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Abstract. Micronekton are mid-trophic marine organisms characterized by a size range of 2 to 20 cm, gathering 15 

a wide diversity of taxa (crustaceans, fish, molluscs, etc.). They are responsible for an important active carbon 16 

export to the deep ocean because of their diel vertical migrations and constitute the main prey for pelagic predators. 17 

A new method has been proposed in the literature to define provinces that identify micronekton functioning 18 

patterns based on environmental variables is proposed in Albernhe et al. (2024, under review).variable. Following 19 

this methodology, we define homogeneous provinces using environmental variables computed from Copernicus 20 

Marine Service products. These provinces represent a relevant way to define regions of interest, offering a regional 21 

scope of study for micronekton indicators and their evolution in time. In this study, we observe the evolution of 22 

the provinces in time from 1998 to 2023, to account for the seasonaldecadal to interannualclimatic variability. We 23 

focus on the variations in surface area and average latitude of each province. We observe a global shrinking of 24 

productive provinces and polar provinces, in favor of equatorial and tropical provinces expansion. Additionally, 25 

tracking the geographical changes of the provinces over time shows that most are shifting toward the poles. 26 
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 40 

1 Introduction  41 

The intermediate level of the oceanic food web is constituted by a group of marine organisms called micronekton, 42 

understudied yet, but garnering increasing attention. This key component of marine ecosystems characterized by 43 

organisms in a size range from 2 to 20 cm contains a wide diversity of taxa such as crustaceans, fish, molluscs and 44 

gelatinous (Brodeur et al., 2004; Escobar-Flores et al., 2019). Micronekton mostly feed on zooplankton and are 45 

the main prey of marine large predators, some of which are of crucial economic importance (e.g. tunas, Bell et al., 46 

2015; Terawasi et al., 2017; McCluney et al., 2019). In addition to their role of prey for commercially harvested 47 

top predators (Young et al., 2015), micronekton themselves become a valuable resource for fisheries, as the trophic 48 

level of exploited species is decreasing (St. John et al., 2016; Gatto et al., 2023). Another aspect of micronekton 49 

worthy of interest lies in its migratory behaviour, which impact global carbon export (Pinti et al. 2021; Buesseler 50 

et al., 2022) by actively transporting and sequestrating carbon beneath the mixed layer (Bianchi et al., 2013; Boyd 51 

et al., 2019; Gorgues et al., 2019). 52 

Therefore, estimating micronekton biomass is a major concern for fisheries management and climate regulation. 53 

ObservationsDirect observations of micronekton primarily rely on trawl sampling, which is susceptible to biases 54 

due for example to species avoidance (Kaartvedt et al., 2012) or(i) on ship-borne acoustic measurements, which 55 

does not provide yet a reliable representation of the micronekton biomass (McGehee et al., 1998; Kloser et al., 56 

2002). Numerical models), and (ii) on trawl sampling, which is susceptible to biases due for example to species 57 

avoidance (Kaartvedt et al., 2012) and has a coarse sampling. Numerical models, such as the Spatial Ecosystem 58 

and Population Dynamics Model – Low and Mid Trophic Levels (SEAPODYM-LMTL: Lehodey et al., 2010; 59 

2015; Conchon, 2016) are complementary tools for simulating micronekton biomass, offering the advantage of 60 

providing continuous global-scale time seriesstudying micronekton biomass. Indeed, by simulating micronekton 61 

dynamics based on key biological and physical processes (such as growth, recruitment, mortality and 62 

environmental influences), these models  provide a continuous representation of micronekton biomass across space 63 

and time. This helps fill  observational gaps, enabling the analysis of large-scale patterns, the simulation of future 64 

scenarios, and ultimately a better  understanding of the mesopelagic ecosystem. 65 

One approach to quantify and characterize the mid-trophic level populations is the definition of homogeneous 66 

provinces.  Longhurst was the pioneer and defined a static vision of biogeographical provinces based on 67 

chlorophyll fields (Longhurst 1995; 2007).  MultipleVarious combinations of environmental forcingsfeatures have 68 

been used to create accurate definitions of provinces for each field: catch per unit of effort of commercial fisheries 69 

(Reygondeau et al., 2012), multi-expertise discussions (Sutton et al., 2017),environmental features such as the 70 

distribution of species (Costello et al., 2017),) and phytoplankton species assemblages (Elizondo et al., 2021).), 71 

biogeographic insights from multi-expertise discussions (Sutton et al., 2017), and fisheries-related data, such as 72 

catch per unit of effort of commercial fisheries (Reygondeau et al., 2012). Acoustic-based regionalization is also 73 

explored, using environmental driversdrivers’ classification to model backscattering characteristics (Proud et al., 74 

