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Abstract. Operational ocean forecasting systems are complex engines that must execute ocean models with high performance 10 

to provide timely products and datasets. Significant computational resources are then needed to run high-fidelity models and, 11 

historically, technological evolution of microprocessors has constrained data parallel scientific computation. Today, GPUs 12 

offer an additional and valuable source of computing power to the traditional CPU-based machines: the exploitation of 13 

thousands of threads can significantly accelerate the execution of many models, ranging from traditional HPC workloads of 14 

finite-difference/volume/element modelling through to the training of deep neural networks used in machine learning and 15 

artificial intelligence. Despite the advantages, GPU usage in ocean forecasting is still limited due to the legacy of CPU-based 16 

model implementations and the intrinsic complexity of porting core models to GPU architectures. This review explores the 17 

potential use of GPU in ocean forecasting and how the computational characteristics of ocean models can influence the 18 

suitability of GPU architectures for the execution of the overall value chain: it discusses the current approaches to code (and 19 

performance) portability, from CPU to GPU, differentiating among tools that perform code-transformation, easing the 20 

adaptation of Fortran code for GPU execution (like PSyclone) or direct use of OpenACC directives (like ICON-O), to adoption 21 

of specific frameworks that facilitate the management of parallel execution across different architectures. 22 

1 Introduction  23 

Operational Ocean Forecasting Systems (OOFS) are computationally demanding, and large compute resources are required in 24 

order to run models of useful fidelity. However, this is a time of great upheaval in the development of computer architectures. 25 

The ever-shrinking size of transistors means that current leakage (and the resulting heat generated) now presents a significant 26 

challenge to chip designers. This breakdown of 'Dennard Scaling' (transistor power consumption is proportional to area as in 27 

Dennard et al., 1974) began in about 2006 and means that it is no longer straightforward to continually increase the clock 28 

frequency of processors. Historically this has been the main source of performance improvement from one generation of 29 

processor to the next (Figure 1). Although the number of transistors per device continues to rise, they are increasingly being 30 
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used to implement larger numbers of execution cores. It is then the job of the application to make use of these additional cores 31 

to achieve a performance improvement. Graphical Processing Units (GPUs) are a natural consequence of this evolution. 32 

Originally developed to accelerate rendering of computer-generated images (a naturally data-parallel task thanks to the division 33 

of an image into pixels), scientists were quick to seize on their potential to accelerate data-parallel scientific computation. 34 

Therefore, manufacturers today produce HPC-specific "GPUs" that are purely intended for computation. The suitability of this 35 

hardware for the training of deep neural networks used in machine learning and artificial intelligence has stimulated massive 36 

development and competition amongst GPU vendors. 37 

Unlike CPUs which tend to have relatively few but powerful (general purpose) processor cores, GPUs support hundreds of 38 

simpler cores running thousands of threads which can get data from memory very efficiently. The simplicity of these cores 39 

makes them more energy efficient and therefore GPUs tend to offer significantly greater performance per Watt. With energy 40 

consumption of large computing facilities now the key design criterion, GPUs are an important part of the technology being 41 

used in the push towards Exascale performance and beyond (e.g. Draeger and Siegel, 2023). As an illustration, in the November 42 

2022 incarnation of the Top500 list (Strohmaier et al., 2020), eight of the machines in the top ten are equipped with some form 43 

of accelerator and the majority of those are GPUs from either NVIDIA or AMD. Although CPUs are present in these machines, 44 

their primary role is to host the GPUs which provide the bulk of the compute performance. GPUs are therefore a major feature 45 

of the current HPC landscape, and their importance and pervasiveness is only set to increase. 46 
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 47 

Figure 1: 50 years of microprocessor (CPU) evolution showing the breakdown of Dennard scaling (Rupp, 2022) 48 

2 Computational Characteristics of Ocean Models 49 

To understand why GPUs are well suited to running OOFS, it is important to consider their computational characteristics. The 50 

equations describing ocean evolution are solved numerically by discretizing the model domain and then using a Finite 51 

