
1

Unlocking the Power of Parallel Computing: GPU technologies for 1

Ocean Forecasting 2

Andrew Porter1 and Patrick Heimbach2 3

 4
1Science and Technology Facilities Council, Daresbury Laboratory, Hartree Centre, Daresbury, UK 5
2Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA 6
 7
Correspondence to: Andrew Porter (andrew.porter@stfc.ac.uk) 8
 9
Abstract. Operational ocean forecasting systems are complex engines that must execute ocean models with high performance 10

to provide timely products and datasets. Significant computational resources are then needed to run high-fidelity models and, 11

historically, technological evolution of microprocessors has constrained data parallel scientific computation. Today, GPUs 12

offer an additional and valuable source of computing power to the traditional CPU-based machines: the exploitation of 13

thousands of threads can significantly accelerate the execution of many models, ranging from traditional HPC workloads of 14

finite-difference/volume/element modelling through to the training of deep neural networks used in machine learning and 15

artificial intelligence. Despite the advantages, GPU usage in ocean forecasting is still limited due to the legacy of CPU-based 16

model implementations and the intrinsic complexity of porting core models to GPU architectures. This review explores the 17

potential use of GPU in ocean forecasting and how the computational characteristics of ocean models can influence the 18

suitability of GPU architectures for the execution of the overall value chain: it discusses the current approaches to code (and 19

performance) portability, from CPU to GPU, differentiating among tools that perform code-transformation, easing the 20

adaptation of Fortran code for GPU execution (like PSyclone) or direct use of OpenACC directives (like ICON-O), to adoption 21

of specific frameworks that facilitate the management of parallel execution across different architectures. 22

1 Introduction 23

Operational Ocean Forecasting Systems (OOFS) are computationally demanding, and large compute resources are required in 24

order to run models of useful fidelity. However, this is a time of great upheaval in the development of computer architectures. 25

The ever-shrinking size of transistors means that current leakage (and the resulting heat generated) now presents a significant 26

challenge to chip designers. This breakdown of 'Dennard Scaling' (transistor power consumption is proportional to area as in 27

Dennard et al., 1974) began in about 2006 and means that it is no longer straightforward to continually increase the clock 28

frequency of processors. Historically this has been the main source of performance improvement from one generation of 29

processor to the next (Figure 1). Although the number of transistors per device continues to rise, they are increasingly being 30

https://doi.org/10.5194/sp-2024-32

Discussions

Preprint. Discussion started: 26 September 2024
c© Author(s) 2024. CC BY 4.0 License.

2

used to implement larger numbers of execution cores. It is then the job of the application to make use of these additional cores 31

to achieve a performance improvement. Graphical Processing Units (GPUs) are a natural consequence of this evolution. 32

Originally developed to accelerate rendering of computer-generated images (a naturally data-parallel task thanks to the division 33

of an image into pixels), scientists were quick to seize on their potential to accelerate data-parallel scientific computation. 34

Therefore, manufacturers today produce HPC-specific "GPUs" that are purely intended for computation. The suitability of this 35

hardware for the training of deep neural networks used in machine learning and artificial intelligence has stimulated massive 36

development and competition amongst GPU vendors. 37

Unlike CPUs which tend to have relatively few but powerful (general purpose) processor cores, GPUs support hundreds of 38

simpler cores running thousands of threads which can get data from memory very efficiently. The simplicity of these cores 39

makes them more energy efficient and therefore GPUs tend to offer significantly greater performance per Watt. With energy 40

consumption of large computing facilities now the key design criterion, GPUs are an important part of the technology being 41

used in the push towards Exascale performance and beyond (e.g. Draeger and Siegel, 2023). As an illustration, in the November 42

2022 incarnation of the Top500 list (Strohmaier et al., 2020), eight of the machines in the top ten are equipped with some form 43

of accelerator and the majority of those are GPUs from either NVIDIA or AMD. Although CPUs are present in these machines, 44

their primary role is to host the GPUs which provide the bulk of the compute performance. GPUs are therefore a major feature 45

of the current HPC landscape, and their importance and pervasiveness is only set to increase. 46

https://doi.org/10.5194/sp-2024-32

Discussions

Preprint. Discussion started: 26 September 2024
c© Author(s) 2024. CC BY 4.0 License.

