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Abstract.  We describe, at an elementary level, the spatially varying properties of the ocean that physical ocean models 10 

represent, the principles they use to evolve these properties with time, the physical phenomena that they simulate, and some 

of the roles these phenomena play within the Earth system. We also describe, in some at an intermediate level the governing 

equations the models use and the grids that they typically use, and at a more advanced technical detaillevel, the methods and 

approximations that the models use and the difficulties that limit their accuracy or reliability. We also briefly describe the 

wider context and future prospects for the development of these models.     15 

1 Introduction 

The models of ocean physics described in this paper, use physical principles to simulate how the three-dimensional structures 

of the ocean’s temperature, salinity and currents evolve in time. Section 2 describes the models at an introductory level.  It 

outlines first the spatially varying quantities they predict and the physical principles they use. It then describes the circulations 

the models simulate and some of the reasons why these circulations are important in the Earth system. Section 3Section 3 20 

describes the models at an intermediate level, outlining their governing equations, some approximations used to improve their 

efficiency and the grids they typically employ. Section 4 outlines at a more technical level the main approximations the models 

typically use and the steps in the discretisation of their equations, drawing attention to some of the difficulties which limit their 

accuracy or reliability. Section 4 of Wan5 discusses wider and future perspectives.  

Chassignet et al. (2024) describes aspects(2019) provides an alternative non-technical introduction to ocean modelling. 25 

McWilliams (1996) and  Fox-Kemper et al. (2019) provide more detailed reviews and Griffies (2004) is still a helpful primer 

on the basic techniques. Aspects of the design, testing, documentation and support for an ocean model code that are crucial for 

it to be suitable for use in operational predictions or climate simulations.      are covered in Wan et al. (2024). Porter et al. 

(2024) discuss the adaptations of ocean models required for them to perform efficiently on modern high-performance 

computers (HPCs).  30 

 

2.   An overview of the models and what they simulate 
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2.1 The quantities simulated and the principles used  

 35 

The temperature structure of the ocean at a given time in a physical ocean model is represented by a three-dimensional (3D) 

grid of temperature values. The three dimensions of the grid correspond to the three dimensions of space. One of the dimensions 

is aligned with the local vertical and the other two with locallocally horizontal directions. The set of temperature values on the 

grid is referred to as the temperature field. The salinity structure is similarly represented by a 3D grid of salinity values, referred 

to as the salinity field. The horizontal currents are represented by two fields, representing the currents in the two locally 40 

horizontal directions are represented by two fields and the locally vertical current by a third field. The fluid’s density and 

pressure are also represented by fields. In total, conceptually there are seven 3D fields (the temperature, salinity, density, 

pressure and 3 velocity fields) and the physical ocean model simulates how these fields will evolve in time. Given all these 

fields at time t, the model predicts how they will all evolve over the next few minutes or hours, that is over a time-step ∆𝑡, and 

hence their values at time 𝑡 + ∆𝑡.  Model predictions to days, months or years ahead are generated by performing a large 45 

number of time-steps.  

    

The equations used by physical ocean models are based on the physical principles of: 

 conservation of momentum (Newton’s laws of motion) for each direction in space;  

 conservation of the mass of water and salt; 50 

 conservation of energy (the first law of thermodynamics); 

 the thermodynamics determining the density at a point from the temperature, salinity and pressure (the equation of 

state). 

TheseTogether with information about the momentum, heat and fresh-water exchanged with the atmosphere and sea-ice at the 

ocean surface and with the solid earth at the bottom of the ocean (the boundary conditions), these 7 sets of constraints are 55 

sufficient to determine how the 7 fields will evolve. from given initial values at every point of the 7 fields (the initial 

conditions). In practice, the details of how the equations are used to provide computationally efficient, stable and accurate 

solutions are quite intricate. The accuracy of the model predictions is primarily limited by the representation of the ocean 

structure by the values on a grid whose resolution is limited by computational power. Motions at scales comparable to or 

smaller than the grid are not resolved. The effects of these sub-grid scale (SGS) motions on the resolved scales are calculated 60 

by parametrisation schemes. Although these are based on physical principles and detailed studies, their accuracy and reliability 

are inevitably limited. This is one of the main areas where further research has potential to improve the model simulations.       

 

2.2 The circulations simulated and their impacts  

 65 

The circulations and physical phenomena that these ocean models are typically used to simulate are principally the:  



 

3 
 

 near-surface boundary layer where there is strong turbulent mixing driven by surface winds and heating or cooling; 

(Large et al. 1994);  

 gyre circulations associated with the region, called the thermocline, where the vertical density gradient is strongest. 

