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 Abstract.  Operational  ocean  forecasting  systems  are  complex  engines  that  must  execute  ocean  models  with  high 

 performance  to  provide  timely  products  and  datasets.  Significant  computational  resources  are  then  needed  to  run 

 high-fidelity  models  and,  historically,  technological  evolution  of  microprocessors  has  constrained  data  parallel  scientific 

 computation.  Today,  GPUs  offer  a  rapidly  growing  an  additional  and  valuable  source  of  computing  power  rivaling  to  the 

 traditional  CPU-based  machines:  the  exploitation  of  thousands  of  threads  can  significantly  accelerate  the  execution  of  many 

 models,  ranging  from  traditional  HPC  workloads  of  finite-difference/volume/element  modelling  through  to  the  training  of 

 deep  neural  networks  used  in  machine  learning  and  artificial  intelligence.  Despite  the  advantages,  GPU  usage  in  ocean 

 forecasting  is  still  limited  due  to  the  legacy  of  CPU-based  model  implementations  and  the  intrinsic  complexity  of  porting 

 core  models  to  GPU  architectures.  This  review  explores  the  potential  use  of  GPU  in  ocean  forecasting  and  how  the 
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 computational  characteristics  of  ocean  models  can  influence  the  suitability  of  GPU  architectures  for  the  execution  of  the 

 overall  value  chain:  it  discusses  the  current  approaches  to  code  (and  performance)  portability,  from  CPU  to  GPU, 

 differentiating  among  including  tools  that  perform  code-transformation,  easing  the  adaptation  of  Fortran  code  for  GPU 

 execution  (like  PSyclone)  or  ,  direct  use  of  OpenACC  directives  (like  ICON-O),  to  adoption  of  specific  frameworks  that 

 facilitate  the  management  of  parallel  execution  across  different  architectures  ,  and  also  to  the  exploiting  use  of  new 

 programming languages and paradigms  . 

 1 Introduction 

 Operational  Ocean  Forecasting  Systems  (OOFS)  are  computationally  demanding,  and  large  compute  resources  are  required 

 in  order  to  run  models  of  useful  fidelity.  However,  this  is  a  time  of  great  upheaval  in  the  development  of  computer 

 architectures.  The  ever-shrinking  size  of  transistors  means  that  current  leakage  (and  the  resulting  heat  generated)  now 

 presents  a  significant  challenge  to  chip  designers.  This  breakdown  of  'Dennard  Scaling'  (transistor  power  consumption  is 

 proportional  to  area  as  in  Dennard  et  al.,  1974)  began  in  about  2006  and  means  that  it  is  no  longer  straightforward  to 

 continually  increase  the  clock  frequency  of  processors.  Historically  this  has  been  the  main  source  of  performance 

 improvement  from  one  generation  of  processor  to  the  next  (Figure  1).  Although  the  number  of  transistors  per  device 

 continues  to  rise,  they  are  increasingly  being  used  to  implement  larger  numbers  of  execution  cores.  It  is  then  the  job  of  the 

 application  to  make  use  of  these  additional  cores  to  achieve  a  performance  improvement.  Graphical  Processing  Units  (GPUs) 

 are  a  natural  consequence  of  this  evolution.  Originally  developed  to  accelerate  rendering  of  computer-generated  images  (a 

 naturally  data-parallel  task  thanks  to  the  division  of  an  image  into  pixels),  scientists  were  quick  to  seize  on  their  potential  to 

 accelerate  data-parallel  scientific  computation.  Therefore,  manufacturers  today  produce  HPC-specific  "GPUs"  that  are  purely 

 intended  for  computation.  The  suitability  of  this  hardware  for  the  training  of  deep  neural  networks  used  in  machine  learning 

 and  artificial  intelligence  has  stimulated  massive  development  and  competition  amongst  GPU  vendors.  Because  of  the 

 exploding  interest  of  AI  applications  in  virtually  all  sectors  of  industry,  the  commercial  HPC  market  is  undergoing  a  seismic 

 shift  toward  GPU-based  hardware,  with  serious  implications  for  available  HPC  architectures  in  the  future,  to  which  OOPC 

 will have to adapt. 

