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Abstract. The availability of numerical simulations for ocean dynamics past estimates or future forecast 

worldwide at multiple scales is opening new challenges in assessing their realism and predictive capacity through 

an intercomparison exercise. This requires a huge effort in designing and implementing a proper assessment of 

models’ performances, as already demonstrated by the atmospheric community that was pioneering in that sense. 

Historically, the ocean community launched only in the recent period dedicated actions aimed at identifying robust 15 

patterns in eddy-permitting simulations: it required definition of modelling configurations, execution of dedicated 

experiments that deal also with the storing of the outputs and the implementation of evaluation frameworks. 

Starting from this baseline, numerous initiatives like CLIVAR for climate research and GODAE for operational 

systems have raised and are actively promoting best practices through specific intercomparison tasks, aimed at 

demonstrating the efficient use of the Global Ocean Observing System and the operational capabilities, sharing 20 

expertise and increase the scientific quality of the numerical systems. Examples, like the ORA-IP, or the Class 4 

near real time GODAE intercomparison are introduced and commented, discussing also on the ways forward on 

making this kind of analysis more systematic using artificial intelligence approaches for addressing monitoring of 

ocean state in operations, or facilitating in-house routine verification in ocean forecasting centre. 

1 Historical development of model intercomparisons 25 

Historically, in oceanography, model comparisons began with evaluations of "free" and "forced" numerical 

simulations of ocean circulation over the same space and time frames, assessing their differences within 

comparable situations. The international Atmospheric Model Intercomparison Project (AMIP), under the World 

Climate Research Programme (WCRP), played a pioneering role in guiding the oceanic modelling community 

(Gates, 1992). AMIP's primary objective was to comprehensively evaluate each model's performance and 30 

document systematic errors. From an academic standpoint, this intercomparison aimed to identify avenues for 

enhancing future atmospheric models and driving further developments. Consequently, this approach aligns 

clearly with the validation framework outlined in Garcia-Sotillo et al. (2024, this report). To provide an objective 

assessment of each "competing" model's performance, a common "reference truth" was selected, such as 

climatology or atmospheric reanalysis (deemed more realistic than the AMIP simulations). This process involved 35 

analysing a series of targeted key variables extracted from the model state to provide an overview of the model's 

skill in representing various atmospheric aspects. 
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The same atmospheric community, involved in the climate studies, settled in 1996 the basis of the Coupled Model 

Intercomparison Project (CMIP) under the auspice of the WCRP/Climate Variability and Predictability (CLIVAR) 

panel to document systematic errors of global couple climate simulations in support of the Intergovernmental Panel 40 

on Climate Change (IPCC) framework (Meehl et al., 1997). Over the six phases of the CMIP, intercomparisons 

have refined the assessments, increasingly including the physical, biochemical and ecosystem components of the 

Earth system, by testing various climate scenarios of past, present and future CO2 emissions. In the current phase, 

the CMIP6, the variety of models, simulations and their objectives have led the community to redefine the 

federated structure through a common specific framework, the Diagnostic, Evaluation and Characterization of 45 

Klima (DECK) experiments, which set out the simulations and scientific questions to be addressed. The DECK is 

the new acceptance criterion for a climate intercomparison project in the CMIP (Eyring et al., 2016). The evolution 

of the CMIP has been accompanied by the gradual adoption by the climate community of common standards, 

coordination, infrastructure, and documentation, accessible to all. This persistent framework aims to ensure 

continuity in climate model performance assessment through future CMIP phases were re-processed historical 50 

simulations defined in the AMIP will allow to track changes and benefits of more elaborated components of the 

Earth System Models (ESM). 

The ocean modelling research community adopted a similar approach than the AMIP when the first global or 

basin-scale eddy-permitting ocean simulations were achieved in the 1990’s. The US-German Community 

Modelling Effort (CME), in support of the World Ocean Circulation Experiment (WOCE) started to infer model 55 

parametrization and sensitivity studies in modelling the North Atlantic basin (Böning and Bryan, 1996). Sources 

of errors like ocean boundaries or vertical mixing parametrisation were identified. The DYNAMO project, 

dedicated to offer intercomparison among three classes of ocean models of the North Atlantic Ocean in a similar 

numerical experiment framework (Meincke et al., 2001) allowed to identify patterns of the North Atlantic Ocean 

circulation that were robust, and others that were sensitive to model parameterization. In this case, the 60 

intercomparison approach brought another benefit than just identifying performances among the simulations: the 

common and matching patterns represented by the simulations were considered as an updated knowledge of the 

North Atlantic Circulation. In other terms, identifying the “ensemble pattern” from the simulations as a robust 

representation of the “ocean truth” at the scales simulated by these models. 