Large-scale displacements in the thermocline are primarily driven by Ekman pumping: in the sub-tropical gyres, the 70 

thermocline is bowl-shaped; in the sub-polar gyres it is dome-shaped (chapter 20 of Vallis 2017);  

 meridional overturning circulations (MOCs) associated with heat loss and convective mixingstirring of mixed layers 

at high latitudes and wind driven upwelling near the equator and heat uptake in the Southern Ocean; and near the 

equator (Srokosz et al. 2021);   

 western boundary currents (WBCs); the depth mean WBCs are associated with the MOCs and thewind-driven gyre 75 

circulations (Pedlosky 1982, chapter 5) and oppositely directed surface and deep WBCs (Hogg 2001) with MOCs; 

 mesoscale circulations (with horizontal scales < 100 km) associated with instabilities of the boundary currents and 

gyre circulations; (Robinson 1983) 

 sub-mesoscale motions (with horizontal scales < 10 km) that are strongest in the near-surface boundary layer. (Taylor 

& Thompson 2023).   80 

These circulations and phenomena play important roles in the Earth system. For example:  the western boundary currents are 

responsible for very large meridional transports of heat and geographically varying air-sea fluxes which helpcontribute to the 

shape of atmospheric circulations; interannual variations in the slope of the thermocline along the equator in the Pacific 

oceanOcean are an essential component of the El Nino / Southern Ocean (ENSO) phenomenon; the advection of heat by large-

scale ocean currents towards ice shelves has a significant impact on their heat balance and evolution; (Stewart et al. 2018); and 85 

biogeochemical cycles are typically sensitive to the vertical advection of nutrients (Williams and Follows 2011) .   

The ocean models can be configured as a component of a coupled system, with models of other components such as the 

atmosphere, sea-ice, surface waves or biogeochemistry, or as a stand-alone system with suitable data sets providing surface 

forcing. They can be configured to cover the entire global ocean, or to cover just a limited region with lateral boundary 

conditions (that are often taken from a model of a larger region). Their initial conditions can be specified by climatologies 90 

based on historical measurements or regularly updated by assimilating the latest measurements as in operational forecast 

systems. (Martin et al. 2024). The model coupling, domain, resolution and initial conditions should be chosen to suit the 

purpose of the modelling and are constrained by the computational resources available.   

 

3. A simple description of ocean models    95 

 

3.1 Governing equations  
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There are many good books on the basics of fluid dynamics. Fluid dynamics is usually formulated using the concepts of vector 

calculus. Appendix A gives a brief introduction to vector calculus and its application to fluid dynamics, including simplified 100 

derivations of Eqs. (1) – (3) below.  

Tracers are defined to be properties that fluid parcels retain unchanged with time. Using 𝒯 to denote a tracer,  𝒖 the velocity 

field and 𝐷/𝐷𝑡 the Lagrangian time derivative (following the motion)   

𝐷𝒯/𝐷𝑡 = 𝜕𝒯/𝜕𝑡 + 𝒖. ∇𝒯 = 0.      (1) 

The fraction of the mass of water in a fluid parcel due to saline components, 𝑆, is a tracer and evolves according to the 105 

prognostic Eq. (1). Conservation of mass requires that the rate of decrease of mass inside an infinitesimal volume be equal to 

the fluxes out of its faces and hence that the density, 𝜌, satisfies    

డఘ

డ௧
+ ∇. (𝜌𝒖) = 0.        (2) 

Combining Eqs. (1) and (2) one obtains an alternative flux form for the evolution of tracers.   

డ(ఘ𝒯)

డ௧
+ ∇. (𝜌𝒖𝒯) = 0.        (3) 110 

The thermodynamics of sea water is rather complex. Vallis (2017) sections 1.5-1.7 give a helpful introduction to it. The 

macroscopic motions models represent are taken to be in thermodynamic equilibrium and reversible (e.g. not to include 

mixing).  The internal energy of a fluid parcel (following its motion) is then only changed by the heat (𝑄) input into it and the 

work done on it by pressure forces on it reducing its volume (work done equals force times distance travelled). A potential 

temperature, 𝜃, can be defined that is equal to the temperature the fluid parcel would have if reversibly moved without input 115 

of heat (adiabatically) to a reference height (such as the surface or 2000 m). The potential temperature evolves according to  

𝑐
ఏ

௧
=

ఏ

்
𝑄         (4) 

where 𝑐 is the heat capacity of the sea-water at constant pressure and 𝑇 is temperature. Ocean models generally use 𝜃 as a 

prognostic variable. This requires that 𝑇 and 𝜌 be calculated from the pressure, 𝑝, 𝜃 and 𝑆 using the equation of state for sea-

water.   120 

The acceleration of fluid particles is determined from Newton’s second law of motion: 𝑭 = 𝑚𝒂ூ. The acceleration 𝒂ூ in an 

inertial frame of reference must take into account that the Earth is rotating and that the fluid velocity 𝒖 is the velocity relative 

to this rotating frame of motion. Representing the rotation by the vector 𝛀 which is aligned with the axis of rotation and equal 