 Unlike  CPUs  which  tend  to  have  relatively  few  but  powerful  (general  purpose)  processor  cores,  GPUs  support  hundreds  of 

 simpler  cores  running  thousands  of  threads  which  can  get  data  from  memory  very  efficiently.  The  simplicity  of  these  cores 

 makes  them  more  energy  efficient  and  therefore  GPUs  tend  to  offer  significantly  greater  performance  per  Watt.  With  energy 

 consumption  of  large  computing  facilities  now  the  key  design  criterion,  GPUs  are  an  important  part  of  the  technology  being 

 used  in  the  push  towards  Exascale  performance  and  beyond  (e.g.  Draeger  and  Siegel,  2023).  As  an  illustration,  in  the 

 November  202  4  2  incarnation  of  the  Top500  list  (Strohmaier  et  al.,  202  0  4  ),  nine  eight  of  the  machines  in  the  top  ten  are 

 equipped  with  GPU  some  form  of  accelerator  s  and  the  majority  of  those  are  GPUs  from  either  NVIDIA  ,  Intel  or  AMD. 

 Although  CPUs  are  present  in  these  machines,  their  primary  role  is  to  host  the  GPUs  which  provide  the  bulk  of  the  compute 
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 performance.  GPUs  are  therefore  a  major  feature  of  the  current  HPC  landscape,  and  their  importance  and  pervasiveness  is 

 only set to increase. 

 Figure 1: 50 years of microprocessor (CPU) evolution showing the breakdown of Dennard scaling (Rupp, 2022) 

 2 Computational Characteristics of Ocean Models 

 To  understand  why  GPUs  are  well  suited  to  running  OOFS,  it  is  important  to  consider  their  computational  characteristics. 

 The  equations  describing  ocean  evolution  form  a  system  of  partial  differential  equation  equations  that  are  are  solved 

 numerically  by  discretizing  the  model  domain  and  then  using  a  Finite  Difference,  Finite  Volume  or  Finite  Element  scheme. 

 In  these  forms,  the  bulk  of  the  computational  work  takes  the  form  of  stencil  computations  where  the  update  of  a  field  at  a 

 given  grid  location  requires  that  many  other  field  values  be  read  from  neighbouring  locations.  This  means  that  the  limiting 

 factor  in  the  rate  at  which  these  computations  can  be  done  is  how  quickly  all  these  values  can  be  fetched  from  memory  (so 

 called  'memory  bandwidth').  (Finite  element  schemes  do  have  the  advantage  of  shifting  the  balance  in  favour  of  doing  more 

 arithmetic  operations  but  memory  bandwidth  still  tends  to  dominate.)  These  computations  are  of  course  repeated  across  the 

 entire  model  grid  meaning  that  it  is  a  Same  Instruction  Multiple  Data  (SIMD)  problem.  OOFS  are  therefore  a  very  good  fit 
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 for  GPU  architectures  which  naturally  support  massively  data-parallel  problems  and  typically  provide  much  higher  memory 

 bandwidth than CPUs. 

 For  execution  on  distributed-memory  computers,  OOFS  typically  use  a  geographical  domain  decomposition  where  each 

 processor  is  assigned  a  part  of  the  model  domain.  In  order  to  handle  stencil  updates  at  the  boundaries  of  a  processor's 

 sub-domain,  it  must  exchange  information  with  those  processors  operating  on  neighbouring  sub-domains.  Obviously,  there  is 

 a  cost  associated  with  performing  these  exchanges  which  high-performance  processor  interconnects  can  only  do  so  much  to 

 mitigate.  As  more  processors  are  thrown  at  a  problem  in  order  to  reduce  the  time  to  solution,  the  size  of  their  sub-domains 

 decreases  and  so  too  does  the  amount  of  computation  that  each  must  perform.  Consequently,  the  relative  cost  of 

 inter-processor  communication  becomes  more  significant  and,  after  a  certain  point  (the  "strong-scaling  limit"),  will  begin  to 

 dominate. At this point, using further processors will bring only limited performance improvements, if any. 

 Inter-processor  communication  on  a  GPU-based  machine  can  be  more  costly  as  messages  may  have  to  go  via  the  CPUs 

 hosting  the  GPUs  unless  a  machine  has  both  hardware  and  software  support  for  direct  GPU-GPU  communication. 

 Communication  avoiding/minimising  strategies  are  therefore  more  important  on  these  architectures.  These  can  include 

 algorithmic  design  (e.g.  Silvestri  et  al,  2024)  to  allow  for  the  overlap  of  communication  and  computation  or  simply  the  use  of 

 wider halo regions to reduce the frequency of halo exchanges. 