This first initiative led to the development of a common ocean modelling framework from the ocean community 65 

also involved in the CMIP projects: the Coordinated Ocean-ice Reference Experiments (COREs) aiming at 

providing common references for consistent assessment from a multi-model perspective (Griffies et al., 2009). 

The CORE-I intends at evaluating model mean biases under a normal year forcing, using a prescribed series of 

metrics (e.g., Danabasoglu et al., 2014). The CORE-II framework extends the ocean model evaluation under the 

common interannual forcing –starting in 1948– proposed initially by Large and Yeager (2009). It offers more 70 

direct comparison to ocean observations and to the effective ocean interannual variability. An intercomparison of 

eighteen time-dependant ocean numerical simulations have yet been performed, with useful outcomes for global 

ocean model improvements. The CORE-II approach is the foundation of the Ocean Model Intercomparison 

Projects (OMIPs) carried out in support of the successive CMIPs, with a coordinated evaluation of the ocean/sea-

ice/tracer/biogeochemistry simulations forced by common atmospheric data sets (Eyring et al., 2016). The OMIP 75 

version 1 contribution to CMIP6, with ocean simulations intercomparisons over the 1948-2009 period is described 

by Griffies et al. (2016) and contains a comprehensive list of metrics and guidance to evaluate ocean-sea ice model 
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skills as part of ESM. A companion article by Orr et al. (2017) proposes the evaluation framework for the 

biogeochemical coupled model simulations in CMIP6. Under the CLIVAR Ocean Model Development Panel 

(OMDP) coordination, an OMIP version 2 is ongoing using the more recent JRA-55 reanalysis forcings 80 

(Kobayashi et al., 2015). Metrics ocean –diagnostics– endorsed by the OMIP are those recommended for the 

assessment of the ocean climate behaviour, impacts, and scenarios in the CMIP DECK. 

These first ocean intercomparison projects witness the community effort, trying to commonly define modelling 

strategies, conduct the simulations individually, then intercompare the simulations in order to evaluate model’s 

performance with regard to observed realistic references. Bringing better characterisation of model errors and 85 

weaknesses considering specific ocean processus, from the physical to the biogeochemical aspects, over decadal, 

interannual and seasonal time scales. Implicitly, these efforts have involved strategies for distributing, storing, 

sharing simulations and metrics, under constraints of computing server limitations in capacity and communication 

bandwidth. In practice, this brought to the common technical definition of standards shared by all participants, and 

a fit-for-purpose evaluation framework, to be applied in similar ways on every simulation. And finally, carry out 90 

a common synthesis effort in order to provide valuable conclusions. 

The first intercomparison project that involved the operational oceanography has been carried out in the frame of 

the CLIVAR Global Synthesis and Observation Panel (GSOP). In practice, this involved intercomparing different 

ocean reanalyses computed over several decades, and provide “ocean synthesis” on ocean state estimation through 

a chosen series of Ocean Essential Variables (EOV) considered in climate research (Stammer et al., 2009). A step 95 

was taken since it was no longer comparison of model outputs, but of products issued from the more complex 

system producing each reanalysis (observation + model + assimilation), increasing the factors of discrepancies 

among them. The idea being that multi-system ensemble approaches should be useful to obtain better estimates of 

the ocean evolution. The GSOP objectives were (1) to assess the consistency of the synthesis through 

intercomparison; (2) to evaluate the accuracy of the products, possibly by comparison to observations; (3) to 100 

estimate uncertainties; (4) to identify areas where improvements were needed; (5) to evaluate the lack of 

assimilated observations that directly impacted the synthesis, and propose future observational requirements; (6) 

to work on new approaches, like coupled data assimilation. One of the outcomes was to highlight common 

behaviour among some products, that is, evidence “clusters'' and correlated patterns that sometimes had just 

inappropriate biases. 105 

In the atmospheric and weather-forecast side, usually responsible for marine meteorology predictions, routine 

intercomparison for wave forecast has been settled for many years under the World Meteorological Organization 

(WMO) framework. The European Centre for Medium-Range Weather Forecasts (ECMWF) hosts the ongoing 

WMO Lead Centre for Wave Forecast Verification where eighteen regional and global wave forecast systems are 

compared (https://confluence.ecmwf.int/display/WLW, last access 29 January 2025). Beyond wave forecasts 110 

verification and quality monitoring, the ECMWF commits to maintain an archive of the verification statistics to 

allow the generation and display of trends in performance over time. 