2017), or recently partitioning acoustic data according to the vertical structure of sound-scattering mid-trophic 75 

biomass (Ariza et al., 2022).   76 

Complementing these approaches, Albernhe et al. (2024, under review) proposed a new methodology for 77 

regionalizing the global ocean into biophysical provinces based on environmental variables. The ambition of this 78 

workSince the present study builds upon Albernhe et al. (2024), we detail the main and key findings of the prior 79 

study in the following sentences. The ambition of the prior study Albernhe et al. (2024) was to identify 80 

micronekton homogeneous functioning patterns using a parsimonious set of biophysical variables that are known 81 

to have an impact on micronekton biomass (epipelagic layer temperature, stratification of the mesopelagic ocean 82 

temperature, and net primary production (NPP)). Clustering these variables results in a global classification of six 83 

distinct biomes (tropical, subtropical, eastern boundary coastal upwelling systems, oceanic mesotrophic systems, 84 

sub-polar and polar biomes). The authors also defined a monthly time series of biomes for the 1998-2019 time 85 

period.  From these large biomes, provinces are derived as biomes’ sub-divisions at the scale of ocean basin and 86 

hemisphere. A characterization of these provinces with simulated micronekton from SEAPODYM-LMTL model 87 

outputs identifies biomes-specific relations between micronekton biomasses and the environmental variables used 88 

in the clustering. Additionally, biomes-specific vertical structures are indicated by ratios of modelled micronekton 89 

functional groups (i.e., groups of micronekton with specific migratory behaviour, and specific depth habitat). 90 

Boundaries between provinces have also been validated using acoustic data. With demonstrated accuracy in 91 

homogeneous micronekton characteristics, these provinces enable the gathering and extrapolation of the few 92 
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available observation data of micronekton over large homogeneous areas. This could benefit the exploration of the 93 

micronekton spatio-temporal variability within global or regional datasets. 94 

Provinces’In the present study, we focus on provinces’ features, such as surface area and positional changes, which 95 

serve as valuable indicators offeringproviding insights into the evolution of ecosystem structure over time on, both 96 

globalglobally and regional scales.regionally. Following Albernhe et al. (2024, under review)’s methodology, we 97 

define in the present study an annual time series of biophysical provinces from 1998 to 2023. We observe the 98 

evolution of two geographical indicators: the surface area and the average latitude of each province. 99 

  100 

 101 

2 Material and methods 102 

2.1 Environmental variables and biophysical clustering 103 

We define a time series of biophysical provinces from 1998 to 2023 following Albernhe et al. (2024, under 104 

review)’s approach. The latter publication offers a methodology for global ocean regionalization based on 105 

environmental variables, with no gaps and no overlaps, displaying homogeneous biophysical characteristics. While 106 

the overall methodology is detailed in Albernhe et al. (2024), we outline the different steps of the method below 107 

to ensure this study is comprehensive and self-contained. 108 

We consider three environmental variables, that are known to have an impact on micronekton: the mean 109 

temperature in the epipelagic layer, the temperature gradient between the epi and the meso-pelagic layers, as an 110 

index of the stratification, (hereafter referred to as ‘stratification’), and the integrated NPP. The pelagic layers 111 

mentioned are defined as in SEAPODYM-LMTL. These variables are computed from the biological and physical 112 

Copernicus Marine Service datasets of the product Global Ocean low and mid trophic levels biomass content 113 

hindcast, GLOBAL_MULTIYEAR_BGC_001_033 (1/12° horizontal resolution, product ref01, table 1). In the 114 

product, the weekly 3D temperature fields come from the GLORYS12V1 simulation. NPP and the associated 115 

euphotic depth are computed using the Vertically Generalized Production Model (VGPM) of Behrenfeld and 116 

Falkowski (1997) which is based on the Satellite Observations reprocessed Global Ocean Chlorophyll product. 117 

The spatial domain of our study is restricted to area where the depth of the water column supports the existence of 118 

all three pelagic layers as defined in SEAPODYM-LMTL (i.e. roughly 1000m deep, See Material and Method 119 

section of Albernhe et al. (2024, under review)). Consequently, shallow coastal areas are excluded from this 120 

analysis. Annual time series of these three variables (i.e., epipelagic layer temperature, stratification and NPP), 121 

spatially averaged on a global scale, are provided in the Supplementary Material (Figure S1). This illustrates how 122 

the global mean values of temperature, stratification, and NPP fluctuate over time, reflecting interannual variability 123 

and decadal trends at the global scale. 124 

As described in Albernhe et al. (2024, under review), a Principal Component Analysis (PCA) (Hotelling, 1933) is 125 

performed on the three environmental variables mentioned above (i.e., epipelagic layer temperature, stratification 126 

and NPP). ), producing empirical orthogonal functions that strongly mirror those identified in Albernhe et al. 127 

(2024). We selected the two principal components that explain the most variance, accounting for 98,1% of the 128 

variance (68,2% and 29,9% for the first and second PCA respectively). 129 

Then, a clustering is performed on the PCA two principal components, hereafter referred to as “biophysical 130 

clustering”. ThisOur goal is to define homogeneous biophysical biomes by detecting intrinsic patterns or structures 131 

within the data, without relying on any predefined clustering assumptions. Thus, the biophysical clustering is 132 

performed using the unsupervised k-means machine learning algorithm (Lloyd, 1957; Pedregosa et al., 2011), 133 

which partitions the observations into k=6 homogeneous clusters (See Material and Method section of Albernhe 134 

et al. (2024, under review)). These clusters define homogeneous clusters (See Material and Method section of 135 

Albernhe et al. (2024)). In Albernhe et al. (2024), we identified six clusters (k = 6) to classify global-scale 136 

environmental data, effectively distinguishing biophysical biomes. In this study, the different metrics used to 137 

determine the optimal number of clusters do not exhibit a strongly pronounced pattern. One suggests that k = 5 138 

could be a suitable choice, albeit not with strong certainty. To ensure consistency with Albernhe et al. (2024), we 139 

maintain k = 6, allowing us to build upon our previous findings on micronekton biomass and vertical structure. 140 

