., 

2010), such as Osmose (Shin and Cury, 2001), Feisty (Petrik et al., 2019), and DBEM (Blanchard et al., 2009), for example; 

iii) in a mixture of size-structured and trophic communities (typically pelagic, mesopelagic migratory, and non-migratory) and 

age-structured species as in Apecosm (Maury, 2010); iv) using the ecosystem is described by dynamic spectra of trophic levels 240 

(e.g., Gashe and Gascuel, 2013) as in Ecotroph (Gasche and Gascuel, 2013). All these models are based on biomass and 

consider rules such as biomass conservation (Table 1; for a review see Plaganyi, 2007). 

Ecopath with Ecosim (EwE; Christensen and Walters, 2004), undoubtedly is the most widely used WEM, it is a freely available 

(www.ecopath.org ) and has a flexible structure, general. : Iit representsis a suite of models developed in more than 30 years 

for the whole ecosystem descriptions that have been developed over 35 years (Christensen and Walters, 2004) and . EwE has 245 

been used to analyze past and future impacts of fisheries, nutrient inputs, invasive species, and climate change  (e.g., Heymans 

et al., 2014; Libralato et al., 2015; Serpetti et al., 2017; Piroddi et al., 2021). It consists of three different interconnected main 

modules, i) a static mass-balanced ecosystem network (Ecopath, Christensen and Pauly, 1992), ii) a temporally dynamic 

simulation module (Ecosim, Walters et al., 2000), and iii) a spatially and temporally dynamic module (Ecospace, Walters et 

al., 1999). EwE contains a large number ofmany additional modules for calibration, uncertainty analysis, calculation of 250 

indicators, and simulation of pollutant dynamics (Steenbeek et al., 2016). Recent advances allow the direct embedding of two-

dimensional monthly results from oceanographic physical-biogeochemical models (Steenbeek et al., 2013). EwE can be 

considered an approach of high maturity and intermediate degree of readiness for operational applications (Table 1).  

ATLANTIS spatially resolves the full trophic spectrum of ecosystem types, including age-structured formulations for high 

trophic levels, potentially in multiple vertical layers (Fulton et al., 2011). ATLANTIS includes a nutrient pool formulation that 255 
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can be used to test effects such as nutrient inputs (Audzijonyte et al., 2019). The model has been used for site-specific analyses 

and to examine general aspects of fishery’s impacts on fish communities (Link et al., 2010). 

OSMOSE (Objected-oriented Simulator of Marine ecOSystems Exploitation; Shin and Cury, 2004) is an individual-based 

ecosystem model that simulates size-based communities on a 2-D spatial cell grid and can be coupled with a planktonic 

ecosystem model (Travers et al., 2010). The model has been used to study the effects of various aspects of fisheries on the 260 

food web (e.g., Shin and Cury, 20019. 

A large set ofThese models WEM models (Table 1) are used increasingly being used to address the need for holistic ecosystem 

approaches, and their framework is often used applied to answer strategic medium-term questions related to management 

strategies, fisheries issues, and climate or environmcentalenvironmental change (e.g., Tittensor et al., 2021). Notably, WEM 

can be coupled with other classes of models (population dynamic, SDM, connectivity models), as well as with biogeochemical 265 

models, which is why therefore most of the approaches in this class have a high to intermediate level of maturity and readiness 

(Table 1). 

 

Conclusions 

A large setwide range of models are usedexist that were developed tofor representing ocean ecosystems at different level of 270 

organisations, fromincluding individuals, populations, communities and whole entire ecosystems. Although 

dividedcategorised into in 6 classes for the sake of clarity, some modelling approaches are not esclusiveconfined to a single of 

a class. For instance, the DEB modelling approach is also used also to also represent the growth of individuals in Connectivity 

models and MRM classes (see for example Maury 2010). Conversely MICE ("Models of intermediate complexity for 

ecosystem assessment"; Plagányi et al., 2014) of the MRM class, are developed using different levels of detail for the species 275 

represented by combining for example age-structured and surplus production approaches (Morello et al., 2014).  

These models have been developed for specific objectives that embrace many issues important for society societal issues, i.e., 

from effects of climate change, pollution, nutrient enrichment and, fisheries etc.  