A first dedicated intercomparison of ocean operational systems, operated on routine, was achieved by the Global 

Ocean Data Assimilation Experiment (GODAE) community (Bell et al., 2009), through an intercomparison of 

hindcasts over 2008. Main objectives were to (a) demonstrate GODAE operational systems in operations; (b) share 115 

expertise and design validation tools and metrics endorsed by all GODAE operational centres; (c) evaluate the 

overall scientific quality of the different GODAE operational systems. The preliminary task was to define the 
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validation concepts and methodologies (Hernandez et al., 2015a), with the so called “Class 1 to 4 metrics” 

described in this report (Garcia-Sotillo et al., 2024), and that directly inherited from the weather forecast 

verification methods (Murphy, 1993). A demanding task was to provide similar “Class 1”, “Class 2” and “Class 120 

3” files from each Operational Ocean Forecasting System (OOFS), then to carry out the evaluation through 

intercomparison and validation against “truth references” (Hernandez et al., 2011). 

2 Key findings for state-of-the-art model-intercomparison 

2.1 From academia to operation: adoption of best practices 

The legacy of the first ten years of GODAE was the implementation of an expert community for OOFS 125 

intercomparison: the Intercomparison and Validation Task Team (IVTT). This group was created during GODAE, 

continuing its activity in GODAE OceanView and, up to present day, in Ocean Predict (https://oceanpredict.org/ 

last access 29 January 2025). A second benefit was the development of an ad hoc validation and intercomparison 

methodology, improved and tested regularly since, until being adopted as “best practices” and recommended by 

the Expert Team on Operational Ocean Forecasting Systems (ETOOFS, Alvarez-Fanjul et al., 2022). 130 

As a result of these activities, it was found that performing intercomparison of OOFS and models brought the 

following aspects to address: 

• Characterize the performance of individuals OOFS of the same kind relatively to a given “truth”, identify 

outliers, give clues for further OOFS improvements 

• Allow “ensemble estimation” that provides qualitatively more robust and reliable estimates: the 135 

“ensemble mean” approach. In some cases, if the “ocean truth” is missing, the ensemble mean can be 

considered as a reference, and be used to validate individually the systems. 

• Provide an ad hoc methodology for operational qualification, see Garcia-Sotillo et al. (2024) in this report 

for detailed explanation on OOFS qualification or “calibration”. In other words, when the OOFS is 

upgraded, inter-comparing the old and new systems informs on the benefits of the upgrade, and justifies 140 

“go/no-go” decisions.  

• Adopt or refine technologies supporting large exchanges of information among the community: in this 

sense, the NetCDF file format and Climate-Forecast standardization has greatly facilitated the 

“shareability” (Hernandez et al., 2015a, 2015b), and pre-figured the FAIR best practices (Findability, 

Accessibility, Interoperability, and Reuse of digital assets) proposed more recently (Wilkinson et al., 145 

2016). 

An exceptionally illustrative intercomparison example emerged from the tragic crash of the Rio-Paris AirFrance 

plane in 2009, and the subsequent intensive search for the wreckage in the Tropical Atlantic. Evaluating the 

accuracy of current fields from OOFS and observed products, a user-centric approach based on dispersion and 

Lagrangian metrics was employed within an intercomparison framework. It was demonstrated that the ensemble 150 

mean yielded more reliable results compared to individual estimates (Drévillon et al., 2013). Similar approach was 

also adopted to identify the crash area for the March 2014 Malaysia Airlines flight MH370 in the Indian Ocean 

(Griffin and Oke, 2017 ; Durgadoo et al., 2021). 
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2.2 Intercomparison: key aspects to be addressed 

Intercomparing routinely or during specific phases OOFS and their products is now a common practice in 155 

operational centres. However, various aspects need to be reminded and addressed: 

• Common validation/verification methodology needs to be adopted by all participants, preferably adopting 

recommendations, as reminded in this report (Garcia-Sotillo et al., 2024). 

• Interoperability, shareability of products and common standards is key: the large number of products 

offered by the different centres cannot be spread in every single centre. The FAIR best practices are 160 

essentials. 