The clusters derived from the clustering define six homogeneous biomes on a global scale, hereafter referred to as 141 

“biophysical biomes”. 142 
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First, the training phase of k-means algorithm is applied to time-averaged 1/12-degree datasets from 1998 to 2023. 143 

This process defines static reference biophysical biomes, representing the average state of the ocean over the entire 144 

period. After the training phase, the clustering model parameters are estimated, and we can use this model to make 145 

predictions on other data. Then, the prediction phase of k-means algorithm is applied on monthly data over the 146 

same time period (1998-2023) (See Material and Method section of Albernhe et al. (2024, under review)). This 147 

results inproduces a monthly time series of biophysical biomes that captures seasonal and interannual variability. 148 

The six biophysical biomes obtained from the clustering of environmental data characterize homogeneous 149 

environmental regimes on a global scale. Since similar oceanographic regimes occur in multiple locations, 150 

biophysical biomes extend across various ocean basins. In this study, we also delineate ”provinces” as sub-151 

divisionssubdivisions of biomes at the scale of ocean basins and hemispheres that have been shown to be 152 

characterized by stable biophysical drivers and potential taxonomic identity (Spalding et al., 2012; Sutton et al., 153 

2017; Albernhe et al., 2024, under review). This subdivision enablesof each of the usesix biophysical biomes 154 

results in the definition of 27 provinces to define, establishing regional scopesframeworks for the study ofstudying 155 

micronekton. 156 

 157 

2.2 Trends identification 158 

The aim of this study is to observeanalyze the evolution of the provinces in time from 1998 to 2023. The 159 

biophysical data described in the previous section are available at a monthly resolution and monthly provinces are 160 

derived through clustering, in order to follow Albernhe et al. (2024)’s methodology. While provinces are resolved 161 

monthly, our analysis focuses on decadal to climatic trends aiming to identify long-term patterns in their evolution. 162 

To study the interannualtemporal variability and identify potential trends over the 26 years, we consider the annual 163 

time series (i.e., annually averaged monthly time series).. We calculate indicators based on the monthly definition 164 

of provinces and then compute the annual averages of these indicators. We document the evolution of two 165 

geographical indicators: the surface area and the average latitude, for each province. The average latitude 166 

diagnostic has been designed to assess a potential poleward displacement of certain provinces (see Hastings et al., 167 

2020; Pinsky et al. 2020 and references therein). 168 

To evaluate the evolution of surface area over time, we analyze the slope (in km²/year) of aour approach is based 169 

on a simple linear regression model based onapplied to the annual surface area (in km²) of each province from 170 

1998 to 2023. The coefficientWe analyze the slope of determination (R 2) associated with every linearthe regression 171 

(i.e., computedin km²/year), to account for each province) is a statistical measure assessing the degree of alignment 172 

between the observed valuesdirection and the linear regression model. From the linear regression, the percentage 173 

of variation of the provinces’ surface betweenfirst-order magnitude of variability. Rather than directly comparing 174 

the years 1998 and 2023 is computed (in %),to quantify the variation between these dates (which would assume 175 

that surface areas for these two years perfectly align with a statistically significant linear trend), we project the 176 

equivalent evolution over 26 years based on the difference between the first and last point of the regression 177 

(respectively matching 1998 and 2023). slope of the regression (i.e., 26 × slope). From this projected variation, we 178 

compute the percentage change in surface area over 26 years (in %) relative to the surface area at the start of the 179 

time series (year 1998). 180 

ToSimilarly, to track the poleward drift of provinces over time, we analyze the slope (in degrees poleward/year) 181 

of a linear regression model our approach is based on a simple linear regression model applied to the average 182 

latitude of each province throughout the annual time series of each province from 1998 to 2023. The coefficients 183 

of determination (R 2) associated with every linear regression are computedWe analyze the slope of the regression 184 

(in degrees poleward/year), to account for the direction and first-order magnitude of variability. The ‘degree 185 

poleward’ unit that we use for this diagnostic is associated with degree N for provinces in the northern hemisphere, 186 

and degree S for provinces in the southern hemisphere. Thus, provinces belonging to the equatorial Biome 1 187 

(provinces 101, 102 and 103) are not considered in this diagnostic because of their equatorial position.  Rather 188 

than directly comparing the years 1998 and 2023 to quantify the variation between these dates, we project the 189 

equivalent evolution over 26 years based on the slope of the regression (in degree poleward), following the same 190 

approach as described for the surface area metric. 191 

To track the poleward drift of provinces over time, we analyze the slope (in degrees poleward/year) of a linear 192 

regression model based on the average latitude of each province throughout the annual time series from 1998 to 193 

2023. The ‘degree poleward’ unit that we use for this diagnostic is associated with degree N for provinces in the 194 
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northern hemisphere, and degree S for provinces in the southern hemisphere. Thus, provinces belonging to the 195 

equatorial Biome 1 (provinces 101, 102 and 103) are not considered in this diagnostic because of their equatorial 196 

position. Derived from the linear regressions, we estimate the poleward variation trend over the 26 years for each 197 

province (in degree poleward), based on the difference between the first and last point of the regression 198 