 3 The use of GPUs in Ocean Forecasting 

 Although  GPUs  are  now  a  well-established  HPC  technology  with  potentially  significant  performance  advantages  for  OOFS, 

 they  are  not  yet  widely  adopted  in  the  ocean-forecasting  community.  For  example,  in  Europe,  NEMO  (Madec  et  al.,  202  3  4  ) 

 is  the  most  important  ocean-modeling  framework;  it  is  used  operationally  by  Mercator  Ocean  International,  the  European 

 Centre  for  Medium-Range  Weather  Forecast  s  ing  (ECMWF)  ,  the  UK  Met  Office  and  the  Euro-Mediterranean  Centre  on 

 Climate  Change,  and  other  Institutes  worldwide.  NEMO  is  implemented  in  Fortran  and  parallelised  with  MPI  and  as  such  is 

 limited  to  running  on  CPUs  only.  The  German  weather  service  (DWD)  uses  ICON-Ocean  (Korn,  2017)  which  is  also  a 

 Fortran  model.  Experiments  are  in  progress  with  the  use  of  OpenACC  directives  to  extend  this  code  to  make  use  of  GPUs 

 but this functionality is not used operationally. 

 In  the  US,  NOAA's  Real-Time  Ocean  Forecast  System  (https://polar.ncep.noaa.gov/global/)  is  based  on  HYCOM  (HYbrid 

 Coordinates  Ocean  Model,  Chassignet  et  al.,  2009).  HYCOM  too  is  a  Fortran  code  parallelised  using  a  combination  of 

 OpenMP  and  MPI.  Although  not  used  operationally,  the  Energy  Exascale  Earth  System  Model  (E3SM)  is  also  significant.  It 

 utilizes  the  MPAS  (Model  for  Prediction  Across  Scales)  Ocean,  Sea-Ice  and  Land-Ice  models  (Ringler  et  al.,  2013)  which 

 again  is  implemented  in  Fortran  with  MPI  .  Although  a  port  of  this  was  attempted  through  the  addition  of  OpenACC 

 directives,  it  has  been  abandoned  due  to  poor  GPU  performance  (Petersen,  2024).  Instead,  a  new,  unstructured-mesh  ocean 

 model  named  Omega  is  being  developed  in  C++  from  the  ground  up.  (although  some  experimental  ports  have  been 

 performed  using  OpenACC  directives).  Other  widely  used  ocean  general  circulation  models  include  the  The  MIT  General 
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 Circulation  Model  (MITgcm,  Marshall  et  al.,  1997)  and  the  Modular  Ocean  Model,  version  6  (MOM6;  Adcroft  et  al.,  2019)  , 

 and  the  Regional  Ocean  Modeling  System  (ROMS;  Moore  et  al.,  2004)  is  also  widely  used  and  ,  both  of  which  again  are  is 

 Fortran  codes  with support for distributed- and shared-memory  parallelism on CPU. 

 The  Japanese  Meteorological  Agency  runs  operational  forecasts  using  the  Meteorological  Research  Institute  Community 

 Ocean  Model  (MRI.COM)  (Tsujino  et  al.,  2010).  As  with  the  previous  models,  this  too  is  implemented  in  Fortran  with  MPI 

 and thus only runs on CPU. 

 For  regional  (as  opposed  to  global)  forecasts,  the  Rutgers  Regional  Ocean  Modeling  System  (ROMS)  (Shchepetkin  and 

 McWilliams,  2023)  is  used  by  centers  worldwide  including  the  Japan  Fisheries  Research  and  Education  Agency,  the 

 Australian  Bureau  of  Meteorology  and  the  Irish  Marine  Institute.  ROMS  too  is  a  Fortran  code  parallelised  using  either  MPI 

 or  OpenMP  (but  not  both  combined)  and  thus  is  restricted  to  CPU  execution.  Although  various  projects  have  ported  the  code 

 to  different  architectures  (including  the  Sunway  architecture  for  China's  Tianhe  machine,  Liu  et  al.,  2019),  these  are  all 

 standalone pieces of work that have not made it back into the main code base. 

 4 Discussion 

 From  the  preceding  section,  it  is  clear  that  OOFS  are  currently  largely  implemented  in  Fortran  with  no  or  limited  support  for 

 execution  on  GPU  devices.  The  problem  here  is  that  OOFS  comprise  of  large  and  complex  codes  which  typically  have  a 

 lifetime  of  decades  and  are  constantly  being  updated  with  new  science  by  multiple  developers.  Maintainability,  allowing  for 

 the  fact  that  the  majority  of  developers  will  be  specialists  in  their  scientific  domain  rather  than  in  HPC,  is  therefore  of  vital 

 importance.  Given  that  such  codes  are  often  shared  between  organizations,  they  must  also  run  with  good  performance  on 

 different types of architecture (i.e. be 'performance portable'). 