• Representativity is a central aspect of intercomparison: scales and ocean processes represented in each 

product (observations and models) need to be correctly documented to reduce mis-interpretation when 

intercompared. In particular:  

o Re-gridding by downscaling or upscaling ocean products toward a common grid might generates 165 

errors and not conservative effects of ocean dynamics. 

o Comparing ocean re-gridded products with re-gridded observations containing different ocean 

scales might create double penalty scores. 

o Due to operational oceanography growing activity, it is worth remembering that an increasing 

number of products are available for each EOV, for each area. The Copernicus Marine 170 

Environment Monitoring Service (CMEMS) datastore is a good illustration of this, with a large 

number of products derived from models or from space or in situ observations for a given EOV. 

This reinforces the importance of an a priori assessment of the representativity of each product 

before any intercomparison. 

• Intercomparison is a first path toward ocean state estimation from various sources and products: there is 175 

a promising way in using novel approaches based in data mining, consensus clustering, machine learning, 

and other tools developed in the frame of ensemble estimation and forecast (e.g., Sonnewald et al., 2021). 

• User oriented metrics and process oriented metrics are more and more implemented in operational 

centres. They are also new insight for establishing the performance of intercompared OOFS into the user 

oriented framework. 180 

3 Ongoing ocean models and forecasting systems intercomparison activities 

3.1 Class4 metrics: model intercomparison in the observation space for verification forecast 

Ocean observations provide an accurate estimation of the “ocean truth”. However, the Global Ocean Observing 

System (GOOS) provides a sparse representation over time of three-dimensional ocean dynamics. Their quantity 

and quality have increased substantially with permanent mooring, and programs such as Argo, the Global Drifter 185 

Program, together with satellite measurements (e.g., Tanhua et al., 2019). The GOOS is providing these recent 

years a valuable representation of the large scale dynamics, and some aliased representation of the ocean fine 

scales where measurements are performed. This led to the evaluation of OOFS performance by direct comparison 

with observations, and to the definition of the Class 4 metrics detailed in Garcia-Sotillo et al. (2024) in this report. 

In summary, Class 4 metrics aims to compare observations with the equivalent model forecast at the same time 190 

and place, for different lead-time (Hernandez et al., 2015a). Thus, these metrics, for different kinds of ocean 
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variables, characterize the performance of a given OOFS against observations in the observation space. One of the 

advantages of using the observations as the reference frame, is that other OOFS can similarly be compared to the 

same data, in the same manner. Hence Class 4 metrics since the beginning were used when comparing several 

OOFS and their performance with the same “truth” (Hernandez et al., 2015a). When the observations are not 195 

assimilated by the OOFS, one can get a fully independent error assessment that can be statistically representative 

of the overall quality of the OOFS. Otherwise, one can consider that the overall error level is underestimated. 

However, this still provides an objective measure of the actual gap between the OOFS estimate and the “ocean 

truth” at the exact location/time of the observation used as reference. 

Within GODAE OceanView, the Class 4 intercomparison project is operating since 2013. A first set of 200 

intercomparison of 6 global OOFS (Ryan et al., 2015) was an opportunity to present new metrics (radar plot, 

Taylor Diagrams, best systems mapping, bar charts, rank histograms…). The same Class 4 information was also 

used with more specific metrics around Australia (Divakaran et al., 2015), with the objective for the Australian 

Bureau of Meteorology to identify a path of improvements for its own OOFS. This was also a first demonstration 

of one of the benefits of such intercomparison: the inhouse routine validation in Australia was taken advantage of 205 

the internationally shared and compared multi-system Class 4 information to enhance its own daily basis 

verification procedures. The Class 4 intercomparison is still routinely performed (Figure 1) and is continuously 

extended. A recent intercomparison based on Class 4 for surface velocity using drifters by Aijaz et al. (2023) offers 

an additional evaluation of OOFS surface dynamics performance, key for applications like Search and Rescue, 

marine pollution forecast and many other drift dependant applications. 210 

 
Figure 1: Operational centres and countries involved in a common intercomparison international framework during 
the last 20 years. Circles indicate their size and numbers the products/locations participating in the ORA-IP (Balmaseda 
et al., 2015). Green circles for ORA-IP only, and red circles for centres that are contributing in addition to the Class 4 
routine intercomparison (Hernandez et al., 2015a). Red stars indicate centres solely participating in the Class 4 215 
intercomparison. Countries in violet, yellow, orange, contribute respectively to Class 4, ORA-IP, or both exercises. 

Another issue of Class 4 comparison to observations was the routine evaluation of the overall quality of the GOOS. 