to the rate of rotation, Vallis (2017) section 2.1 nicely shows that  

𝒂ூ =
𝒖

௧
+ 2𝛀 𝐱 𝒖 + 𝛀 𝐱(𝛀 𝐱 𝐫) .       (5) 125 

A perfect fluid does not resist shearing motions (Batchelor 1969). Then the force exerted on an infinitesimal element of the 

surface area of a fluid parcel by the fluid outside is inward and in the direction normal to the surface. So this force 𝑭 = −𝑝𝒏ෝ , 

where 𝒏ෝ is the outward pointing normal vector of unit length and by an argument similar to that in Eq. (A.7) one finds that the 

pressure force on a volume 𝛿𝑉 is given by −𝛿𝑉 ∇𝑝. The force due to gravity on this cell is downward and equal to its mass 

𝜌δ𝑉 times g. Putting these expressions together for a perfect fluid we infer that  130 
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𝜌 ቂ
𝒖

௧
+ 2𝛀 𝐱 𝒖 + 𝛀 𝐱(𝛀 𝐱 𝐫) ቃ = −∇𝑝 − 𝜌𝑔𝒌    (6) 

where 𝒌 is the local unit vector pointing upward.  

In fluids, energy input at one scale does not stay at that scale, some “propagates” to larger scales and some to smaller scales. 

The smaller scales are visible in tracer fields where one sees tongues of tracers drawn out into filaments that become 

interleaved. The cascade of energy to small scales results in dissipation of energy and vorticity. In the oceans most mixing 135 

occurs on isopycnal (constant density) surfaces. Models are formulated to mix tracers preferentially along isopycnal surfaces 

(Redi 1982) and aim to constrain the diapycnal mixing to realistic levels. The mesoscale motions in the boundary currents 

usually derive their energy by extracting potential energy from the sloping isopycnals associated with the currents. Models 

which only partially resolve mesoscale motions usually include formulations for additional velocities which flatten these 

sloping isopycnals (Gent & McWilliams 1990). The momentum equations also include terms which drain kinetic energy. 140 

These are usually designed to be strongly scale-selective (e.g. biharmonic) in order to drain energy preferentially from the 

grid-scale. It is important to restrict the grid-scale velocities to levels that do not result in excessive diapycnal mixing of tracers 

(Ilicak et al. 2012).    

 

3.2 Principles of efficiency, accuracy and stability  145 

 

Ocean models should be designed to accurately represent the motions of interest and to be as efficient in their calculations as 

possible. It is also highly desirable that they possess analogues of important conservation properties, such as conservation of 

energy and momentum, and that they have operators that mimic the properties of div, grad and curl for some of the fields.   

It is also essential that the model integrations are stable.  The prognostic equations are of the form 𝜕𝑃/𝜕𝑡 = 𝑅 . When 150 

calculating 𝑃 at timestep 𝑡 + 1 nearly all the terms in 𝑅 need to be written in terms of quantities at step 𝑡 or earlier steps 

such as 𝑡 − 1. If the timestep is too large one of these terms will cause exponential growth of near gridscale fluctuations in 

𝑃. The CFL criterion which requires 𝑐∆𝑡 < ∆𝑥, where 𝑐 is a speed (such as  |𝒖| or the phase speed of a gravity wave), ∆𝑡 is 

the timestep and ∆𝑥 is the grid-spacing, is of this form (Durran 1999). If the terms in 𝑅 that are directly related to 𝑃 are 

specified using 𝑃 at timestep 𝑡 + 1, a resulting formulation whose timestep is not restricted can usually be found. Such 155 

implicit schemes usually require solution of a matrix equation. If the matrix involves the whole 2D or 3D domain its solution 

is usually costly. Vertical mixing is a fast process (mixing across many grid cells typically happens in one timestep) and 

implicit schemes result in 1D tridiagonal matrix equations that can be solved robustly and efficiently, so most ocean models 

use implicit schemes for vertical mixing.         

 160 

3.3 Approximations that improve efficiency  
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Sound waves in the ocean travel at about 1500 m/s and sea-level variations associated with depth independent motions travel 

at about 200 m/s. Other motions associated with internal waves (gravity, Kelvin & Rossby waves) and the currents themselves 

propagate signals at no more than about 3 m/s. Ocean  models usually employ approximations that make their solution more 165 

efficient by eliminating sound waves and enabling special treatment of the depth independent motions.  The Boussinesq 

approximation takes the ocean density to be treated as a constant except in the gravitational force −𝜌𝑔𝒌. The conservation of 

mass (2) then reduces to  ∇. 𝒖 = 0 which says that the fluid is incompressible and the evolution of tracers simplifies to 𝜕𝒯/𝜕𝑡 +

∇. (𝒖𝒯) = 0. The deliberate omission of 𝜕𝜌/𝜕𝑡 from (2) eliminates sound waves from the model’s solutions. The external 

mode which is almost depth independent is usually calculated separately as a depth independent mode. It is usually calculated 170 

using variables that depend only on the “horizontal” coordinates using time steps that are about 60 times smaller than those 

used for the 3D calculations.    

