
Unlocking the Power of Parallel Computing: GPU technologies for 

Ocean Forecasting 

Andrew R. Porter1 and Patrick Heimbach2 
 
1Science and Technology Facilities Council, Daresbury Laboratory, Hartree Centre, Daresbury, UK 
2Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA 
 
Correspondence to: Andrew Porter (andrew.porter@stfc.ac.uk)  
 
Abstract. Operational ocean forecasting systems are complex engines that must execute ocean models with high 

performance to provide timely products and datasets. Significant computational resources are then needed to run 

high-fidelity models and, historically, technological evolution of microprocessors has constrained data parallel scientific 

computation. Today, GPUs offer a rapidly growing  and valuable source of computing power rivaling  the traditional 

CPU-based machines: the exploitation of thousands of threads can significantly accelerate the execution of many models, 

ranging from traditional HPC workloads of finite-difference/volume/element modelling through to the training of deep 

neural networks used in machine learning and artificial intelligence. Despite the advantages, GPU usage in ocean forecasting 

is still limited due to the legacy of CPU-based model implementations and the intrinsic complexity of porting core models to 

GPU architectures. This review explores the potential use of GPU in ocean forecasting and how the computational 

characteristics of ocean models can influence the suitability of GPU architectures for the execution of the overall value 

chain: it discusses the current approaches to code (and performance) portability, from CPU to GPU, including tools that 

perform code-transformation, easing the adaptation of Fortran code for GPU execution (like PSyclone), direct use of 

OpenACC directives (like ICON-O), adoption of specific frameworks that facilitate the management of parallel execution 

across different architectures, and also the use of new programming languages and paradigms 

1 Introduction  

Operational Ocean Forecasting Systems (OOFS) are computationally demanding, and large compute resources are required 

in order to run models of useful fidelity. However, this is a time of great upheaval in the development of computer 

architectures. The ever-shrinking size of transistors means that current leakage (and the resulting heat generated) now 

presents a significant challenge to chip designers. This breakdown of 'Dennard Scaling' (transistor power consumption is 

proportional to area as in Dennard et al., 1974) began in about 2006 and means that it is no longer straightforward to 

continually increase the clock frequency of processors. Historically this has been the main source of performance 
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improvement from one generation of processor to the next (Figure 1). Although the number of transistors per device 

continues to rise, they are increasingly being used to implement larger numbers of execution cores. It is then the job of the 

application to make use of these additional cores to achieve a performance improvement. Graphical Processing Units (GPUs) 

are a natural consequence of this evolution. Originally developed to accelerate rendering of computer-generated images (a 

naturally data-parallel task thanks to the division of an image into pixels), scientists were quick to seize on their potential to 

accelerate data-parallel scientific computation. Therefore, manufacturers today produce HPC-specific "GPUs" that are purely 

intended for computation. The suitability of this hardware for the training of deep neural networks used in machine learning 

and artificial intelligence has stimulated massive development and competition amongst GPU vendors. Because of the 

exploding interest of AI applications in virtually all sectors of industry, the commercial HPC market is undergoing a seismic 

shift toward GPU-based hardware, with serious implications for available HPC architectures in the future, to which OOPC 

will have to adapt. 

Unlike CPUs which tend to have relatively few but powerful (general purpose) processor cores, GPUs support hundreds of 

simpler cores running thousands of threads which can get data from memory very efficiently. The simplicity of these cores 

makes them more energy efficient and therefore GPUs tend to offer significantly greater performance per Watt. With energy 

consumption of large computing facilities now the key design criterion, GPUs are an important part of the technology being 

used in the push towards Exascale performance and beyond (e.g. Draeger and Siegel, 2023). As an illustration, in the 

November 2024 incarnation of the Top500 list (Strohmaier et al., 2024), nine of the machines in the top ten are equipped 

with GPU accelerators from NVIDIA, Intel or AMD. Although CPUs are present in these machines, their primary role is to 

host the GPUs which provide the bulk of the compute performance. GPUs are therefore a major feature of the current HPC 

landscape, and their importance and pervasiveness is only set to increase. 
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Figure 1: 50 years of microprocessor (CPU) evolution showing the breakdown of Dennard scaling (Rupp, 2022) 

2 Computational Characteristics of Ocean Models 

To understand why GPUs are well suited to running OOFS, it is important to consider their computational characteristics. 