Performing comparisons with observations of several OOFS also gives more confidence in identifying observation 

outliers and incorrect measurements: a feedback procedure was proposed to inform data centres that could carry 

out a second loop of data corrections, for the benefit of all data users (Hernandez et al., 2015b). This approach is 220 

now considered in the frame of the recent project SYNOBS endorsed by the United Nation Ocean Decade Program 
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(Fujii et al., 2019 ; Fujii et al., 2024). SYNOBS aims at evaluating the best combinations of ocean observing 

platforms through observing system design carried out by different operational centres (e.g., Balmaseda et al., 

2024a). The existing intercomparison framework will allow faster common assessment among the different 

contributors. 225 

Mentioned above, comparison to observations raises the key issue of representativity, both from the observation 

and the modelling side. And subsequently, to take into account double penalty effects when measuring the skill of 

a given product for given scales or ocean regimes. With the necessity to carefully address the following questions: 

What are the scales sampled by a given observing system? What are the effective scales and ocean processes 

represented by a given OOFS? What ocean processes do they represent? The classical example is comparison of 230 

satellite altimetry and/or tide gauge observations with the sea surface height given by an OOFS: if the later does 

not represent the tidal dynamics, obviously, observations need to be pre-processed to filter-out tidal signals. This 

is the reason why the concept of “internal” metrics, aiming to measure the efficiency of the OOFS at the expected 

scales, was distinguished from the concept of “external” metrics, where operational products reliability and fit-

for-purpose need to be assessed in the light of the user’s requirements (Hernandez et al., 2018), and taken into 235 

account while performing intercomparisons. In addition, a particular attention needs to be addressed on the 

representativity and the uncertainty of observations. It is mandatory to take them into account while comparing 

several OOFS with observations, in particular when referring to re-processed/re-gridded observation products (also 

called Level 4 or L4 type of observed products). 

3.2 Ensemble forecast comparison: assessment through ensemble mean, ensemble spread, and clusters 240 

The atmospheric community developed ensemble forecasts, first to represent uncertainties of seasonal predictions 

considering the stochastic behaviour of atmospheric simulations. This was done using an individual forecasting 

system, by running in parallel a series of deterministic forecasts where some initial or forcing conditions were 

stochastically modified between members. With the purpose of performing the intercomparison of the forecast 

members in order to 1) identify common patterns from the probability distribution for eventually defining clusters; 245 

2) compute probabilistic occurrences of specific events; and 3) use the ensemble spread as a proxy for forecast 

skill and performance assessment, and try to separate outliers. The associated verification framework has been 

largely documented (e.g., Casati et al., 2008) and defined for the atmospheric components of the seasonal forecast 

activities (e.g., Coelho et al., 2019). For the ocean environment, this approach is currently used by weather 

prediction centre in charge of marine meteorology forecast, i.e., wind and wave forecast. For instance, the 250 

evaluation exercise performed by the National Oceanic and Atmospheric Administration (NOAA) National 

Centers for Environmental Prediction (NCEP), evaluating ensemble and deterministic forecasts, that concluding, 

among other results, that ensemble wave skill score at day 10 outperformed deterministic one at day 7 (Campos et 

al., 2018). Other example, the recent intercomparison of seasonal ensemble forecasts from two centres contributing 

to the Copernicus Climate Change Service (C3S) quantifying their respective skill on sea surface height, ocean 255 

heat content and sea surface temperature (Balmaseda et al., 2024b). 

At this stage, unlike weather prediction centres, ensemble forecasting from individual systems is not generalized 

in operational oceanography, although dedicated experiments are carried out in many areas (e.g., Pinardi et al., 

2011 ; Schiller et al., 2020). And through specific data assimilation methods like the Ensemble Kalman Filter 

(Evensen, 2003) several centres are producing ensemble forecast routinely (e.g., Lisæter et al., 2003 ; Keppenne 260 
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et al., 2008 ; Seo et al., 2009). However, there is not yet achieved large community effort dedicated to 

intercomparisons of ensemble forecasts produced by different centres. 