Difference, Finite Volume or Finite Element scheme. In these forms, the bulk of the computational work takes the form of 52 

stencil computations where the update of a field at a given grid location requires that many other field values be read from 53 

neighbouring locations. This means that the limiting factor in the rate at which these computations can be done is how quickly 54 

all these values can be fetched from memory (so called 'memory bandwidth'). (Finite element schemes do have the advantage 55 

of shifting the balance in favour of doing more arithmetic operations but memory bandwidth still tends to dominate.) These 56 

computations are of course repeated across the entire model grid meaning that it is a Same Instruction Multiple Data (SIMD) 57 

problem. OOFS are therefore a very good fit for GPU architectures which naturally support massively data-parallel problems 58 

and typically provide much higher memory bandwidth than CPUs. 59 
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3 The use of GPUs in Ocean Forecasting 60 

Although GPUs are now a well-established HPC technology with potentially significant performance advantages for OOFS, 61 

they are not yet widely adopted in the ocean-forecasting community. For example, in Europe, NEMO (Madec et al., 2023) is 62 

the most important ocean-modeling framework; it is used operationally by Mercator Ocean International, the European Centre 63 

for Medium-Range Weather Forecasting, the UK Met Office and the Euro-Mediterranean Centre on Climate Change, and 64 

other Institutes worldwide. NEMO is implemented in Fortran and parallelised with MPI and as such is limited to running on 65 

CPUs only. The German weather service (DWD) uses ICON-Ocean (Korn, 2017) which is also a Fortran model. Experiments 66 

are in progress with the use of OpenACC directives to extend this code to make use of GPUs but this functionality is not used 67 

operationally. 68 

In the US, NOAA's Real-Time Ocean Forecast System (https://polar.ncep.noaa.gov/global/) is based on  HYCOM (HYbrid 69 

Coordinates Ocean Model, Chassignet et al., 2009). HYCOM too is a Fortran code parallelised using a combination of OpenMP 70 

and MPI. Although not used operationally, the Energy Exascale Earth System Model is also significant. It utilizes the MPAS 71 

(Model for Prediction Across Scales) Ocean, Sea-Ice and Land-Ice models (Ringler et al., 2013) which again is implemented 72 

in Fortran with MPI (although some experimental ports have been performed using OpenACC directives). The MIT General 73 

Circulation Model (MITgcm, Marshall et al., 1997) is also widely used and again is Fortran with support for distributed- and 74 

shared-memory parallelism on CPU. 75 

The Japanese Meteorological Agency runs operational forecasts using the Meteorological Research Institute Community 76 

Ocean Model (MRI.COM) (Tsujino et al., 2010). As with the previous models, this too is implemented in Fortran with MPI 77 

and thus only runs on CPU. 78 

For regional (as opposed to global) forecasts, the Rutgers Regional Ocean Modeling System (ROMS) (Shchepetkin and 79 

McWilliams, 2023) is used by centers worldwide including the Japan Fisheries Research and Education Agency, the Australian 80 

Bureau of Meteorology and the Irish Marine Institute. ROMS too is a Fortran code parallelised using either MPI or OpenMP 81 

(but not both combined) and thus is restricted to CPU execution. Although various projects have ported the code to different 82 

architectures (including the Sunway architecture for China's Tianhe machine, Liu et al., 2019), these are all standalone pieces 83 

of work that have not made it back into the main code base. 84 

4 Discussion 85 

From the preceding section, it is clear that OOFS are currently largely implemented in Fortran with no or limited support for 86 

execution on GPU devices. The problem here is that OOFS comprise of large and complex codes which typically have a 87 

lifetime of decades and are constantly being updated with new science by multiple developers. Maintainability, allowing for 88 

the fact that the majority of developers will be specialists in their scientific domain rather than in HPC, is therefore of vital 89 

importance. Given that such codes are often shared between organizations, they must also run with good performance on 90 

different types of architecture (i.e. be 'performance portable'). 91 
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Previously, one generation of supercomputers looked much like the last and therefore the evolution of these computer models 92 

was not a significant problem. However, the proliferation of computer hardware (and, crucially, the programming models 93 

needed to target them) that has resulted from the breakdown of Dennard scaling has changed this. With the average 94 

supercomputer having a lifetime of just some five years, OOFS are now facing the problem of adapting to future supercomputer 95 

architectures and this is difficult because the aims of performance, performance portability and code maintainability often 96 

conflict with each other (Lawrence et al., 2018). 97 

To date there have been various approaches to this problem. NEMO is in the process of adopting the PSyclone code-98 

transformation tool (Adams et al., 2019) that enables an HPC expert to transform Fortran source code such that it may be 99 

executed on GPU using whichever programming model is required. For a low-resolution, 1 degree) global mesh, a single 100 