Another approximation that is commonly used is to neglect the vertical velocities in the vertical component of the momentum 

equation. This hydrostatic approximation is valid for motions with horizontal scales that are much larger than their vertical 

scales. The vertical pressure gradient is then diagnostic (rather than prognostic) and typically satisfies 𝜕𝑝/𝜕𝑧 = −𝜌𝑔. 175 

 

3.4 Model grid cells 

 

Finite difference schemes take cell values to be point values and calculate derivatives explicitly. The advection of tracers might 

be calculated using (1). Finite volume schemes calculate the fluxes and forces across cell faces and treat cell values as grid cell 180 

means. They conserve volume, heat and momentum and usually aim to conserve energy. Most ocean models are formulated 

using finite volume schemes at least for tracers.  

 

 

 185 

FIG. 1. The horizontal placement of variables on (a) the B-grid and (b) the C-grid. Tracers, 𝒯,  and velocities 𝑢 and 𝑣 in the 𝑥 

and 𝑦 directions are located at the points marked by blue dots and red and green arrows respectively. (c) shows that on the C-

grid the vorticity is naturally centred at the corners of the tracer grid. 
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Most ocean models use curvilinear orthogonal coordinates in the “horizontal” (on spheroidal surfaces) but an increasing 190 

number use triangular or hexagonal grids (Ringler 2010, Korn et al. 2022). Panels (a) and (b) of Fig. 1 illustrate the two most 

common choices for the placement of variables in grid cells, the Arakawa B and C grids respectively (Arakawa 1960). Both 

grids store the tracers and the pressure at the centre of each cell. The B-grid stores both components of the velocities at each 

of the corners of the cell, whilst the C-grid (Fig. 1(b)) stores them at the centres of the faces to which they are normal and 

hence at different points. Particularly when the Boussinesq approximation is made, the C-grid is ideal for the evolution of 195 

tracers, conservation of volume and the calculation of 𝜕𝑝/𝜕𝑥  at the 𝑢-points and 𝜕𝑝/𝜕𝑦  at the 𝑣-points. The B-grid is ideal 

for the calculation of the Coriolis terms, whereas the simplest expression for  𝑣 at the 𝑢-point on the C-grid involves a 4-point 

average of 𝑣 at the surrounding gridpoints.  On the B-grid the horizontal divergence and vorticity are naturally centred at the 

tracer points, whilst on the C-grid they are centred at the tracer points and the cell corners respectively (Fig. 1(c)).  

The choice of vertical coordinate is particularly important in an ocean model. A model level may have a constant height (z-200 

coordinates), have constant potential density (isopycnal coordinates) or vary in proportion to the local depth (terrain-following 

coordinates). In principle the vertical coordinate could aim to transition from z-coordinates near the sea surface to isopycnal 

coordinates in the interior and terrain coordinates near the bottom. These coordinates are discussed further in the next section. 

We note that the axes used by the momentum equations are not altered by these schemes. It is just the coordinates not the axes 

that are transformed.      205 

Most of the terms in ocean models, including the boundary conditions are only calculated to second order accuracy. This means 

that if the model were used to simulate an idealised case in which the motions are reasonably well resolved, the errors in the 

solution should reduce by a factor of 4 as the grid spacing is reduced by a factor of 2. To second order accuracy, a grid cell 

mean value is equal to the point value at its centre. So in some models it is not entirely clear what the grid cell values are 

intended to represent. It has been found to be advantageous to calculate the advection terms (usually the fluxes through the 210 

cell faces) to higher order accuracy and to limit the values of the fluxes to avoid extending the range of tracer values (Durran 

1999, Fox-Kemper 2019). Higher order schemes for the calculation of pressure forces are also advantageous for terrain-

following coordinates.  

4 Methods and approximations employed in ocean models  

Fox-Kemper et al. (2019) provide a good recent review of ocean modelling methods and Griffies (2004) is still a helpful primer 215 

on the basic techniques.  

34.1 Variables and equations used   

The ocean models used in physical ocean prediction systems evolve 3D fields of the active tracers and the three components 

of velocity (see section 5.5.1. of Alvarez-Fanjul et al. 2022). They also evolve either a 2D surface pressure (or surface height) 

field or a 3D pressure field. The active tracers used depend on the formulation of the equation of state. When it is EOS80 220 
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(Fofonoff and Millard 1983) the active tracers are potential temperature and practical salinity, whilst when it is TEOS10 (IOC 

et al. 2010) they are conservative temperature and absolute salinity.  The evolution of these fields is determined by some form 

of the so-called primitive equations (Griffies and Adcroft 2008). The approximations that are usually made are generally well-

described in section 5.4 of Alvarez-Fanjul et al. (2022).  We note however that the centripetal acceleration is not included in 

the equations because they have been transformed so that the elliptical geoid ofspheroid coincident with the Earth’s bulge, 225 

follows a spherical surface (Vallis 2017). It is of course assumed (the turbulent closure hypothesis) that the effect of small-

scale motions on large-scale motions can be represented (that is parametrised) in terms of the large-scale motions. None of the 

Boussinesq, hydrostatic, incompressible and additional Coriolis term approximations is mandatory but maintaining consistent, 

well-behaved, equations requires care. Some alternative forms of the primitive equations which enjoy good conservation 

properties are derived in White et al. (2005).  Compressible equations support rapidly traveling sound waves which (can be 230 

artificially slowed but) make competitively efficient solution difficult. 