We propose to illustrate here ensemble approach benefits with a multi-system intercomparison as proposed by the 

CLIVAR/GSOP initiative (mentioned above) and the ORA-IP project (detailed in section 3.4 below), and also 

discussed by Storto et al. (2019). Figure 2 illustrates the assessment of a commonly used indicator for the so called 265 

“Atlantic-Niño” regimes in the Tropical Atlantic, associated with the “Atlantic zonal mode” and targeting the 

equatorial cold tongue that develops in the Gulf of Guinea from April to July (Vallès-Casanova et al., 2020). All 

products –observation-derived-only and reanalysis estimates (see Balmaseda et al. 2015, for product’s details) 

give a consistent representation of the seasonal and interannual variability, from which an interannual trend can 

be deduced over the 1980-2024 period (ensemble-average trend in Fig 2c of 0.02 degrees C per year). The 270 

ensemble-average is computed like the multi-product-mean in Uotila et al. (2018), and without ARMOR3D, the 

observation-derived-only product used as “ground truth” (Guinehut et al., 2012) and without the GREP reanalysis, 

already an ensemble averaging of various reanalyses (Masina et al., 2015). The Fig 2b, shows the time series of 

the so called “SST index”: the box-averaged temperature anomalies relative to the annual climatology (computed 

with the ensemble-average). All products exhibit the same interannual patterns, although some discrepancies are 275 

observed at intra-seasonal time scales. This is reflected by the small differences in the standard deviations 

computed for each time series over the denser period (1993-2023). A more precise view of the differences of each 

product “SST index” with the ensemble average is given by Fig 2a, quantified by their respective root-mean-square 

differences. Before 1993, the ensemble-ensemble average is computed only with the ERA5 reanalysis and the 

OSTIA observation-derived-only product, covering this period. Consequently, Fig 2a exhibits the large 280 

discrepancy of these two products with respect to the ensemble-average. The 1993-2023 period is chosen to assess 

the relative merit of each product, quantified using the ARMOR3D observation-derived-only product, not included 

in the ensemble-average computation in the Taylor diagram (Fig 2d). First, one can see very large differences with 

OSTIA, the other observation-derived-only product, suggesting impact of their respective representativity of SST 

in the ATL3 box, and possibly mapping/observation errors to be further investigated. The lesson here is that the 285 

“ground truth” also presents subjective drawbacks that need to be taken into account while measuring the relative 

merit in this multi-product ensemble assessment. Then, the Taylor diagram reflects the very close performances 

of all products, altogether in a cluster. The ensemble-average performs better than individual reanalyses; The 

GREP multi-reanalyses product presents also good performances in representing the ATL3 index relatively to 

ARMOR3D. This confirms previous findings (e.g., Masina et al., 2015 ; Uotila et al., 2018 ; Storto et al., 2019) 290 

showing the “bias-reduction” benefits of ensemble averaging. In practice, the ensemble-average provides a 

valuable estimate of the decadal SST trend in the ATL3 box. The ensemble-average estimate is also useful in 

identifying outliers.  

Note that in recent methodologies, ensemble forecast comparison is performed using “ensemble clustering”, also 

called “consensus clustering”, that aims at producing a synthesis among an identified cluster from a given dataset 295 

(e.g., Hakobyan, 2010). The construction of the clusters from the initial dataset (here the different members of the 

ensemble forecast) can use many criteria. In the frame of GODAE OceanView, the Class 1 metrics were designed 

to compare in similar ways OOFS variables on specific model grids and layers (Hernandez et al., 2015b). In the 

Class 1 approach, OOFS outputs are regridded and resampled in a common grid and timeframe (e.g., daily 2D 

model fields) for being compared to a common reference (e.g., a regular L4 mapping of sea surface temperature 300 
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from satellite retrievals). In this intercomparison, Class 1 files from various global OOFS were used to compare 

and evaluate the quality of the ensemble mean, the weighted ensemble mean, and the k-mean clustering algorithm 

mean (Hartigan and Wong, 1979), which proved to be the more accurate (Hernandez et al., 2015b). Consensus 

clustering is now used for machine learning, and this might be one of the next stages associated with model 

products intercomparison and ocean state estimation in the near future. 305 

 

 

 

Figure 2: Left: Time series from 1980 to 2024 of SST products, monthly and spatially averaged into the ATL3 box 
located in the eastern equatorial band [20°W-0°E / 2.5°S-2.5°N] of the Tropical Atlantic. a) Differences relative to the 
ensemble-average (root-mean-square differences indicated in label). b) the ATL3 index computed as anomalies relative 
to the climatology mean (standard deviations indicated in labels). c) the time series of box averaged SST in the ATL3 310 
box. d) the associated Taylor diagram on the ATL3 index, using as reference the ARMOR3D product. Statistics of root-
mean-square differences, and correlation with ARMOR3D, and standard deviations for each product are given in the 
legend. All products were extracted from the Copernicus Marine and Climate Services datastores. 