(respectively matching 1998 and 2023). 199 

  200 

Recapitulative tables for each of these two metrics are provided in the supplementary material (Table S3 for surface 201 

area and Table S5 for mean latitude). These tables present, for each province, the trend from the linear regression 202 

model, the total variation over the 26 years, and the coefficient of determination (R²) for each regression. R² is a 203 

statistical measure that evaluates the degree of fit between the observed values and the linear regression model, 204 

allowing the statement of statistically significant linear trends. A 26-year period is too short to detect statistically 205 

significant trends in such biophysical features. Due to interannual variability, R² values are not expected to be 206 

close to 1, which would indicate statistical significance of the linear trends. The purpose of the linear regressions 207 

is to identify the direction and relative magnitude of the trends, rather than to confirm their statistical significance. 208 

Caution must be taken while considering such trends. Thus, scatter plots of the annual time series for surface area 209 

(Figure S2) and mean latitude (Figure S4), with the corresponding linear regression, are provided in the 210 

supplementary material for each province. These plots allow for direct observation of the time series. 211 

3 Results 212 

3.1 Biophysical provinces definition 213 

To define the homogeneous biophysical biomes, we perform a clustering on the two principal components 214 

generated by the PCA performed on the three environmental variables (i.e. epipelagic layer temperature, 215 

stratification and NPP). From the learning phase of the clustering algorithm, six static reference biophysical biomes 216 

(Figure 1) are defined on a global scale, representing the average state of the ocean over the entire period. The sub-217 

division of these biomes according to ocean basin and hemisphere leads to the definition of 27 biophysical 218 

provinces (identified by different shades of the biomes’ colors in Figure 1).  219 

 220 

221 
Figure 1: Map of reference biophysical biomes obtained by PCA principal component clustering from averaged 222 
epipelagic layer temperature, stratification, and NPP over the 1998-2023 time period. Geographical separation between 223 
different areas of the same biome defines 27 associated provinces. Provinces are identified by different shades of biomes’ 224 
colors, defined in the legend. One label is attributed to each province with the hundreds’ digits corresponding to the 225 
biome in which they belong. Grey areas delimitate the domain where the depth of the water column is not sufficient to 226 

ensure the existence of the three pelagic layers of SEAPODYM-LMTL (product ref 01, Table 1). 227 
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The six reference biophysical biomes are characterized as: tropical, subtropical, eastern boundary coastal 228 

upwelling systems, oceanic mesotrophic systems, sub-polar and polar (respectively numbered from 1 to 6). The 229 

sub-division of these biomes according to ocean basin and hemisphere leads to the definition of 27 biophysical 230 

provinces (identified by different shades of the biomes’ colors in Figure 1). They are characterized by specific 231 

environmental regimes detailed in Albernhe et al. (2024, under review).  232 

 233 

The monthly time series of these provinces is available as an animation showing the provinces’ geographical 234 

evolution in time from 1998 to 2023 (https://doi.org/10.5446/68853). Together with the variations of ocean 235 

environmental conditions, the geographical extent of provinces evolves in time. Seasonal variability can be 236 

observed with the latitudinal shifts of the horizontal boundaries, as well as regional seasonal phenomena or isolated 237 

phenomena like ENSO events. 238 

 239 

The different biomes, and associated provinces, are characterized by specific environmental regimes (Figure 2). 240 

Focusing on the biophysical conditions for each province, we consider the data distribution for averaged epipelagic 241 

layer temperature, stratification, and NPP. Figure 2 shows monthly values of these three variables from 1998 to 242 

2023, spatially averaged for each biome. 243 

https://m365.eu.vadesecure.com/safeproxy/v4?f=ocmkMk7MgpfsfWRQ2Eg4QJIxLLHz8gSWy9obUKhHrF8RC7h2SdeYTa0dmYIbn_ZJ&i=H9YvA2JzMmSRl6iFW88gMa0Ps5hzn-dW5AhQhnHbjHoh4HmkJMJ8ksTDa9Xie5B_A9H5l-KKZ42cNNWxw6B_HA&k=kTcv&r=A2amQ7zztS6YNdmfZaV2nDrAhxlmgDYrJNVIprwoBlu4ifVgN1YlEkG9LuZLEUHs&s=784e343b56a69ea4d4c6e8020fbfc32f0600d1ace4991aa873416cd9ce79a03f&u=https%3A%2F%2Fdoi.org%2F10.5446%2F68853
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 244 

Figure 2: Characterization of biophysical biomes using monthly environmental forcings: temperature of 245 

the epipelagic layer (T, °C), stratification (Str, °C), and NPP (mgC/m²/day) from 1998 to 2023. The analysis 246 

uses monthly values of T1, Str, and NPP, spatially averaged across each biome (i.e., one value per month 247 

for each environmental variable per biome). The boxplots depict the data distribution, with the median 248 

shown at the center of each rectangle, the first and third quartiles represented by the top and bottom edges 249 

of the rectangles, the whiskers extending to the 5th and 95th percentiles, and orange dots indicating outliers. 250 

Biome 1 (the tropical biome) is characterized by the warmest and most stratified waters, associated with relatively 251 

low biological production. A similar but less pronounced pattern is observed for Biome 2 (the subtropical biome). 252 

Biome 3 (the eastern boundary coastal upwelling systems) is by far the most productive biome. Biome 4 (the 253 

oceanic mesotrophic systems) also exhibits high NPP values, though weaker than Biome 3. Biome 5 (the sub-polar 254 

biome) is weakly stratified, characterized by cold waters, and shares a similar NPP range with Biomes 1 and 2. 255 