34.2 Numerical discretization 

Ocean models normally use a smoothly varying horizontal grid consisting of triangular or quadrilateral elements (section 5.4.2. 

of Alvarez-Fanjul et al., 2022). Where the grid-lines on the quadrilateral grids intersect, they are usually orthogonal (hence 

called curvilinear orthogonal). The grids are chosen to have rather uniform resolution (cubed sphere grid, Ronchi et al., 1996) 235 

or to be isotropic (same resolution locally in the two directions) with grid-spacing decreasing away from the equator and the 

poles of the grid placed over land (Madec and Imbard, 1996). Triangular elements have the obvious advantage that they can 

be chosen to follow coastlines more accurately. With triangular elements, reduced grid-spacing is often employed for selected 

regions within one smoothly varying grid. With quadrilateral elements, reduced grid-spacing is usually achieved by using 

separate “child” grids that are nested within the “parent” grid with 1-way nesting (the “child” takes boundary values from the 240 

“parent” - Staniforth, 1997) or 2-way nesting (the “parent” also takes values from the “child” - Debreu and Blayo, 2008). 

Finite difference and finite volume methods are usually employed with the quadrilateral grids. Finite volume models evolve 

their fields by calculating the fluxes across their cell faces. The cell values in such models should be interpreted as cell mean 

values (rather than values at a point near the centre of the grid), but  (the difference between the two is not significant for terms 

that are calculated only to second order accuracy. However the pressure gradient calculation in ROMS and NEMO 245 

(Shchepetkin and McWilliams, 2003), which calculates the term to higher order accuracy, interprets variables as point values 

(rather than cell mean values) in its calculations.). Models using triangular elements, use either finite element or finite volume 

techniques (Danilov, 2010) (; FESOM has transitioned from finite element to finite volume). 

The main choices for the staggering of variables on orthogonal grids are the B-grid and C-grid (Arakawa 1960). The dispersion 

properties of internal waves on the C-grid isare better (worse) than the B-grid when the grid resolves (does not resolve) the 250 

Rossby radius. Stationary chequer-board modes for the pressure field on the B-grid and the velocity field on the C-grid can be 

associated with undesirable grid-scale “noise”. The dispersion properties of internal waves on triangular grids are more 

problematic though some finite element pairs (Le Roux et al., 1998) perform relatively well. There has been significant recent 
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progress in the development of C-grid-like formulations for triangular grids (and their hexagonal dual grids) with good, 

mimetic, properties (Ringler et al., 2010; Cotter and Shipton, 2012). 255 

The choice of vertical “grid” is well known to have far-reaching consequences for ocean models. Ideally the grid willThe 

Lorenz grid staggering is commonly used despite its computational mode and susceptibility to spurious short-wave instabilities 

(Arakawa and Moorthi 1988, Bell and White 2017). Ideally, the vertical grid would have fine vertical spacing near the surface, 

so that the mixed layer can be well represented, and the surfaces on which the vertical coordinate take constant values, 

willwould follow isopycnals at mid-depths, so that advective velocities and spurious (numerical) time-mean advective 260 

diapycnal transports are minimized, and would follow the bathymetry at the ocean bottom, so that flow down slopes (with its 

associated vortex stretching) is well represented. Techniques to use coordinates that treat some parts of the motions using 

Eulerian methods and others using Lagrangian approaches with re-mapping are described in Petersen et al. (2015), Griffies at 

al. (2020),) and Hofmeister et al. (2010). Generation of an appropriate vertical grid for ocean models is an active area of 

research. 265 

Most terms in ocean models are calculated using second-order accurate formulae. The advection of tracers should however be 

calculated using schemes of higher order accuracy (typically third or fourth order) which also take care to retain the upper and 

lower bounds of the advected quantities. There is a very extensive literature on this subject (Durran, 1999, Brasseur and Jacob, 

2017) and it is generally agreed that the advecting velocity field should be constrained to be sufficiently smooth (e.g., Ilicak 

et al., 2012).Ilicak et al., 2012). The effective resolution of the model also depends on how scale-selective the dissipation of 270 

variance is near the grid scale (Soufflet et al. 2016).   