3.3 Regional forecast intercomparison and nesting strategy evaluation 

Over the last years, the validation methodology proposed by the GODAE global ocean community has been 315 

adopted by many operational regional centres (some examples yet given by Hernandez et al., 2015b). In particular 

because the coastal community started to relate inside GODAE OceanView with the IVTT. Specific assessments 

started also to be carried out, like assessing the behaviour of the ocean under tropical cyclone conditions using 

several OOFS and ad hoc metrics (Zhu et al., 2016), or the prediction of beaching of Sargassum in the Caribbean 

using global and regional OOFS (Cailleau et al., 2024).  320 

On a regional basis, specific systematic multi-product validation tools are gradually developed (e.g., Lorente et 

al., 2016 ; Lorente et al., 2019). These tools, operated by a given operational centre, are efficient essentially if an 

inter-operable data server policy is implemented among the operational ocean community, in order to allow the 

real-time intercomparison of different sources of products. In parallel, regional and coastal system evaluation rely 

on specific local observing systems, like HF-radar, offering an “ocean truth” representing the ocean dynamics at 325 

higher resolution (Kourafalou et al., 2015), that cannot be represented by global OOFS.  

However, it is worth noting that comprehensive multi-product operational intercomparison is not common at 

regional scales. Unlike global OOFS, there are rarely many fine scales regional OOFS that overlap in a given 

coastal region, even along the well covered European marginal seas (Capet et al., 2020). And conducting a regional 
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intercomparison gathering essentially global OOFS would provide little information compared with the global 330 

intercomparison initiatives already underway.  

But there is an increasing number of operational centres, or programs like the CMEMS, that operate over the same 

area both regional and global systems, and that started to intercompare their different systems. For instance, 

comparing two OOFS of the same kind, Mercator and MFS, in the Mediterranean Western Basin, and evaluating 

their respective strengths and weaknesses over specific subdomains (Juza et al., 2015). Or measuring the benefit 335 

of improving the resolution of a regional OOFS by comparing the coarse and fine grid systems using the same 

metrics (Crocker et al., 2020). In the CMEMS, most regional systems are nested into the global system. Hence, 

intercomparison between “parent” and “child” systems started to arise with the objective of measuring the benefit 

and added value for users of proposing regional and coastal products (De Mey et al., 2009). Several overlapping 

regional systems in the CMEMS can be compared to the global solution (Juza et al., 2016 ; Lorente et al., 2019). 340 

Examples can be also be given for the Canadian Arctic and North Atlantic regional OOFS (Dupont et al., 2015), 

the USA East Coast OOFS and reanalyses (Wilkin et al., 2022), or the Australian global and regional OOFS 

evaluations that focus on specific case studies and applications: disaster/search and rescue, defence/acoustic, or 

sea level/coastal management (Schiller et al., 2020). Some of these intercomparisons compare the regional OOFS 

of interest with several global products in order to measures both the local and global forecast skill considering 345 

fine scales. In this case, using similar metrics, typically Class 4, for evaluating all these systems, brings a series of 

questions. Which are the scales represented by the child system that is lacking in the parent system, or in the 

observations? What is the impact of the different kind of forcings and different kind of assimilated dataset? How 

errors propagate from the global to the nested system and degrade the expected seamless transition from open 

ocean to coastal dynamics? How specific ocean processes of interest are represented in the different systems? How 350 

reliable they can appear for end-user needs in the different systems? 

3.4 Evaluating retrospective views of the ocean dynamics: dedicated ocean reanalyses intercomparison 
project and ways to improve intercomparison methodologies 

Past numerical simulations and ocean reanalyses were naturally the first step built by the academia to study ocean 

processes over long periods, with the support of the increasing amount of ocean observations over time, and the 355 

improvement of assimilation techniques. Evaluation of such reanalysis representing decades of ocean behaviour 

through comprehensive intercomparison projects require large resources and preparation. Most are conducted 

outside of routine operations by forecasting centres. They represent a milestone in progress in the field, both from 

the point of view of the evaluation of the system/reanalysis itself, and of the new validation methodologies tested 

and implemented. 360 

In the direct line of the GSOP project, the Ocean Reanalysis Intercomparison Project (ORA-IP) brought together 

more than 20 operational centres in order to intercompare more than 25 products (including observed products) 

spanning from 20 to 50 years, and focusing on eight EOV -  Ocean Heat Content, Steric Height, Sea Level, Surface 

Heat Fluxes, Mixed Layer Depth, Salinity, Depth of the 20°C Isotherm, and Sea Ice (Figure 1). One of the 

objectives was to infer a new ocean state estimation of the global ocean, trying to reduce the so-called structural 365 

uncertainty, i.e. the uncertainty associated with the state estimation methodology and that cannot be sampled with 

a single system. Uncertainty sensitive to the temporal variations of the observing system, to the errors of the ocean 

model, atmospheric fluxes and assimilation system, which are often flow dependent, and not easy to estimate. 