The equations describing ocean evolution form a system of partial differential equations that are  solved numerically by 

discretizing the model domain and then using a Finite Difference, Finite Volume or Finite Element scheme. In these forms, 

the bulk of the computational work takes the form of stencil computations where the update of a field at a given grid location 

requires that many other field values be read from neighbouring locations. This means that the limiting factor in the rate at 

which these computations can be done is how quickly all these values can be fetched from memory (so called 'memory 

bandwidth'). (Finite element schemes do have the advantage of shifting the balance in favour of doing more arithmetic 

operations but memory bandwidth still tends to dominate.) These computations are of course repeated across the entire 

model grid meaning that it is a Same Instruction Multiple Data (SIMD) problem. OOFS are therefore a very good fit for 

GPU architectures which naturally support massively data-parallel problems and typically provide much higher memory 

bandwidth than CPUs. 
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For execution on distributed-memory computers, OOFS typically use a geographical domain decomposition where each 

processor is assigned a part of the model domain. In order to handle stencil updates at the boundaries of a processor's 

sub-domain, it must exchange information with those processors operating on neighbouring sub-domains. Obviously, there is 

a cost associated with performing these exchanges which high-performance processor interconnects can only do so much to 

mitigate. As more processors are thrown at a problem in order to reduce the time to solution, the size of their sub-domains 

decreases and so too does the amount of computation that each must perform. Consequently, the relative cost of 

inter-processor communication becomes more significant and, after a certain point (the "strong-scaling limit"), will begin to 

dominate. At this point, using further processors will bring only limited performance improvements, if any. 

Inter-processor communication on a GPU-based machine can be more costly as messages may have to go via the CPUs 

hosting the GPUs unless a machine has both hardware and software support for direct GPU-GPU communication. 

Communication avoiding/minimising strategies are therefore more important on these architectures. These can include 

algorithmic design (e.g. Silvestri et al, 2024) to allow for the overlap of communication and computation or simply the use of 

wider halo regions to reduce the frequency of halo exchanges. 

3 The use of GPUs in Ocean Forecasting 

Although GPUs are now a well-established HPC technology with potentially significant performance advantages for OOFS, 

they are not yet widely adopted in the ocean-forecasting community. For example, in Europe, NEMO (Madec et al., 2024) is 

the most important ocean-modeling framework; it is used operationally by Mercator Ocean International, the European 

Centre for Medium-Range Weather Forecasts  (ECMWF), the UK Met Office and the Euro-Mediterranean Centre on 

Climate Change, and other Institutes worldwide. NEMO is implemented in Fortran and parallelised with MPI and as such is 

limited to running on CPUs only. The German weather service (DWD) uses ICON-Ocean (Korn, 2017) which is also a 

Fortran model. Experiments are in progress with the use of OpenACC directives to extend this code to make use of GPUs 

but this functionality is not used operationally. 

In the US, NOAA's Real-Time Ocean Forecast System (https://polar.ncep.noaa.gov/global/) is based on  HYCOM (HYbrid 

Coordinates Ocean Model, Chassignet et al., 2009). HYCOM too is a Fortran code parallelised using a combination of 

OpenMP and MPI. Although not used operationally, the Energy Exascale Earth System Model (E3SM) is also significant. It 

utilizes the MPAS (Model for Prediction Across Scales) Ocean, Sea-Ice and Land-Ice models (Ringler et al., 2013) which 

again is implemented in Fortran with MPI. Although a port of this was attempted through the addition of OpenACC 

directives, it has been abandoned due to poor GPU performance (Petersen, 2024). Instead, a new, unstructured-mesh ocean 

model named Omega is being developed in C++ from the ground up.  Other widely used ocean general circulation models 

include the  MIT General Circulation Model (MITgcm, Marshall et al., 1997) and the Modular Ocean Model, version 6 

(MOM6; Adcroft et al., 2019), both of which again are  Fortran codes with support for distributed- and shared-memory 

parallelism on CPU. 