Specific terms in the equations of motion present different challenges depending on the grid that has been chosen. For terrain-

following coordinates, calculation of the horizontal pressure gradient to higher order (Shchepetkin and McWilliams, 2003) 

and of the diffusion along isopycnal surfaces (Lemarié et al., 2011) is beneficial, and some smoothing of the bathymetry is 

necessary. Formulation of the governing equations for the cells that are only partially filled by water is an active area of 275 

research (Adcroft, 2013; Debreu et al., 2020). For C-grid models, calculation of the Coriolis term should ensure conservation 

of energy and some care is needed to avoid unintended transfer of energy to the grid-scale (Hollingsworth et al. 1983, Bell et 

al. 2017, Ducousso et al., 2017). 

The strengths and weaknesses of various time-stepping schemes used in ocean models are reviewed in Lemarié et al. (2015). 

Various approaches have been taken to the time-stepping of the external (barotropic) mode (Shchepetkin and McWilliams, 280 

2003; Demange et al., 2019). 

34.3 Parameterization of unresolved processes 

The parameterization of unresolved processes is of primary importance: Fox-Kemper  et al. (2019) provides a useful review. 

The classic parameterizations of isopycnal diffusion (Redi, 1982; Visbeck et al., 1997), and of the slumping of isotherms by 

baroclinic instabilities (Gent and McWilliams, 1990) work well in climate models with order 1o grid spacing. The latter needs 285 

to be developed further for models of higher resolution using ideas such as Bachman (2017) and Mak et al. (2018). It is 
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increasingly clear that sub-mesoscale motions within the ocean surface boundary layer flux heat vertically (Fox-Kemper et al., 

2011) and generate filamentary structure. The interaction of these motions with standard parametrisations of turbulence 

(Umlauf and Burchard, 2005) and Langmuir turbulence (Reichl et al., 2016) is an active area of research as is the 

parameterization of internal dissipation by internal gravity waves generated by tidal displacements over steep bathymetry (de 290 

Lavergne et al., 2020). Machine learning (ML) methods are being applied to the parametrisation of sub-gridscale motions 

(Zanna & Bolton 2020,  Ross et al. 2023) and are likely to play important roles in future ocean models.  

 

5. Wider and future perspectives  

  295 

Modern ocean models use large HPC resources and open source codes supported by communities of scientists and software 

engineers. They support public safety and protection of the environment by contributing to short-range weather predictions 

(including forecasts of hurricanes), seasonal forecasts of El Niño and information about climate change.  In order to properly 

appreciate their roles one needs to see them as one component within the much wider range of scientific activities required to 

provide this support. Innovations in remote sensing and in situ measurement technology and their internationally-coordinated 300 

and sustainable implementation are fundamental to these endeavours. The development of seasonal predictions in the late 

1980s and early 1990s, for example, was closely tied to the development of the TOGA TAO array (Smith 2001). The doubling 

of the number of transistors in a CPU every 2 years from 1970 - 2020 (Porter et al. 2024), and the emergence of accurate near 

real-time satellite altimetry and the ARGO system of drifters around the turn of the century enabled near global assimilation 

and prediction of the strongest mesoscale ocean motions to first become a reality around 2015 (Bell et al. 2015). What will be 305 

the major societal drivers and what are the best opportunities for scientific improvement in the next 10-20 years? We don’t 

have a crystal ball but we can offer some suggestions.   

As mentioned at the end of the last section, ML methods have recently emerged as a new set of tools that can be used in many 

ways to improve Earth system models (Eyring et al. 2024). Depending on the directions explored, the ocean model codes may 

need to be rewritten as differentiable functions to exploit ML methods fully (Silvestri et al. 2024). Ocean reanalyses based on 310 

measurements from 1980 onwards are gradually being improved and together with atmospheric reanalyses will provide an 

essential resource for inputs to ML and the assessment and improvement of coupled ocean-atmosphere models. The 

international coordination established under CMIP (Coupled Model Intercomparison Project, https://www.wcrp-

climate.org/wgcm-cmip) should enable much richer sets of experiments to be conducted and more diverse ensembles of ocean 

and Earth system models to be explored than would otherwise be possible. There is also scope for more traditional 315 

improvements to ocean models; such as improved methodologies and choices for: vertical coordinates;  parametrisation of 

vertical mixing; specification of surface exchanges (Yu 2019, Storto et al. 2024); the use of finer horizontal resolution in 

selected regions; and more efficient generation of ensembles of simulations.  Coupled simulations of ENSO still have 

significant deficiencies and simulations of the future Atlantic MOC are not as reliable as they need to be. In summary, it is 

reasonable to be optimistic that successful progress with significant societal impacts can be made over the next 10-20 years.     320 
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Appendix A An introduction to vector calculus for fluid dynamics  

 