3

 47

Figure 1: 50 years of microprocessor (CPU) evolution showing the breakdown of Dennard scaling (Rupp, 2022) 48

2 Computational Characteristics of Ocean Models 49

To understand why GPUs are well suited to running OOFS, it is important to consider their computational characteristics. The 50

equations describing ocean evolution are solved numerically by discretizing the model domain and then using a Finite 51

Difference, Finite Volume or Finite Element scheme. In these forms, the bulk of the computational work takes the form of 52

stencil computations where the update of a field at a given grid location requires that many other field values be read from 53

neighbouring locations. This means that the limiting factor in the rate at which these computations can be done is how quickly 54

all these values can be fetched from memory (so called 'memory bandwidth'). (Finite element schemes do have the advantage 55

of shifting the balance in favour of doing more arithmetic operations but memory bandwidth still tends to dominate.) These 56

computations are of course repeated across the entire model grid meaning that it is a Same Instruction Multiple Data (SIMD) 57

problem. OOFS are therefore a very good fit for GPU architectures which naturally support massively data-parallel problems 58

and typically provide much higher memory bandwidth than CPUs. 59

https://doi.org/10.5194/sp-2024-32

Discussions

Preprint. Discussion started: 26 September 2024
c© Author(s) 2024. CC BY 4.0 License.

4

3 The use of GPUs in Ocean Forecasting 60

Although GPUs are now a well-established HPC technology with potentially significant performance advantages for OOFS, 61

they are not yet widely adopted in the ocean-forecasting community. For example, in Europe, NEMO (Madec et al., 2023) is 62

the most important ocean-modeling framework; it is used operationally by Mercator Ocean International, the European Centre 63

for Medium-Range Weather Forecasting, the UK Met Office and the Euro-Mediterranean Centre on Climate Change, and 64

other Institutes worldwide. NEMO is implemented in Fortran and parallelised with MPI and as such is limited to running on 65

CPUs only. The German weather service (DWD) uses ICON-Ocean (Korn, 2017) which is also a Fortran model. Experiments 66

are in progress with the use of OpenACC directives to extend this code to make use of GPUs but this functionality is not used 67

operationally. 68

In the US, NOAA's Real-Time Ocean Forecast System (https://polar.ncep.noaa.gov/global/) is based on HYCOM (HYbrid 69

Coordinates Ocean Model, Chassignet et al., 2009). HYCOM too is a Fortran code parallelised using a combination of OpenMP 70

and MPI. Although not used operationally, the Energy Exascale Earth System Model is also significant. It utilizes the MPAS 71

(Model for Prediction Across Scales) Ocean, Sea-Ice and Land-Ice models (Ringler et al., 2013) which again is implemented 72

in Fortran with MPI (although some experimental ports have been performed using OpenACC directives). The MIT General 73

Circulation Model (MITgcm, Marshall et al., 1997) is also widely used and again is Fortran with support for distributed- and 74

shared-memory parallelism on CPU. 75

The Japanese Meteorological Agency runs operational forecasts using the Meteorological Research Institute Community 76

Ocean Model (MRI.COM) (Tsujino et al., 2010). As with the previous models, this too is implemented in Fortran with MPI 77

and thus only runs on CPU. 78

For regional (as opposed to global) forecasts, the Rutgers Regional Ocean Modeling System (ROMS) (Shchepetkin and 79

McWilliams, 2023) is used by centers worldwide including the Japan Fisheries Research and Education Agency, the Australian 80

Bureau of Meteorology and the Irish Marine Institute. ROMS too is a Fortran code parallelised using either MPI or OpenMP 81

(but not both combined) and thus is restricted to CPU execution. Although various projects have ported the code to different 82

architectures (including the Sunway architecture for China's Tianhe machine, Liu et al., 2019), these are all standalone pieces 83

of work that have not made it back into the main code base. 84

4 Discussion 85

From the preceding section, it is clear that OOFS are currently largely implemented in Fortran with no or limited support for 86

execution on GPU devices. The problem here is that OOFS comprise of large and complex codes which typically have a 87

lifetime of decades and are constantly being updated with new science by multiple developers. Maintainability, allowing for 88

the fact that the majority of developers will be specialists in their scientific domain rather than in HPC, is therefore of vital 89

importance. Given that such codes are often shared between organizations, they must also run with good performance on 90

different types of architecture (i.e. be 'performance portable'). 91

https://doi.org/10.5194/sp-2024-32

Discussions

Preprint. Discussion started: 26 September 2024
c© Author(s) 2024. CC BY 4.0 License.