4 
 



The Japanese Meteorological Agency runs operational forecasts using the Meteorological Research Institute Community 

Ocean Model (MRI.COM) (Tsujino et al., 2010). As with the previous models, this too is implemented in Fortran with MPI 

and thus only runs on CPU. 

For regional (as opposed to global) forecasts, the Rutgers Regional Ocean Modeling System (ROMS) (Shchepetkin and 

McWilliams, 2023) is used by centers worldwide including the Japan Fisheries Research and Education Agency, the 

Australian Bureau of Meteorology and the Irish Marine Institute. ROMS too is a Fortran code parallelised using either MPI 

or OpenMP (but not both combined) and thus is restricted to CPU execution. Although various projects have ported the code 

to different architectures (including the Sunway architecture for China's Tianhe machine, Liu et al., 2019), these are all 

standalone pieces of work that have not made it back into the main code base. 

4 Discussion 

From the preceding section, it is clear that OOFS are currently largely implemented in Fortran with no or limited support for 

execution on GPU devices. The problem here is that OOFS comprise of large and complex codes which typically have a 

lifetime of decades and are constantly being updated with new science by multiple developers. Maintainability, allowing for 

the fact that the majority of developers will be specialists in their scientific domain rather than in HPC, is therefore of vital 

importance. Given that such codes are often shared between organizations, they must also run with good performance on 

different types of architecture (i.e. be 'performance portable'). 

Previously, one generation of supercomputers looked much like the last and therefore the evolution of these computer 

models was not a significant problem. However, the proliferation of computer hardware (and, crucially, the programming 

models needed to target them) that has resulted from the breakdown of Dennard scaling has changed this (Balaji, 2021). With 

the average supercomputer having a lifetime of just some five years, OOFS are now facing the problem of adapting to future 

supercomputer architectures and this is difficult because the aims of performance, performance portability and code 

maintainability often conflict with each other (Lawrence et al., 2018). 

Transformation of existing codes: To date there have been various approaches to this problem. NEMO v.5.0 (Madec et al., 

2024) has adopted the PSyclone code-transformation tool (Adams et al., 2019) that enables an HPC expert to transform 

Fortran source code such that it may be executed on GPU using whichever programming model (i.e. OpenACC or OpenMP) 

is required. Previous, unpublished work found that for a low-resolution, (1 degree) global mesh, a single NVIDIA V100 

GPU performed some 3.6x better than an HPC-class Intel socket. For a high-resolution, (1/12th degree) global mesh, ~90 

A100 GPUs gave the same performance as ~270 Intel sockets. In both cases this is an ocean-only configuration with 

virtually all compute being performed on the GPUs. This is important since any computation happening on the CPU incurs 

substantial data-transfer costs as data is moved from the GPU to the CPU, updated, and then transferred back to the GPU. 

(The advent of hardware support for unified CPU/GPU memory should reduce the cost of this.) As noted earlier, ICON-O is 

being extended manually with OpenACC directives. There are examples of recent (i.e. experimental) models that have 
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moved away from Fortran in favor of higher-level programming approaches. Thetis (Kärnä et al., 2018) implements a 

Discontinuous Galerkin method for solving the 3D hydrostatic equations using the Firedrake framework. This permits the 

scientist to express their scheme in the Python implementation of Unified Form Language (Alnæs et al., 2014). The 

necessary code is then generated automatically. The Veros model (Häfner et al., 2021) takes a slightly different approach: its 

dynamical core is a direct Python translation of a Fortran code and thus retains explicit MPI parallelisation. The JAX system 

(http://github.com/google/jax) for Python is then used to generate performant code for both CPU and GPU. The authors 

report that the Python version running on 16 A100 GPUs gives the same performance as 2000 CPU cores for the Fortran 

version (although this comparison is slightly unfair as the CPUs used are several generations older than the GPUs). 