Fluid dynamics is concerned with properties like temperature and salinity that vary spatially and evolve with time. Such 

properties are referred to as fields. Just as 𝑦(𝑥) represents any curve 𝑦 that is a function of  𝑥 in ordinary calculus,  𝐹(𝑥, 𝑦, 𝑧, 𝑡) 325 

represents any field that depends on 𝑥, 𝑦, 𝑧 and 𝑡. In ordinary calculus we have 𝛿𝑦 ≅ 𝑦(𝑥 + 𝛿𝑥) − 𝑦(𝑥) and consider 𝛿𝑦/𝛿𝑥 

in the limit as 𝛿𝑥 becomes very small. For “smooth” enough functions there is a limiting value 𝑑𝑦/𝑑𝑥. In vector calculus we 

consider how 𝐹 varies with each of its coordinates whilst keeping the other coordinates fixed. Varying 𝑥 and considering the 

limit when 𝛿𝑥 becomes very small we write 

డி

డ௫
=

డி

డ௫
ቚ

௬,௭,௧ 
=

ி(௫ାఋ௫,௬,௭,௧)ିி(௫,௬,௭,௧)

ఋ௫
    in the limit as 𝛿𝑥 → 0.     (A.1) 330 

𝜕𝐹/𝜕𝑥 is termed the partial derivative of 𝐹 with respect to 𝑥. The variables that are held constant can be explicitly declared as 

shown. For brevity they are often omitted, in which case they are implicit. An extremely useful expression analogous to 𝛿𝑦 ≅

𝑦(𝑥 + 𝛿𝑥) − 𝑦(𝑥) is 

𝛿𝐹 ≅
డி

డ௫
𝛿𝑥 +

డி

డ௬
𝛿𝑦 +

డி

డ௭
𝛿𝑧 +

డி

డ௧
𝛿𝑡.      (A.2) 

 335 

FIG A1: (a) Illustration of a curve 𝒓(𝑠) in 3D space obtained by varying the scalar parameter 𝑠 from 𝑠 to  𝑠ଵ. (b) Illustration 

of the contribution to the mass flux divergence for a cell of volume δ𝑥δ𝑦δ𝑧  from the fluxes through the faces 

perpendicular to the 𝑥-axis. (c) The anti-clockwise path around the sides of the infinitesimal cell with sides of length 

δ𝑥 and δ𝑦 used to calculate the area integral within the cell of the normal component of vorticity.    

 340 

For the sake of simplicity we limit ourselves hereafter to rectilinear Cartesian coordinates in which the axes are orthogonal 

straight lines, the coordinates of a point r  are denoted by (𝑥, 𝑦, 𝑧), the distance from the origin, 𝑑, is given by Pythagoras’ 
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theorem (𝑑ଶ = 𝑥ଶ + 𝑦ଶ + 𝑧ଶ), and 𝑧 points upward. We explain later that the equations can be derived for a more general set 

of locally orthogonal coordinates.   

Consider first a curve r(s) between two points, 𝒓 = 𝒓(𝑠) and 𝒓ଵ = 𝒓(𝑠ଵ) as illustrated in Fig. A1(a). Integrating Eq. (A.2) 345 

along the curve (with 𝛿𝑡 = 0) one sees that 

𝐹(𝒓ଵ) − 𝐹(𝒓) =  ∫ ቀ
డி

డ௫

ௗ௫

ௗ௦
+

డி

డ௬

ௗ௬

ௗ௦
+

డி

డ௭

ௗ௭

ௗ௦
ቁ 𝑑𝑠

௦భ

௦బ
     (A.3) 

Writing ∇𝐹 = (𝜕𝐹/𝜕𝑥, 𝜕𝐹/𝜕𝑦, 𝜕𝐹/𝜕𝑧) and 𝑑𝒓/𝑑𝑠 = (𝑑𝑥/𝑑𝑠, 𝑑𝑦/𝑑𝑠, 𝑑𝑧/𝑑𝑠), (3) can be re-expressed as   

𝐹(𝒓ଵ) − 𝐹(𝒓) =  ∫ ∇𝐹.
ௗ𝒓

ௗ௦
𝑑𝑠

௦భ

௦బ
= ∫ ∇𝐹. 𝑑𝒓

భ

బ
     (A.4) 

Eq. (A.4) is the defining property of ∇𝐹 which is termed the gradient of 𝐹 or grad 𝐹 for short. If one integrates around any 350 

path which closes on itself, i.e. 𝒓ଵ = 𝒓, one sees that the left-hand side of Eq. (A.4) is equal to zero. Hence the integral of ∇𝐹 

around any closed curve is zero.  