The numerical approaches analysed here have characteristic spatio-temporal resolutions (Table 1) that are generally decreasing 

when moving from individual species models to whole ecosystem models (Table 1). Moreover, while iIncreased 280 

representeding complexity with MRM and WEM classes result in there is a general improvement of realism but also lower at 

the cost of accuracy (generally declining from individual models to WEM)ies. Overall, the first set of approaches (bioenergetic 

and population models) are more adapted for tactical analyses while especially the WEM are at the momentcurrently 

considered useful especially in strategic analyses (see Table 1). Although very few of the reviewed approaches are currently 

used in operationally (i.e., SEAPODYM), many  approaches are routinely usedapplied for supporting management (e.g., 285 

fisheries stock assessment models). ,Most of the approaches reviewed have repository for documentation, code and testing 

cases, thus have high degree of maturity (Table 1). Conversely, approaches under the MRM class are not widely applied, are 
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often quite complex to fit and therefore were considered were categorised to be at aof poor level of readiness for operational 

purposes (Table 1). Nevertheless, all the tools have some degree of coupling (mainly off-line) with physical and 

biogeochemical variables, thus have athey have great potentials for becoming operational,ly and to be used for analysinge 290 

ecosystem dynamics and make useful scenarios, which can be useful for, on a very wide range of issues and management 

actions that might could be eventually prioritized.   
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Table 1: Main characteristics of some widely used numerical models for of marine biological resources divided into the six classes 

 Bioenergetic models  Rose et al., 2024 

ModelAcronym ModelName Elemental 
structure Model Units Time 

units 
Spatial 

structure 
Number 
of species 

Trophic 
interactions 

Primary model 
focus, output Maturity 

Readiness for 
oOperational 

use 
Physical/biogeochem

ical processes 
Repository 

(if open access) 
Reference 

DEB Dynamic Energy Budget  Individual 
Individual weight (gww, 
gC or others) or length 

day No 1 No growth High 
PotentiallyGo

od 

Yes used as forcings 
(temperature, light, 

food, nutrients) 

https://www.bio.v
u.nl/thb/deb/debla

b/add_my_pet/ 
Koojiman, 2020 

 Population and stock assessment fisheries models  Hilborn and Walters, 2013 

AcronymModel ModelName 
Elemental 

structureEleme
ntal structure 

Model UnitsModel Units 
Time 

unitsTim
e units 

Spatial 
structureSpa
tial structure 

Number 
of 

speciesNu
mber of 
species 

Trophic 
interactionsT

rophic 
interactions 

Primary model 
focus, 

outputPrimary 
model focus, output 

Maturity 

Readiness for 
operational 

useOperation
al 

Physical/biogeochem
ical 

processesPhysical/bi
ogeochemical 

processes 

Repository 
(if open access) 

 

SPICTSpict 
Sstochastic surplus 

pProduction model Iin 
Ccontinuous Ttime 

Surplus 
prodution Biomass Year No 1 No Biological reference 

points for fisheries  High Pooryes No https://github.co
m/mawp/spict. 

Pedersen and Berg, 2017 

CMSY Catches at Maximum 
sustainable Yield 

Surplus 
prodution (tonn) Year No 1 No 

Biological reference 
points for 

fisheriesBiological 
reference points 

Intermediate YesPoor No https://github.com/
SISTA16/cmsy 

Froese et al., 2023 

A4a All for all Catch-at-age Biomass (tonn) Year No 1 No 
Biological reference 

points for 
fisheriesBiological 

reference points 
Intermediate 

YesIntermedi
ate No https://github.com/

a4a 
Jardim et al., 2014 

SS3  Stock Synthesis Catch-at-age Number of Individuals; 
biomass (ton) Year Potentially 

yes 1 No 
Biological reference 

points for 
fisheriesBiological 

reference points 
High 

IntermediateY
es Potentially yes 

https://github.com/
nmfs-ost/ss3-
source-code 

Anderson et al., 2014 

VPA Virtual population analysis Catch-at-age Number of Individuals; 
biomass (ton) Year no 1 No 