Biome 6 (the polar biome) features the weakest stratification and the lowest epipelagic layer temperatures among 256 

all biomes. 257 
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3.2 Provinces’ surface area evolution 258 

We aim to observe the geographical evolution of the provinces in time from 1998 to 2023. We provide in the 259 

Supplementary material, for each province, a scatter plot for the annual surface area for the period 1998-2023, 260 

with the associated linear regression (Figure S2). The slopes of the linear regression models computed from the 261 

annual time series of surface area for each province are computed (See supplementary material, Table S1S3, third 262 

column). These trends (in km2/year) are also expressed as the equivalent percentage of evolution between 1998 263 

and 2023, in % (Table S1S3, fourth column). The latter is displayed in Figure 23, as a map of the reference 264 

biophysical provinces showing their surface evolution in time from 1998 to 2023.  265 

266 
Figure 23: Map of the provinces’ surface area evolution in time from 1998 to 2023. Black lines delineate the definition 267 
of the 27 reference biophysical provinces (cf. Figure 1). Colors represent the trend in surface variation for each province 268 
(in % from 1998 to 2023): shades of red indicate increasing surface area, while shades of blue indicate decreasing surface 269 
area. 270 

From 1998 to 2023, there has been a decline in the surface area of productive provinces (i.e., characterized by high 271 

NPP) in eastern boundary coastal upwelling systems and oceanic mesotrophic systems (provinces belonging to 272 

Biomes 3 and 4, i.e. labelled 300’s and 400’s), as indicated by the provinces colored with shades of blue in Figure 273 

23. Most of the polar and subpolar provinces such as the North Atlantic and North Pacific subpolar areas 274 

(respectively provinces 501 and 502) and the circumpolar province of the Southern Ocean (601) also display 275 

decreasing trends in their extent. On the other hand, provinces with increasing surface trends are mostly tropical 276 

or subtropical areas (Indian Ocean, South Atlantic tropical band, or South Pacific tropical band, respectively 277 

provinces 103, 201 and 203).  278 

On a global scale, productive provinces and polar provinces seem to shrink in favor of tropical provinces 279 

expansion. However, some biomes exhibit significant discrepancies among the provinces they encompass. For 280 

instance, the surface of the Southern Ocean province 503 (belonging to the subpolar Biome 5) shows an increasing 281 

trend, in opposition with provinces 501 and 502 belonging to the same biome, showing decreasing trends in the 282 

northern hemisphere. 283 

 284 

3.3 Provinces’ average latitude evolution 285 

Together with the evolution of provinces’ surface area, provinces’ average latitude is a valuable metric to track the 286 

geographical evolution of the provinces in time from 1998 to 2023. We provide in the Supplementary material, for 287 

each province, a scatter plot for the annual province’s average latitude for the period 1998-2023, with the 288 

associated linear regression (Figure S4). The slopes of the linear regression models computed from the annual time 289 

series of average latitude for each province are computed (See supplementary material, Table S2S5). The poleward 290 

displacement of each province between 1998 and 2023 is displayed in Figure 34 (in degree poleward).  291 
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 292 

 293 

 294 

Figure 34: Map of the provinces’ average latitude evolution in time from 1998 to 2023. Black lines display the definition 295 
of the 27 reference biophysical provinces (cf. Figure 1). Colors represent the trend in average latitude variation for each 296 
province (in degree poleward from 1998 to 2023): darker shades of red indicate poleward drifting, while darker shades 297 
of blue indicate equatorward drifting. Provinces of the equatorial biome colored in grey (101, 102 and 103) are not 298 
considered in this diagnostic because of their equatorial position. 299 

Most of the provinces experience poleward drifting (provinces colored with shades of red in Figure 34). The 300 

tropical provinces displaying increasing surface trends (See provinces 201, 202, 203, Figure 23) experience 301 

equatorward drifting, as indicated by provinces colored with shades of blue in Figure 34. Provinces with average 302 

latitude evolution trends between +0.5 and -0.5 degree poleward over the time period are considered as stable in 303 

time, in terms of latitude (provinces colored in yellow in Figure 3).4. This range encompasses the 20% of 304 

provinces, exhibiting the least latitudinal drift over time, distinguished from the ones undergoing more pronounced 305 

and meaningful drifts.  306 

  307 

3.4 UncertaintiesSensitivity Analysis 308 
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The robustness of the biophysical clustering obtained with the reference dataset, i.e., GLORYS12V1 for the 309 

physical variables and VGMPVGPM for the biological variable (see section 2.1., and table 1, product ref01), is 310 

tested by computing other biophysical clusterings derived from alternative environmental datasets. These 311 

alternative datasets include physical data from ARMOR3D (Guinehut et al., 2012; Mulet et al., 2012) and 312 

biological data from the biogeochemical model PISCES (Aumont et al., 2015),  313 

The Multi Observation Global Ocean 3D Temperature Salinity Height Geostrophic Current and MLD product of 314 

Copernicus Marine Service (MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012, product ref03, table 1) 315 

provides 3-D temperature from ARMOR3D dataset, derived from an optimal analysis of 3-D observations. This 316 

product is used to compute the epipelagic layer temperature and the stratification, instead of GLORYS12V1 (used 317 

in reference biophysical clustering, product ref01, table 1). A first alternative clustering, employing the same 318 

methodology as the reference biophysical clustering (see II2.1. Variables and biophysical clustering), is performed 319 

using this product to compute the physical variables (the epipelagic layer temperature and the stratification), and 320 

still using VGPM (product ref01, table 1) to compute the NPP. 321 

Then, the Biogeochemical hindcast for global ocean product of Copernicus Marine Service  322 