NVIDIA V100 GPU gives a performance some 3.6x better than an HPC-class Intel socket. For a high-resolution, (1/12th 101 

degree) global mesh, ~90 A100 GPUs give the same performance as ~270 Intel sockets (Porter et al., 2023 - in prep.). As noted 102 

earlier, ICON-O is being extended manually with OpenACC directives (although these are only supported on NVIDIA 103 

hardware). There are examples of recent (i.e. experimental) models that have moved away from Fortran in favor of higher-104 

level programming approaches. Thetis (Kärnä et al., 2018) implements a Discontinuous Galerkin method for solving the 3D 105 

hydrostatic equations using the Firedrake framework. This permits the scientist to express their scheme in the Python 106 

implementation of Unified Form Language (Alnæs et al., 2014). The necessary code is then generated automatically. The 107 

Veros model (Häfner et al., 2021) takes a slightly different approach: its dynamical core is a direct Python translation of a 108 

Fortran code and thus retains explicit MPI parallelisation. The JAX system (http://github.com/google/jax) for Python is then 109 

used to generate performant code for both CPU and GPU. The authors report that the Python version running on 16 A100 110 

GPUs gives the same performance as 2000 CPU cores for the Fortran version (although this comparison is slightly unfair as 111 

the CPUs used are several generations older than the GPUs). 112 

Another popular approach to performance portability is to implement a model using a framework that takes care of parallel 113 

execution on a target platform. Frameworks such as Kokkos (Carter Edwards et al., 2014), SyCL and OpenMP are good 114 

examples. In principle this approach retains single-source science code, while enabling portability to a variety of different 115 

hardware. However, it is hard to insulate the oceanographer from the syntax of the framework (which are often only available 116 

in C++) and, while the framework may be portable, obtaining good performance often requires that it be used in a different 117 

way from one platform to another. In OpenMP for instance, the directives needed to parallelise a code for a multi-core CPU 118 

are not the same as those needed to offload code to an accelerator. 119 

The Climate Modeling Alliance (CliMA) has adopted a radically new approach by rewriting ocean and atmospheric models 120 

from scratch using the programming language Julia (Perkel, 2019; Sridhar et al., 2022).  Designed to overcome the “two-121 

language problem” (Churavy et al., 2022), Julia is ideally suited to harness emerging HPC architectures based on GPUs (Besard 122 

et al., 2017; Bezanson et al., 2017). First results with CliMA’s ocean model, Oceananigans.jl (Ramadhan et al., 2020), run on 123 

64 NVIDIA A100 GPUs exhibit 10 Simulation Years Per Day (SYPD) at 8 km horizontal resolution (Silverstri et al., 2024). 124 

This performance is similar to current-generation CPU-based ocean climate models run at much coarser resolution (order 25-125 
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50 km resolution). Similarly promising benchmarks have been obtained with a barotropic configuration of a prototype of the 126 

MPAS-Ocean model, rewritten in Julia (Strauss et al., 2023). Such performance gains hold great promise for accelerating 127 

operational ocean prediction at high spatial resolution run on emerging HPC hardware. 128 

References 129 

Adams, S. V., Ford, R. W., Hambley, M., Hobson, J. M., Kavcic, I., Maynard, C. M., Melvin, T., Mueller, E. H., Mullerworth, 130 

S., Porter, A. R., Rezny, M., Shipway, B. J. and Wong, R.: LFRic: Meeting the challenges of scalability and performance 131 

portability in Weather and Climate models. Journal of Parallel and Distributed Computing, 132, 383-396. 132 

https://doi.org/10.1016/j.jpdc.2019.02.007, 2019. 133 

Alnæs, M. S., Logg, A.,  Ølgaard, K. B., Rognes, M. E. and Wells, G. N.: Unified Form Language: A Domain-Specific 134 

Language for Weak Formulations of Partial Differential Equations, ACM Trans. Math. Softw., 40(2), doi:10.1145/2566630  135 