The rate of change with time of a field 𝐹 following a fluid particle moving at velocity 𝒖 = (𝑢, 𝑣, 𝑤) can also be inferred from 

Eq. (A.2) by dividing it by 𝛿𝑡. Following the fluid parcel,  𝛿𝑥 ≅ 𝑢𝛿𝑡, 𝛿𝑦 ≅ 𝑣𝛿𝑡 and 𝛿𝑧 ≅ 𝑤𝛿𝑡. So   

ி

௧
=

డி

డ௧
+ 𝑢

డி

డ௫
+ 𝑣

డி

డ௬
+ 𝑤

డி

డ௭
=

డி

డ௧
+ 𝒖. ∇𝐹.      (A.5) 355 

Here we have used the standard notation D𝐹/𝐷𝑡 to denote the rate of change of 𝐹 with respect to time following a fluid parcel, 

which is often called the Lagrangian derivative. Tracers are defined to be properties that fluid parcels retain unchanged with 

time. Using 𝒯to denote a tracer we see that  

D𝒯/𝐷𝑡 =
డ𝒯

డ௧
+ 𝑢

డ𝒯

డ௫
+ 𝑣

డ𝒯

డ௬
+ 𝑤

డ𝒯

డ௭
= 0.      (A.6) 

An equation expressing conservation of mass can be derived by considering the “notional” cuboid cell illustrated in Fig A1(b). 360 

The density of a fluid, 𝜌, is defined to be its mass per unit volume. The volume of the cell in Fig. A1(b) equals δ𝒱 = δ𝑥δ𝑦δ𝑧. 

The fluxes of mass through the two side-faces perpendicular to the 𝑥-axis are 𝑈(𝑥, 𝑦, 𝑧) δ𝑦δ𝑧 and 𝑈(𝑥 + δ𝑥, 𝑦, 𝑧) δ𝑦δ𝑧 where 

𝑈 = 𝜌𝑢. So in the limit as the cell volume becomes very small the flux out of the cell from these two faces equals  

[𝑈(𝑥 + δ𝑥, 𝑦, 𝑧) − 𝑈(𝑥, 𝑦, 𝑧)]δ𝑦δ𝑧 ≅
డ

డ௫
δ𝑥δ𝑦δ𝑧.       (A.7) 

Conservation of mass requires that the increase in mass inside the cuboid plus the fluxes out of the three pairs of side-faces 365 

equal zero. Using expressions corresponding to Eq. (A.7) and dividing by δ𝒱 one obtains 

డఘ

డ௧
+

డ(ఘ௨)

డ௫
+

డ(ఘ௩)

డ௬
+

డ(ఘ௪)

డ௭
=

డఘ

డ௧
+ 𝛁. (𝜌𝒖) = 0.      (A.8) 

 

The operator 𝛁. introduced in Eq. (A.8) is called the divergence. At any point it is defined to be the outward flux per unit 

volume through a surface enclosing that point. Gauss’ theorem shows that for “smooth” fields the divergence does not depend 370 

on the shape of the volume (e.g. it is the same for infinitesimal spheres and cuboids). Combining Eqns. (A.6) and (A.8) one 

obtains the flux form for the conservation of tracers.  

డ(ఘ𝒯)

డ௧
+

డ(ఘ௨𝒯)

డ௫
+

డ(ఘ௩𝒯)

డ௬
+

డ(ఘ௪𝒯)

డ௭
=

డ(ఘ𝒯)

డ௧
+ ∇. (𝜌𝒖𝒯) = 0.     (A.9) 
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There is one other vector quantity that is particularly important in fluid dynamics: the curl of the velocity field, 𝛁 × 𝒖, which 

is termed the vorticity. The component of the vorticity perpendicular to the infinitesimal square shown in Fig. A1(c) is 375 

calculated by considering the line integral of 𝒖. 𝑑𝒓 anti-clockwise around its sides. Similarly to Eq. (A.7), [𝑣(𝑥 + δ𝑥, 𝑦) −

𝑣(𝑥, 𝑦)]δ𝑦 ≅
డ௩

డ௫
δ𝑥δ𝑦 and 

∮ 𝒖. 𝑑𝒓 =  ∬ ቀ
డ௩

డ௫
−  

డ௨

డ௬
ቁ d𝑥d𝑦 = ∬ 𝛁 × 𝒖. 𝑑𝑺.     (A.10) 

Here 𝑑𝑺 is the vector perpendicular to the area enclosed by the line integral whose length is equal to that area. Stokes’ theorem 

shows that the vorticity does not depend on the shape of the area used to calculate it (e.g. it is the same for infinitesimal circles 380 

and squares). The vorticity of the fluid is particularly important because of Kelvin’s theorem which states that under certain 

conditions following a fluid parcel the vorticity does not change with time (i.e. it is conserved). Ertel’s theorem on conservation 

of potential vorticity is based on Kelvin’s theorem (Pedlosky 1982 chapter 2).  

Expressions for the gradient, divergence and curl of vector fields and relations between them can be derived for generalised 

curvilinear orthogonal coordinate systems (see Lorrain and Corson 1970 for a well illustrated introduction and Appendix A of 385 

Batchelor (1967) for a concise summary). Latitude, longitude coordinates for the sphere are one example of such coordinate 

systems.   
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