Biological reference 
points for 

fisheriesBiological 
reference points 

Poor Poorno No 

https://noaa-
fisheries-

integrated-
toolbox.github.io/

VPA 

Gislason, 1999 

 Connectivity models  Cowen et al., 2009 

AcronymModel ModelName Elemental 
structure Model Units Time 

units 
Spatial 

structure 
Number 
of species 

Trophic 
interactions 

Primary model 
focus, output Maturity 

Readiness for 
operational 

useOperation
al 

Physical/biogeochem
ical processes 

Repository 
(if open access) 

 

LTRANS Lagrangian Transport Agents (super 
individuals) Number of individuals days Yes 

Typically 
one 

species 
No 

Distribution of 
species and 

connectivity among 
sites 

Intermediate 
IntermediateN

o 
Yes (physical 

processes) 
https://github.com/
LTRANS/LTRAN

Sv.2b 
North et al., 2008 

Ichthyop 
Lagrangian tool for 

simulating ichthyoplankton 
dynamics 

Individuals 
(early life 

stages) 
Number of individuals days Yes 

Typically 
one 

species 
No 

Study effects of 
physical and 

biological factors on 
ichthyoplankton 

dynamics 

Intermediate Intermediate 
Yes (physical 

processes) 
https://ichthyop.or

g/ 
Lett et al., 2008 
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IBM/ABM Individual-based and Agent 
Based Models Individual  Biomass days Yes 

Typically 
a few 

species 
Efficient 
predator 

Ecosystem effects on 
target population and 

connectivity 
Poor 

 

PoorNo 
(computationa
lly complex) 

Yes  NA Rose et al., 2015 

 Species Distribution Models  Elith and Leathwick, 2009 

AcronymModel ModelName Elemental 
structure Model Units Time 

units 
Spatial 

structure 
Number 
of species 

Trophic 
interactions 

Primary model 
focus, output Maturity 

Readiness for 
operational 

useOperation
al 

Physical/biogeochem
ical processes 

Repository 
(if open access) 

 

Enseamble of SDM Ensamble of Species 
Distribution models 

Species 
adundance, 
presence or 

biomass 

Number of individuals or 
weight per unit surface or 

presence/absence 

Month, 
year, 

climatolo
gy 

Yes 1 No Species distribution; 
essential fish habitats Good 

GoodPotential
ly 

Environmental factors 
can be included 

https://github.com/
helixcn/sdm_r_pac

kages 
Panzeri et al., 2024 

Joint-SDM Joint Species Distribution 
models 

Species 
adundance, 
presence or 

biomass 

Number of individuals or 
weight per unit surface 

Month, 
year Yes A few 

species implicit Distribution of target 
species 

Intermediate 
 

Poor 
(computationa

lly 
intensive)No 

Environmental factors 
can be included 

https://github.com/
James-

Thorson/spatial_D
FA 

Thorson et al., 2016 

DEBM Dynamic Bioclimate 
Envelope Model Species biomass biomass year Yes Several 

species No Distribution of 
multiple species Intermediate GoodNo 

Yes included for 
developing the 

bioenvelope 
NA Cheung et al., 2013 

 Minimal Realistic models  Plagányi 2007 

AcronymModel ModelName Elemental 
structure Model Units Time 

units 
Spatial 

structure 
Number 
of species 

Trophic 
interactions 

Primary model 
focus, output Maturity 

Readiness for 
operational 

useOperation
al 

Physical/biogeochem
ical processes 

Repository 
(if open access) 

 

GADGET 

Globally applicable Area 
Disaggregated General 

Ecosystem Toolbox 
(derived from 
BORMICON) 

Population in 
age structure 

Biomass derived from 
population size structure Year Yes, can be 

included 
Typically 

3-4 
species 

Yes, 
suitability-

based, 
flexible  

Ecosystem effects on 
target population; 

yearly biomass 
Intermediate potentiallylow 

Can be coupled with 
physical-

biogeochemical 
model 

https://gadget-
framework.github.
io/gadget2/usergui

de/ 

Andonegi et al., 2011 

MSVPA and 
MSFOR 

Multi-species Virtual 
population Analysis and 

multi-species Forecasting 
Model 

Populations in 
age structure Numbers at age; Biomass Year No 

Typically 
3-4 

species 

Yes; 
Suitability-

based; 
Efficient 
predator 

Ecosystem effects on 
target population; 

yearly biomass 
Poor 

PoorNo 
(seldom 
applied) 