Performance portability tools: Another popular approach to performance portability is to implement a model using a 

framework that takes care of parallel execution on a target platform. Frameworks such as Kokkos (Carter Edwards et al., 

2014), SyCL and OpenMP are good examples and the new "Omega" ocean component of E3SM mentioned previously is 

being developed to use Kokkos. In principle this approach retains single-source science code, while enabling portability to a 

variety of different hardware. However, it is hard to insulate the oceanographer from the syntax of the framework (which are 

often only available in C++) and, while the framework may be portable, obtaining good performance often requires that it be 

used in a different way from one platform to another. In OpenMP for instance, the directives needed to parallelise a code for 

a multi-core CPU are not the same as those needed to offload code to an accelerator. 

New programming languages: The Climate Modeling Alliance (CliMA) has adopted a radically new approach by rewriting 

ocean and atmospheric models from scratch using the programming language Julia (Perkel, 2019; Sridhar et al., 2022).  

Designed to overcome the “two-language problem” (Churavy et al., 2022), Julia is ideally suited to harness emerging HPC 

architectures based on GPUs (Besard et al., 2017; Bezanson et al., 2017). First results with CliMA’s ocean model, 

Oceananigans.jl (Ramadhan et al., 2020), run on 64 NVIDIA A100 GPUs exhibit 10 Simulation Years Per Day (SYPD) at 8 

km horizontal resolution (Silverstri et al., 2024). This performance is similar to current-generation CPU-based ocean climate 

models run at much coarser resolution (order 25-50 km resolution). Similarly promising benchmarks have been obtained 

with a barotropic configuration of a prototype of the MPAS-Ocean model, rewritten in Julia (Bishnu  et al., 2023). Such 

performance gains hold great promise for accelerating operational ocean prediction at high spatial resolution run on 

emerging HPC hardware. 

Toward energy efficient simulations: Increased resolution, process representation, and data intensity in ocean and climate 

modeling is vastly expanding the need for compute cycles (more cores and smaller time steps). As a result, the ocean, 

atmosphere, and climate modeling community has recognized the need for their simulations to become more energy efficient 

and reduce their carbon footprint (Loft, 2020; Acosta et al., 2024; Voosen, 2024). Owing to their architecture, GPUs can play 

a significant role in reducing energy requirements. A related research frontier being spearheaded by the atmospheric 

modeling community is the use of mixed or reduced precision to speed up simulations (Freytag et al., 2022; Klöwer et al, 

2022; Paxton et al., 2022), with a potentially desirable side effect of natively capturing stochastic parameterizations 
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(Kimpson et al., 2023). GPUs are ideally suited for such approaches, but successful implementation depends heavily on the 

model’s numerical algorithms. 

Data-driven operational ocean forecasting: Operational weather and ocean forecasting are facing the potential of a paradigm 

shift with the advent of powerful, purely data-driven methods. The numerical weather prediction (NWP) community has 

spearheaded the development of machine learning-based emulators that perform several orders of magnitudes faster than 

physics-based models (e.g., Bouallègue et al., 2024; Rasp et al., 2024). Such emulators have the potential to revolutionize 

probabilistic forecasting and uncertainty quantification, among others. The computational patterns underlying the ML 

algorithms, such as parallel matrix multiplication, are ideally suited for general-purpose GPU architectures. Whereas these 

methods have been driven to a large extent by private sector entities and require access to increasingly large GPU-based 

HPC systems for training, corresponding efforts in operational ocean forecasting are only now beginning to catch up. A 

review of the rapidly changing landscape of AI methods in the context of ocean forecasting is attempted in Heimbach et al. 

(2024).  
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