Carter Edwards, H., Trott, C.R., and Sunderland, D. (2014). Kokkos: enabling manycore performance portability through 136 

polymorphic memory access patterns, Journal of Parallel and Distributed Computing, 74(12), 3202-3216. 137 

https://www.osti.gov/servlets/purl/1106586, 2014. 138 

Besard, T., Foket, C. & Sutter, B. D.: Effective Extensible Programming: Unleashing Julia on GPUs. IEEE Transactions on 139 

Parallel and Distributed Systems, 30(4), 827–841. https://doi.org/10.1109/tpds.2018.2872064, 2017. 140 

Bezanson, J., Edelman, A., Karpinski, S. and Shah, V. B.: Julia: A Fresh Approach to Numerical Computing. SIAM Review, 141 

59(1), 65–98. https://doi.org/10.1137/141000671, 2017; 142 

Chassignet, E.P., Hurlburt, H.E., Metzger, E.J., Smedstad, O.M., Cummings, J., Halliwell, G.R., Bleck, R., Baraille, R., 143 

Wallcraft, A.J., Lozano, C., Tolman, H.L., Srinivasan, A., Hankin, S., Cornillon, P., Weisberg, R., Barth, A., He, R., Werner, 144 

F., and Wilkin, J.: U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). 145 

Oceanography, 22(2), 64-75. https://doi.org/10.5670/oceanog.2009.39, 2009. 146 

Churavy, V., Godoy, W. F., Bauer, C., Ranocha, H., Schlottke-Lakemper, M., Räss, L., Blaschke, J., Giordano, M., Schnetter, 147 

E., Omlin, S., Vetter, J. S. & Edelman, A.: Bridging HPC Communities through the Julia Programming Language. arXiv. 148 

https://doi.org/10.48550/arxiv.2211.02740, 2022. 149 

Dennard, R. H., Gaensslen, F., Yu, H., Rideout, L., Bassous, E., and LeBlanc, A.: Design of ion-implanted MOSFET's with 150 

very small physical dimensions. IEEE Journal of Solid-State Circuits. SC-9 (5), 256–268, 1974. 151 

Draeger, E. W. and Siegel, A.: Exascale Was Not Inevitable; Neither Is What Comes Next. Computing in Science and 152 

Engineering, 25(3), 79–83. https://doi.org/10.1109/mcse.2023.3311375, 2023. 153 

Häfner, D., Nuterman, R. and Jochum, M.:  Fast, cheap, and turbulent — Global ocean modeling with GPU acceleration in 154 

Python. Journal of Advances in Modeling Earth Systems, 13.  doi:10.1029/2021MS002717, 2021. 155 

https://doi.org/10.5194/sp-2024-32

Discussions

Preprint. Discussion started: 26 September 2024
c© Author(s) 2024. CC BY 4.0 License.



7 
 

Kärnä, T., Kramer, S. C., Mitchell, L., Ham, D. A., Piggott, M. D. and Baptista, A. M. .: Thetis coastal ocean model: 156 

discontinuous Galerkin discretization for the three-dimensional hydrostatic equations. Geoscientific Model Development, 157 

11(11), 4359-4382. https://doi.org/10.5194/gmd-11-4359-2018, 2018. 158 

Korn, P.: Formulation of an unstructured grid model for global ocean dynamics, Journal of Computational Physics, 339, 525-159 

552. https://doi.org/10.1016/j.jcp.2017.03.009, 2017. 160 

Lawrence, B. N., Rezny, M., Budich, R., Bauer, P., Behrens, J., Carter, M., Deconinck, W., Ford, R., Maynard, C., 161 

Mullerworth, S., Osuna, C., Porter, A., Serradell, K., Valcke, S., Wedi, N. and Wilson, S.: Crossing the chasm: how to develop 162 

weather and climate models for next generation computers? Geoscientific Model Development, 11(5), 1799-1821. 163 

https://doi.org/10.5194/gmd-11-1799-2018, 2018. 164 

Madec, G. and NEMO System Team: NEMO ocean engine, Scientific Notes of Climate Modelling Center, 27, Institut Pierre-165 

Simon Laplace (IPSL), doi:10.5281/zenodo.1464816, 2023. 166 

Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for 167 

studies of the ocean on parallel computers. J. Geophysical Res., 102(C3), 5753-5766. https://doi.org/10.1029/96JC02775, 168 