(GLOBAL_MULTIYEAR_BGC_001_029, product ref02, table 1), is used to compute the NPP variable for the 323 

clustering instead of VGPM (product ref01, table 1). It provides 3D biogeochemical fields using PISCES 324 

biogeochemical model outputs. A second alternative clustering, employing the same methodology as the reference 325 

biophysical clustering, is performed using this product to compute the NPP, and still using GLORYS12V1 326 

(product ref01, table 1) to compute the physical variables (as in the reference biophysical clustering). 327 

The two alternative products mentioned above are available at ¼ degree from 1998 to 2022 at a monthly resolution. 328 

Each of them is used to compute an alternative clustering (respectively using VGPM-ARMOR3D and PISCES-329 

GLORYS12V1). We compare our reference biophysical clustering (VGPM-GLORYS12V1, see Section 2.1), 330 

downscaled from 1/12-degree to 1/4-degree resolution, with two alternative clusterings (Figure 45), all averaged 331 

over the period 1998–2022. 332 

 333 

Figure 45: Clustering sensitivity analysis. Map of reference biophysical biomes computed from GLORYS12V1 (product 334 
ref01, table 1) and VGPM (product ref01, table 1), in black lines (cf. Figure 1).  The white areas indicate where both 335 
alternative clusterings assign the same cluster as the reference biophysical clustering. The blue areas indicate where the 336 
clustering using ARMOR3D (product ref03, table 1) instead of GLORYS12V1 (product ref01, table 1) assign a different 337 
cluster from the reference biophysical clustering. The yellow areas indicate where the clustering using PISCES (product 338 
ref02, table 1) instead of VGPM (product ref01, table 1) assign a different cluster from the reference biophysical 339 
clustering. The green areas indicate where both alternative clusterings assign a different cluster from the reference 340 
biophysical clustering. 341 
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Figure 45 shows that the clustering is very stable when changing the physical variable source from GLORYS12V1 342 

(product ref01, table 1) to ARMOR3D (product ref03, table 1), as blue areas highlight minor boundaries 343 

differences. However, when changing biogeochemical variable source from VGPM (product ref01, table 1) to 344 

PISCES (product ref02, table 1), the productive biome 4 is highly impacted. However, NPP estimations from 345 

PISCES (product ref02, table 1) and VGPM (product ref01, table 1) differ significatively. We notice that the 346 

clustering remains relatively stable with respect to the source of forcings, although variations can arise when 347 

forcing fields differ widely. The time series and results presented in the study are thus valid using VGPM and 348 

GLORYS12V1 (both product ref01, table 1), but caution should be taken in extrapolating those results to clusters 349 

issued from other biogeochemical sources (e.g. models’ outputs). 350 

  351 

4 Discussion and conclusion 352 

In this study, we defined an annual time series of biophysical provinces linked to micronekton from 1998 to 2023, 353 

based on a methodology introduced in Albernhe et al. (2024, under review).  In addition to the provinces’ definition 354 

methodology, this previous article27 biophysical provinces linked to micronekton, based on a methodology 355 

introduced in Albernhe et al. (2024). Our definition of the reference biophysical provinces (Figure 1) has been 356 

compared to other studies (e.g. Proud et al., 2017; Sutton et al., 2017, Ariza et al. 2022) employing comparable 357 

methodologies using environmental variables to derive biogeographic regions. Sutton et al. (2017) classified 358 

regions based on environmental drivers and expert knowledge, Proud et al. (2017) used clustering on 359 

environmental variables to model deep scattering layers characteristics, and Ariza et al. (2022) derived provinces 360 

by clustering acoustic data reconstructed from biophysical variables. Despite methodological differences among 361 

these three studies, the resulting biogeographical regions closely align with ours. Notably, beyond the evident 362 

latitudinal banding (in the austral Ocean for instance), more complex regional structures emerge in the North 363 

Atlantic, midlatitude frontal zones (except in the South Pacific), and upwelling regions (see Figure 4 in Sutton et 364 

al., 2017; Figure 3A in Proud et al., 2017; Figure 2a in Ariza et al., 2022; and our Figure 1). This similarity likely 365 

arises because all approaches rely on biophysical variables that capture key information on temperature, biological 366 

productivity, and water column mixing. 367 

The annual time series of biophysical provinces from 1998 to 2023 allows for tracking their temporal evolution 368 

capturing decadal to climatic variability, focusing on the variations in surface area and average latitude of each 369 

province. The resulting changes observed include a shrinking of productive and polar provinces, an expansion of 370 

equatorial and tropical provinces, and a poleward drift affecting most provinces. 371 