Following the Class 1 metrics approach, the ORA-IP is based on common grid re-interpolated products and 
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monthly averages that were compared similarly over the 1993-2010 period under the responsibility of a leading 370 

expert for each of the eight EOV. Results highlighted impacts of model resolution, components of the observing 

system assimilated, complexity of the ocean models, of the data assimilation scheme, and quality of external 

forcing (Palmer et al., 2017; Shi et al., 2017; Storto et al., 2017; Toyoda et al. 2017a, 2017b; Valdivieso et al., 

2017; Chevallier et al., 2016). 

New independent metrics were tested and used to evaluate each product and also the ensemble mean. The ensemble 375 

spread was identified as a measure of uncertainty. Following Storto et al. (2019), ocean reanalyses offer state-of-

the-art representation of past and present state of the global and regional oceans. Their accuracy depends on many 

factors, one of the most important being the observations available and the constraints they provide. 

Intercomparison help in identifying the impact of their absence in the past, and define where they are most decisive 

in the quality of present and future reanalyses. And consequently, provide suggestions for improvements of the 380 

GOOS. 

Figure 2 shows that multi-product intercomparisons allow to infer key indicator of the ocean environment changes 

together with estimates of their uncertainties. Beyond reanalyses assessment based on EOV, next stage of ocean 

reanalysis intercomparison should first target key ocean processes that affect the climate system, identify their past 

occurrences, better unravel their mechanisms and interactions, in order to estimate their present and future impacts. 385 

Machine learning approaches are expected to explore more systematically ocean variability in a multi-system 

framework and disentangle ocean key mechanisms for further identification in ocean simulations (e.g., Ahmad, 

2019 ; Sonnewald et al., 2021 ; Salman, 2023). In particular, in ESM simulations, initial conditions are decisive: 

more realistic clusters of ocean reanalyses with better characterisation of their errors and limitations (with or 

without the support of artificial intelligence) would ensure more reliable global and regional climate projections 390 

and associated skill assessment. Following this framework, ocean reanalyses intercomparison initiatives should 

also target end-users applications and societal impacts, and identify requirements in terms of OOFS resolution, 

frequency and complexity, together with adequate observing systems, able to provide reliable and useful answers. 

Emerging international panels like the Ocean Prediction Decade Collaborative Centre should help in providing 

intercomparison standards and recommendations from the user’s point of view (Ciliberti et al., 2023). As already 395 

commented above, large and comprehensive multi-reanalyses intercomparisons are demanding technical 

challenges in term of storage, access, distribution and shareability. Cloud computing, ad hoc data mining technics 

and other artificial intelligence approaches will be needed to obtain valuable outcomes from the increasing number 

of available numerical ocean products resolving finer scales over longer periods. 

3.5 A perspective of ocean reanalyses intercomparison: the ocean state monitoring 400 

An important outcome of the ORA-IP has been the development of the Real Time Multiple Ocean Reanalysis 

Intercomparison, carried on routine every month by NOAA/NCEP, which main objective is to gather operational 

hindcasts in order to perform Ocean State Monitoring (OSM) over the tropical Pacific, inferring the state of the 

ocean by computing the ensemble mean and identifying robust patterns using the ensemble spread (Xue et al., 

2017). Note that OSM has a growing importance in operational oceanography: it offers through key EOV an 405 

assessment of the evolution of the ocean component as part of the real time climate system evolution. Validation 

performed in the frame of OSM also provides a level of uncertainty for seasonal forecasts performed every month 

by many centres nowadays. OSM activity brought the CMEMS into routine calculation of Ocean Monitoring 
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Indicators (OMI), whose reliability and uncertainty are estimated through intercomparison of multiple products. 

Using the OMI, the CMEMS started in 2018 to produce on annual basis the Ocean State Report (von Schuckmann 410 

et al., 2018) now on its 8th edition (https://marine.copernicus.eu/access-data/ocean-state-report , last access 29 

January 2025). 
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