5

Previously, one generation of supercomputers looked much like the last and therefore the evolution of these computer models 92

was not a significant problem. However, the proliferation of computer hardware (and, crucially, the programming models 93

needed to target them) that has resulted from the breakdown of Dennard scaling has changed this. With the average 94

supercomputer having a lifetime of just some five years, OOFS are now facing the problem of adapting to future supercomputer 95

architectures and this is difficult because the aims of performance, performance portability and code maintainability often 96

conflict with each other (Lawrence et al., 2018). 97

To date there have been various approaches to this problem. NEMO is in the process of adopting the PSyclone code-98

transformation tool (Adams et al., 2019) that enables an HPC expert to transform Fortran source code such that it may be 99

executed on GPU using whichever programming model is required. For a low-resolution, 1 degree) global mesh, a single 100

NVIDIA V100 GPU gives a performance some 3.6x better than an HPC-class Intel socket. For a high-resolution, (1/12th 101

degree) global mesh, ~90 A100 GPUs give the same performance as ~270 Intel sockets (Porter et al., 2023 - in prep.). As noted 102

earlier, ICON-O is being extended manually with OpenACC directives (although these are only supported on NVIDIA 103

hardware). There are examples of recent (i.e. experimental) models that have moved away from Fortran in favor of higher-104

level programming approaches. Thetis (Kärnä et al., 2018) implements a Discontinuous Galerkin method for solving the 3D 105

hydrostatic equations using the Firedrake framework. This permits the scientist to express their scheme in the Python 106

implementation of Unified Form Language (Alnæs et al., 2014). The necessary code is then generated automatically. The 107

Veros model (Häfner et al., 2021) takes a slightly different approach: its dynamical core is a direct Python translation of a 108

Fortran code and thus retains explicit MPI parallelisation. The JAX system (http://github.com/google/jax) for Python is then 109

used to generate performant code for both CPU and GPU. The authors report that the Python version running on 16 A100 110

GPUs gives the same performance as 2000 CPU cores for the Fortran version (although this comparison is slightly unfair as 111

the CPUs used are several generations older than the GPUs). 112

Another popular approach to performance portability is to implement a model using a framework that takes care of parallel 113

execution on a target platform. Frameworks such as Kokkos (Carter Edwards et al., 2014), SyCL and OpenMP are good 114

examples. In principle this approach retains single-source science code, while enabling portability to a variety of different 115

hardware. However, it is hard to insulate the oceanographer from the syntax of the framework (which are often only available 116

in C++) and, while the framework may be portable, obtaining good performance often requires that it be used in a different 117

way from one platform to another. In OpenMP for instance, the directives needed to parallelise a code for a multi-core CPU 118

are not the same as those needed to offload code to an accelerator. 119

The Climate Modeling Alliance (CliMA) has adopted a radically new approach by rewriting ocean and atmospheric models 120

from scratch using the programming language Julia (Perkel, 2019; Sridhar et al., 2022). Designed to overcome the “two-121

language problem” (Churavy et al., 2022), Julia is ideally suited to harness emerging HPC architectures based on GPUs (Besard 122

et al., 2017; Bezanson et al., 2017). First results with CliMA’s ocean model, Oceananigans.jl (Ramadhan et al., 2020), run on 123

64 NVIDIA A100 GPUs exhibit 10 Simulation Years Per Day (SYPD) at 8 km horizontal resolution (Silverstri et al., 2024). 124

This performance is similar to current-generation CPU-based ocean climate models run at much coarser resolution (order 25-125

https://doi.org/10.5194/sp-2024-32

Discussions

Preprint. Discussion started: 26 September 2024
c© Author(s) 2024. CC BY 4.0 License.

6

50 km resolution). Similarly promising benchmarks have been obtained with a barotropic configuration of a prototype of the 126

MPAS-Ocean model, rewritten in Julia (Strauss et al., 2023). Such performance gains hold great promise for accelerating 127

operational ocean prediction at high spatial resolution run on emerging HPC hardware. 128

References 129

Adams, S. V., Ford, R. W., Hambley, M., Hobson, J. M., Kavcic, I., Maynard, C. M., Melvin, T., Mueller, E. H., Mullerworth, 130