Despite the complexity of the multifactorial causes behind the spatial variation of the provinces, we can attempt 372 

to infer the main environmental variables driving the provinces’ spatial evolution and how changes in these 373 

variables contribute to their size variation and latitude drifting. Based on Figure 2, boxplots with median values 374 

particularly different from the others (e.g., either the highest or lowest) and narrower ranges (indicating low data 375 

variance) highlight the environmental variable most likely to characterize a province's specificity. Equatorial 376 

provinces (Biome 1) are characterized by very high temperature and stratification values, with narrow boxplots 377 

indicating weak data variance. Thus, temperature and stratification seem to be the most explanatory variables for 378 

these provinces. A similar but less pronounced pattern is observed in subtropical provinces (Biome 2). Productive 379 

provinces (Biomes 3 and 4) are highly distinguishable by their significantly elevated NPP values compared to 380 

others, suggesting that NPP is the most explanatory variable for these regions. Subpolar and polar provinces 381 

(Biomes 5 and 6, respectively) are marked by low stratification and cold waters, with polar provinces showing the 382 

weakest values among all biomes. Therefore, temperature and stratification appear to be the key explanatory 383 

variables for subpolar and polar provinces. 384 

The spatial variation of provinces is a multifactorial outcome of expected environmental change in time. This 385 

variation arises from complex interactions and feedback mechanisms among biophysical variables, driven by a 386 

range of intricate physico-biogeochemical processes. Under global warming, the ocean is warming (Abraham et 387 

al., 2013, Kwiatkowski et al., 2020, IPCC 2021), which is consistent with the increasing trend observed in the time 388 

series of global mean epipelagic layer temperature (Figure S1). The ocean density structure and vertical dynamics 389 

also change (Srokosz and Bryden, 2015), which aligns with the increasing trend observed in the time series of 390 

global mean stratification of the mesopelagic ocean (Figure S1). Both primary production and vertical 391 

displacements of phytoplankton are impacted by these physical changes (Denman and Gargett, 1983; Laufkötter 392 

et al., 2013), including stratification leading to nutrient limitation. Phytoplankton growth is deeply influenced by 393 
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temperature (Grimaud et al., 2017), but many other features such as nutrients supply or light induce variability in 394 

NPP patterns (Behrenfeld et al., 2006). A global decrease in NPP has been observed in early 21st century 395 

(Behrenfeld et al., 2006; C. Laufkötter et al., 2013; Kwiatkowski et al. 2020), which is consistent with the 396 

decreasing trend observed in the time series of global mean NPP (Figure S1). However, an analysis of remotely 397 

sensed surface chlorophyll-a concentration (upon which NPP calculations are based) reveals highly contrasted 398 

trends between available merged products (Pauthenet et al. 2024), questioning the accuracy of these results. 399 

Moreover, future climate model projections of global NPP over the 21st century display a poor level of confidence. 400 

In the present study, we observe a global shrinking of productive provinces and polar provinces, in favor of an 401 

expansion of equatorial and tropical provinces (Figure 3). A regional decline in primary production could cause 402 

the reduction in the size of productive provinces, with NPP identified as the most probable explanatory variable 403 

for provinces within biomes 3 and 4. The previous reference to Pauthenet et al.'s work advises caution in 404 

interpreting this. Concurrently, the global increase in ocean temperature over the past decades explains both the 405 

expansion of equatorial and tropical provinces and the contraction of polar provinces, with temperature identified 406 

as the key driving factor for these provinces. Trends in ocean temperature, supported by converging estimations, 407 

are much more robust and pronounced than those of NPP (Bopp et al., 2013). 408 

The latitudinal patterns of our provinces’ definition are directly impacted by temperature changes. These latitudinal 409 

patterns identify the equatorial, subtropical, subpolar and polar biomes (Biomes 1, 2, 5 and 6) which were 410 

previously suggested to be primarily influenced by temperature and stratification variables. The increase in ocean 411 

temperatures drives the expansion of equatorial provinces, causing their climatic boundaries to shift poleward 412 

while they remain centered around the equator. A similar poleward drift is observed in subtropical provinces. 413 

Likewise, polar provinces are affected by warming, as the reduction in cold water areas confines them to higher 414 

latitudes and pushes their climatic boundaries poleward. Tracking the geographical evolution of these provinces 415 

over time, as illustrated in Figure 4, demonstrates that most provinces exhibit this poleward drift, apparently likely 416 

driven by temperature. 417 

In addition to the provinces’ definition methodology, the previous publication upon which the present study is 418 

based (Albernhe et al., 2024) demonstrates that each province features a specific characterization in terms of 419 

micronekton biomass and vertical structure. Following the hypothesis that these characteristics are preserved over 420 

time, which needs to be further investigated, the evolution of provinces’ surface area can account for global 421 

micronekton trends and estimations. For instance, the shrinking of provinces featuring the highest density of 422 

micronekton biomass would lead to a global decrease of micronekton biomass.  423 

In the present study, we observe a global shrinking of productive provinces and polar provinces, in favor of 424 

equatorial and tropical provinces expansion (Figure 2). Productive provinces and subpolar provinces are 425 

characterized by high densities of micronekton biomass (Albernhe et al., 2024, under review), whereas equatorial 426 

and tropical ones display weaker densities.  of micronekton biomass. If provinces characteristics are preserved 427 

over time, these surfaces variationsthe shrinking of productive and polar provinces together with the expansion of 428 

the equatorial and tropical provinces would imply a global decline of micronekton biomass. This reasoning is 429 

based on a basic deduction from the consequences of ecological niche surface variation. However, the underlying 430 

mechanisms that could explain a global decline in micronekton biomass may be partly attributed to the previously 431 

mentioned decreasing trend in NPP at the global scale. Since NPP is at the base of the trophic chain, this decline 432 

has cascading effects up to micronekton, limiting their energy sources and thus reducing population development. 433 