1997. 169 

Perkel, J. M.; Julia: come for the syntax, stay for the speed. 141–142. http://www.nature.com/articles/d41586-019-02310-3, 170 

2019. 171 

Porter, A. R., Dearden, C., Ford, R. W., Henrichs, J., Siso, S., Nobre, N., Müller, S. A., Coward, A., Bell, M. (2023). Using 172 

PSyclone 3.4 to achieve Performance Portability for NEMO 4.0 and NEMO-MEDUSA Ocean Models, in preparation. 173 

Ringler, T. Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W. and Maltrud, M.: A multi-resolution approach to global 174 

ocean modeling, Ocean Modelling, 69, 211-232. https://doi.org/10.1016/j.ocemod.2013.04.010, 2013. 175 

Shchepetkin, A. F., and McWilliams, J.C.: A method for computing horizontal pressure-gradient force in an oceanic model 176 

with a nonaligned vertical coordinate. Journal of Geophysical Research: Oceans, 108(C3), 3090. 177 

https://doi.org/10.1029/2001JC001047, 2003. 178 

Ramadhan, A., Wagner, G., Hill, C., Campin, J.-M., Churavy, V., Besard, T., Souza, A., Edelman, A., Ferrari, R. & Marshall, 179 

J.: Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs. Journal of Open Source Software, 5(53), 2018. 180 

https://doi.org/10.21105/joss.02018, 2020. 181 

Silvestri, S., Wagner, G. L., Constantinou, N. C., Hill, C. N., Campin, J.-M., Souza, A. N., Bishnu, S., Churavy, V., Marshall, 182 

J. C. and Ferrari, R.: A GPU-based ocean dynamical core for routine mesoscale-resolving climate simulations. ESSOAr. 183 

https://doi.org/10.22541/essoar.171708158.82342448/v1, 2024. 184 

Sridhar, A., Tissaoui, Y., Marras, S., Shen, Z., Kawczynski, C., Byrne, S., Pamnany, K., Waruszewski, M., Gibson, T. H., 185 

Kozdon, J. E., Churavy, V., Wilcox, L. C., Giraldo, F. X. & Schneider, T.: Large-eddy simulations with ClimateMachine 186 

v0.2.0: a new open-source code for atmospheric simulations on GPUs and CPUs. Geoscientific Model Development, 15(15), 187 

6259–6284. https://doi.org/10.5194/gmd-15-6259-2022, 2022. 188 

https://doi.org/10.5194/sp-2024-32

Discussions

Preprint. Discussion started: 26 September 2024
c© Author(s) 2024. CC BY 4.0 License.



8 
 

Strauss, R. R., Bishnu, S. and Petersen, M. R.: Comparing the Performance of Julia on CPUs versus GPUs and Julia-MPI 189 

versus Fortran-MPI: a case study with MPAS-Ocean (Version 7.1). EGUsphere, 2023, 1–22. 190 

https://doi.org/10.5194/egusphere-2023-57, 2023. 191 

Strohmaier, E., Dongarra, J., Simon, H., Meuer, M. and Meuer, H.: The Top 500. 192 

https://www.top500.org/lists/top500/list/2022/11/, 2022. 193 

Tsujino, H., Motoi, T., Ishikawa, I., Hirabara, M., Nakano, H., Yamanaka, G., Yasuda, T., and Ishizaki, H.: Reference manual 194 

for the Meteorological Research Institute Community Ocean Model (MRI.COM) version 3. Technical Reports of the 195 

Meteorological Research Institute, 59, 273, 2010. 196 

Rupp, K: Microprocessor Trend Data, https://github.com/karlrupp/microprocessor-trend-data, 2022. Accessed 12/09/2024. 197 

Competing interests 198 

Author A. Porter has declared that he is an author of the PSyclone package and a co-chair of the NEMO HPC Working Group. 199 

Data and/or code availability 200 

This can also be included at a later stage, so no problem to define it for the first submission. 201 

Authors contribution 202 

This can also be included at a later stage, so no problem to define it for the first submission. 203 

Acknowledgements 204 

This can also be included at a later stage, so no problem to define it for the first submission. 205 

https://doi.org/10.5194/sp-2024-32

Discussions

Preprint. Discussion started: 26 September 2024
c© Author(s) 2024. CC BY 4.0 License.