S., Porter, A. R., Rezny, M., Shipway, B. J. and Wong, R.: LFRic: Meeting the challenges of scalability and performance 131

portability in Weather and Climate models. Journal of Parallel and Distributed Computing, 132, 383-396. 132

https://doi.org/10.1016/j.jpdc.2019.02.007, 2019. 133

Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E. and Wells, G. N.: Unified Form Language: A Domain-Specific 134

Language for Weak Formulations of Partial Differential Equations, ACM Trans. Math. Softw., 40(2), doi:10.1145/2566630 135

Carter Edwards, H., Trott, C.R., and Sunderland, D. (2014). Kokkos: enabling manycore performance portability through 136

polymorphic memory access patterns, Journal of Parallel and Distributed Computing, 74(12), 3202-3216. 137

https://www.osti.gov/servlets/purl/1106586, 2014. 138

Besard, T., Foket, C. & Sutter, B. D.: Effective Extensible Programming: Unleashing Julia on GPUs. IEEE Transactions on 139

Parallel and Distributed Systems, 30(4), 827–841. https://doi.org/10.1109/tpds.2018.2872064, 2017. 140

Bezanson, J., Edelman, A., Karpinski, S. and Shah, V. B.: Julia: A Fresh Approach to Numerical Computing. SIAM Review, 141

59(1), 65–98. https://doi.org/10.1137/141000671, 2017; 142

Chassignet, E.P., Hurlburt, H.E., Metzger, E.J., Smedstad, O.M., Cummings, J., Halliwell, G.R., Bleck, R., Baraille, R., 143

Wallcraft, A.J., Lozano, C., Tolman, H.L., Srinivasan, A., Hankin, S., Cornillon, P., Weisberg, R., Barth, A., He, R., Werner, 144

F., and Wilkin, J.: U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). 145

Oceanography, 22(2), 64-75. https://doi.org/10.5670/oceanog.2009.39, 2009. 146

Churavy, V., Godoy, W. F., Bauer, C., Ranocha, H., Schlottke-Lakemper, M., Räss, L., Blaschke, J., Giordano, M., Schnetter, 147

E., Omlin, S., Vetter, J. S. & Edelman, A.: Bridging HPC Communities through the Julia Programming Language. arXiv. 148

https://doi.org/10.48550/arxiv.2211.02740, 2022. 149

Dennard, R. H., Gaensslen, F., Yu, H., Rideout, L., Bassous, E., and LeBlanc, A.: Design of ion-implanted MOSFET's with 150

very small physical dimensions. IEEE Journal of Solid-State Circuits. SC-9 (5), 256–268, 1974. 151

Draeger, E. W. and Siegel, A.: Exascale Was Not Inevitable; Neither Is What Comes Next. Computing in Science and 152

Engineering, 25(3), 79–83. https://doi.org/10.1109/mcse.2023.3311375, 2023. 153

Häfner, D., Nuterman, R. and Jochum, M.: Fast, cheap, and turbulent — Global ocean modeling with GPU acceleration in 154

Python. Journal of Advances in Modeling Earth Systems, 13. doi:10.1029/2021MS002717, 2021. 155

https://doi.org/10.5194/sp-2024-32

Discussions

Preprint. Discussion started: 26 September 2024
c© Author(s) 2024. CC BY 4.0 License.

7

Kärnä, T., Kramer, S. C., Mitchell, L., Ham, D. A., Piggott, M. D. and Baptista, A. M. .: Thetis coastal ocean model: 156

discontinuous Galerkin discretization for the three-dimensional hydrostatic equations. Geoscientific Model Development, 157

11(11), 4359-4382. https://doi.org/10.5194/gmd-11-4359-2018, 2018. 158

Korn, P.: Formulation of an unstructured grid model for global ocean dynamics, Journal of Computational Physics, 339, 525-159

552. https://doi.org/10.1016/j.jcp.2017.03.009, 2017. 160

Lawrence, B. N., Rezny, M., Budich, R., Bauer, P., Behrens, J., Carter, M., Deconinck, W., Ford, R., Maynard, C., 161

Mullerworth, S., Osuna, C., Porter, A., Serradell, K., Valcke, S., Wedi, N. and Wilson, S.: Crossing the chasm: how to develop 162

weather and climate models for next generation computers? Geoscientific Model Development, 11(5), 1799-1821. 163

https://doi.org/10.5194/gmd-11-1799-2018, 2018. 164

Madec, G. and NEMO System Team: NEMO ocean engine, Scientific Notes of Climate Modelling Center, 27, Institut Pierre-165