Additionally, the potential global decline in micronekton biomass may also be partly induced by the increasing 434 

trend in global ocean temperature, which affects micronekton development times (Gillooly et al., 2002), including 435 

growth and mortality.  436 

This potential trend for micronekton biomass evolution on the historical period would be in range with studies on 437 

micronekton biomass climate projections (Bryndum-Buchholz et al., 2018; Kwiatkowski et al, 2019; Lotze et al, 438 

2019; Tittensor et al., 2021; Ariza et al., 2022). In Ariza et al. (2022), the authors derive acoustic provinces from 439 

a clustering using acoustic data as a proxy of micronektonic biomasses, which they reconstructed from biophysical 440 

data (satellite-derived chlorophyll concentration, sea surface temperature and subsurface dissolved oxygen).  In 441 

Albernhe et al. (2024), our biophysical provinces were compared to these acoustic provinces, revealing a strong 442 

overall agreement, particularly in terms of latitudinal patterns, dynamic regions, and upwelling areas. However, 443 

our clustering method did not capture oxygen-driven patterns. Ariza et al. (2022) also explored the spatio-temporal 444 

variability of provinces in future projections extending to 2100. They predict a contraction of upwelling and 445 

subpolar provinces alongside an expansion of subtropical and temperate provinces, leading to a global decline of 446 
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pelagic fauna. Despite the differing timeframes of the two studies (1998–2023 in our case vs. projections for 2000–447 

2020 and 2080–2100 in Ariza et al.), their conclusions align with ours regarding the trends observed in these 448 

biogeographical provinces, and the consequences on mid trophic biomass. To end up regarding the poleward 449 

drifting of provinces, this valuable observation in range with the literature (Hastings et al., 2020; Pinsky et al., 450 

2020), suggesting a potential poleward migration of micronektonic populations induced by temperature 451 

changes.2018; Lotze et al, 2019; Tittensor et al., 2021; Ariza et al., 2022). 452 

The tracking of the geographical evolution of the provinces in time reveals that most of the provinces experience 453 

poleward drifting (Figure 3). This poleward drifting is aThe authors would, however, like to draw the reader’s 454 

attention to the caution required when interpreting the trends. First, the trends presented in this study (whether 455 

regarding the surface area of provinces or their mean latitude) are quantified based on linear regressions. However, 456 

these regressions exhibit low R² values, indicating that the linear relationships are not statistically significant. A 457 

26-year period is insufficient to establish statistically robust linear trends in the characteristics of the provinces 458 

under investigation. Moreover, observed trends can vary depending on the temporal scale of the study: short-term 459 

trends under 26 years do not necessarily reflect long-term, sustainable changes. Additionally, the data employed 460 

in this analysis are subject to various biases and uncertainties (e.g., discrepancies between products estimating 461 

chlorophyll-a concentration used to derive NPP, as noted in Pauthenet et al., 2024). Finally, a detailed analysis of 462 

the consistency of each province's micronektonic characteristics over time (regarding biomass and the vertical 463 

structure of micronekton), should be conducted. This would provide a more solid basis for confirming the link 464 

between changes in province surface areas and the evolution of total micronekton biomass. Misinterpreting these 465 

findings could lead to premature conclusions or ineffective communication to the public, thereby increasing the 466 

risk of misinformation about critical issues such as climate change.  467 

Despite these uncertainties, the indicators defined in this study show sensitivity to changes in environmental 468 

parameters and are valuable metrics that should be monitored over the long term. Examining these parameters 469 

over longer timescales may allow us to identify climate trends, with the significance of these trends increasing as 470 

the time series extends. 471 
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Data availability 506 

All data products used in this paper are listed in Table 1, along with their corresponding documentation and online 507 

availability. 508 

Table 1: Product Table 509 

Product 

ref. No. 

Product ID & type Data access Documentation 

01 GLOBAL_MULTIYEAR_BGC_001_033; Numerical 

Models 

EU Copernicus Marine 

Service Product: Global 

Ocean low and mid trophic 

levels biomass content 

hindcast, Mercator Ocean 

International, 

https://doi.org/10.48670/moi-

00020 

 

Quality 

Information 

Document 

(QUID):  

Titaud et al., 

2023 
 

Product User 

Manual 

(PUM): Titaud 

et al., 2023 
 

02 GLOBAL_MULTIYEAR_BGC_001_029; Numerical 

models 

EU Copernicus Marine 

Service Product: 

Biogeochemical hindcast for 

global ocean, Mercator 

Ocean International, 

https://doi.org/10.48670/moi-

00019  

 

Quality 

Information 

Document 

(QUID):  

Perruche et al., 

2019 

 

Product User 

Manual 

(PUM) : Le 

Galloudec et 

al., 2022 

https://doi.org/10.48670/moi-00020
https://doi.org/10.48670/moi-00020
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03 MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012; 

In-situ observations, Satellite observations 

EU Copernicus Marine 

Service Product: Multi 

Observation Global Ocean 

3D Temperature Salinity 

Height Geostrophic Current 

and MLD, CLS, 

https://doi.org/10.48670/moi-

00052 

 

Quality 

Information 

Document 

(QUID):  

Greiner., 2023 

 
Product User 

Manual 

(PUM) : 

Verbrugge et 

al., 2023 
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