Not usually included 

https://noaa-
fisheries-

integrated-
toolbox.github.io/

MSVPA_X2 

Gislason, 1999 

MICE 
Model of Intermediate 

Complexity for Ecosystem 
assessments   

Populations in 
surplus 

production and 
age structure 

Numbers at age, Biomass Year No 
Typically 

6-7 
species 

 Efficient 
predator 

Dynamics of focal 
species and their 

predators or preys 

Difficult to 
establish: 

programmed on 
purpose 

Poor (only 
few 

applications)P
otentially 

Environmental effects 
can be included NA Plagányi et al., 2014 

SEAPODYM 
Spatial Ecosystem, and 
population Dynamics 

Model 
Populations in 
age structure Biomass Year Yes 

Typically 
3-4 

species 
Efficient 
predator 

Ecosystem effects on 
target population High 

HighYes 
(already 
applied for top 
predators, i.e., 
tunas) 

Can be coupled with 
physical-

biogeochemical 
model 

https://github.com/
PacificCommunity

/seapodym-
codebase 

Lehodey et al., 2015 

ERSEM II 
Commission for the 

Conservation of Antarctic 
Marine Living Resources 

Functional 
group approach Nutrient month Yes 

Limited 
number of 

HTL 
groups 

Type II Effects in both 
directions Intermediate 

Too 
complexNo Yes, detailed 

https://github.com/
pmlmodelling/erse

m 
Butenschön et al., 2018 

Apecosm 
Apex Predators 

ECOSystem Model 
Size spectra 

approach 
Biomass month Yes 

Few 
species 

Few top 
predators 

Top predator group 
dynamics 

Poor 
(few applications) 

Poor  
(model 

complexity) 
Tes, included 

https://github.com/
apecosm/python-

apecosm 
Maury, 2010 
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 Whole Ecosystem Models  Plagányi 2007 

AcronymModel ModelName Elemental 
structure Model Units Time 

units 
Spatial 

structure 
Number 
of species 

Trophic 
interactions 

Primary model 
focus, output Maturity 

Readiness for 
operational 

useOperation
al 

Physical/biogeochem
ical processes 

Repository 
(if open access) 

 

ATLANTIS Atlantis 
Functional 

group approach; 
Populations in 
age structure 

Nutrient month Yes 

Can be a 
very large 
number; 
typically 
order 40 

Flexible, 
Type II, type 
III or other 

Effects of ecosystem 
and fisheries in both 

directions; yearly 
outputs 

High 
poorNo  
(model 

complexity) 
Yes, detailed https://github.com/

runatlantis/atlantis Fulton et al., 2011 

EwE Ecopath with Ecosim 
Functional 

group approach; 
Populations also 
in age structure 

Biomass, Nutrient month Yes 
(ECOSPACE) 

Can be a 
very large 
number; 
typically 
order 40 

Foraging 
arena, flexible 

approach 

Effects of ecosystem 
and fisheries in both 

directions; yearly 
outputs 

High 
PooNor 
(model 

complexity) 
Included as off-line 

coupling 
https://ecopath.org

/ 
Christensen and Walters, 2004 

OSMOSE 
Object-oriented Simulator 

of marine ecosystem 
Exploitation 

Size spectra 
approach 

Biomass at different 
levels of aggregation year Yes 

Large 
number of 

species 

Efficient 
predator but 
can starve 

Multispecies 
dynamics 

Intermediate 

Intermediate  
(model 

complexity)N
o 

Included as off-line 
coupling 

https://osmose-
model.org/ Shin and Cury, 2004; 

FEISTY 
FishErIes Size and 

functional TYpe model 
Size spectra 

approach 
Biomass at different 
levels of aggregation 

year Yes 
Large 

number of 
species 

Flexible 
approach 

Multispecies 
dynamics 

Intermediate 
IntermediateN

o 
Included as off-line 

coupling 

https://github.com/
Kenhasteandersen/

FEISTY 
Blanchard et al., 2009 

Apecosm              
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