Simon Laplace (IPSL), doi:10.5281/zenodo.1464816, 2023. 166

Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for 167

studies of the ocean on parallel computers. J. Geophysical Res., 102(C3), 5753-5766. https://doi.org/10.1029/96JC02775, 168

1997. 169

Perkel, J. M.; Julia: come for the syntax, stay for the speed. 141–142. http://www.nature.com/articles/d41586-019-02310-3, 170

2019. 171

Porter, A. R., Dearden, C., Ford, R. W., Henrichs, J., Siso, S., Nobre, N., Müller, S. A., Coward, A., Bell, M. (2023). Using 172

PSyclone 3.4 to achieve Performance Portability for NEMO 4.0 and NEMO-MEDUSA Ocean Models, in preparation. 173

Ringler, T. Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W. and Maltrud, M.: A multi-resolution approach to global 174

ocean modeling, Ocean Modelling, 69, 211-232. https://doi.org/10.1016/j.ocemod.2013.04.010, 2013. 175

Shchepetkin, A. F., and McWilliams, J.C.: A method for computing horizontal pressure-gradient force in an oceanic model 176

with a nonaligned vertical coordinate. Journal of Geophysical Research: Oceans, 108(C3), 3090. 177

https://doi.org/10.1029/2001JC001047, 2003. 178

Ramadhan, A., Wagner, G., Hill, C., Campin, J.-M., Churavy, V., Besard, T., Souza, A., Edelman, A., Ferrari, R. & Marshall, 179

J.: Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs. Journal of Open Source Software, 5(53), 2018. 180

https://doi.org/10.21105/joss.02018, 2020. 181

Silvestri, S., Wagner, G. L., Constantinou, N. C., Hill, C. N., Campin, J.-M., Souza, A. N., Bishnu, S., Churavy, V., Marshall, 182

J. C. and Ferrari, R.: A GPU-based ocean dynamical core for routine mesoscale-resolving climate simulations. ESSOAr. 183

https://doi.org/10.22541/essoar.171708158.82342448/v1, 2024. 184

Sridhar, A., Tissaoui, Y., Marras, S., Shen, Z., Kawczynski, C., Byrne, S., Pamnany, K., Waruszewski, M., Gibson, T. H., 185

Kozdon, J. E., Churavy, V., Wilcox, L. C., Giraldo, F. X. & Schneider, T.: Large-eddy simulations with ClimateMachine 186

v0.2.0: a new open-source code for atmospheric simulations on GPUs and CPUs. Geoscientific Model Development, 15(15), 187

6259–6284. https://doi.org/10.5194/gmd-15-6259-2022, 2022. 188

https://doi.org/10.5194/sp-2024-32

Discussions

Preprint. Discussion started: 26 September 2024
c© Author(s) 2024. CC BY 4.0 License.

8

Strauss, R. R., Bishnu, S. and Petersen, M. R.: Comparing the Performance of Julia on CPUs versus GPUs and Julia-MPI 189

versus Fortran-MPI: a case study with MPAS-Ocean (Version 7.1). EGUsphere, 2023, 1–22. 190

https://doi.org/10.5194/egusphere-2023-57, 2023. 191

Strohmaier, E., Dongarra, J., Simon, H., Meuer, M. and Meuer, H.: The Top 500. 192

https://www.top500.org/lists/top500/list/2022/11/, 2022. 193

Tsujino, H., Motoi, T., Ishikawa, I., Hirabara, M., Nakano, H., Yamanaka, G., Yasuda, T., and Ishizaki, H.: Reference manual 194

for the Meteorological Research Institute Community Ocean Model (MRI.COM) version 3. Technical Reports of the 195

Meteorological Research Institute, 59, 273, 2010. 196

Rupp, K: Microprocessor Trend Data, https://github.com/karlrupp/microprocessor-trend-data, 2022. Accessed 12/09/2024. 197

Competing interests 198

Author A. Porter has declared that he is an author of the PSyclone package and a co-chair of the NEMO HPC Working Group. 199

Data and/or code availability 200

This can also be included at a later stage, so no problem to define it for the first submission. 201

Authors contribution 202

This can also be included at a later stage, so no problem to define it for the first submission. 203

Acknowledgements 204

This can also be included at a later stage, so no problem to define it for the first submission. 205

https://doi.org/10.5194/sp-2024-32

Discussions

Preprint. Discussion started: 26 September 2024
c© Author(s) 2024. CC BY 4.0 License.