 Previously,  one  generation  of  supercomputers  looked  much  like  the  last  and  therefore  the  evolution  of  these  computer 

 models  was  not  a  significant  problem.  However,  the  proliferation  of  computer  hardware  (and,  crucially,  the  programming 

 models  needed  to  target  them)  that  has  resulted  from  the  breakdown  of  Dennard  scaling  has  changed  this  (Balaji,  2021)  .  With 

 the  average  supercomputer  having  a  lifetime  of  just  some  five  years,  OOFS  are  now  facing  the  problem  of  adapting  to  future 

 supercomputer  architectures  and  this  is  difficult  because  the  aims  of  performance,  performance  portability  and  code 

 maintainability often conflict with each other (Lawrence et al., 2018). 

 Transformation  of  existing  codes  :  To  date  there  have  been  various  approaches  to  this  problem.  NEMO  v.5.0  is  in  the  process 

 of  (Madec  et  al.,  2024)  has  adopt  ing  ed  the  PSyclone  code-transformation  tool  (Adams  et  al.,  2019)  that  enables  an  HPC 

 expert  to  transform  Fortran  source  code  such  that  it  may  be  executed  on  GPU  using  whichever  programming  model  (i.e. 

 OpenACC  or  OpenMP)  is  required.  Previous,  unpublished  work  F  found  that  f  or  a  low-resolution,  (  1  degree)  global  mesh,  a 

 single  NVIDIA  V100  GPU  gives  a  perform  ance  ed  some  3.6x  better  than  an  HPC-class  Intel  socket.  For  a  high-resolution, 

 (1/12th  degree)  global  mesh,  ~90  A100  GPUs  g  i  a  ve  the  same  performance  as  ~270  Intel  sockets  (Porter  et  al.,  2023  -  in 

 prep.)  .  In  both  cases  this  is  an  ocean-only  configuration  with  virtually  all  compute  being  performed  on  the  GPUs.  This  is 
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 important  since  any  computation  happening  on  the  CPU  incurs  substantial  data-transfer  costs  as  data  is  moved  from  the  GPU 

 to  the  CPU,  updated,  and  then  transferred  back  to  the  GPU.  (The  advent  of  hardware  support  for  unified  CPU/GPU  memory 

 should  reduce  the  cost  of  this.)  As  noted  earlier,  ICON-O  is  being  extended  manually  with  OpenACC  directives  (although 

 these  are  only  supported  on  NVIDIA  hardware)  .  There  are  examples  of  recent  (i.e.  experimental)  models  that  have  moved 

 away  from  Fortran  in  favor  of  higher-level  programming  approaches.  Thetis  (Kärnä  et  al.,  2018)  implements  a  Discontinuous 

 Galerkin  method  for  solving  the  3D  hydrostatic  equations  using  the  Firedrake  framework.  This  permits  the  scientist  to 

 express  their  scheme  in  the  Python  implementation  of  Unified  Form  Language  (Alnæs  et  al.,  2014).  The  necessary  code  is 

 then  generated  automatically.  The  Veros  model  (Häfner  et  al.,  2021)  takes  a  slightly  different  approach:  its  dynamical  core  is 

 a  direct  Python  translation  of  a  Fortran  code  and  thus  retains  explicit  MPI  parallelisation.  The  JAX  system 

 (http://github.com/google/jax)  for  Python  is  then  used  to  generate  performant  code  for  both  CPU  and  GPU.  The  authors 

 report  that  the  Python  version  running  on  16  A100  GPUs  gives  the  same  performance  as  2000  CPU  cores  for  the  Fortran 

 version (although this comparison is slightly unfair as the CPUs used are several generations older than the GPUs). 

 Performance  portability  tools  :  Another  popular  approach  to  performance  portability  is  to  implement  a  model  using  a 

 framework  that  takes  care  of  parallel  execution  on  a  target  platform.  Frameworks  such  as  Kokkos  (Carter  Edwards  et  al., 

 2014),  SyCL  and  OpenMP  are  good  examples  and  .  the  new  "Omega"  ocean  component  of  E3SM  mentioned  previously  is 

 being  developed  to  use  Kokkos.  In  principle  this  approach  retains  single-source  science  code,  while  enabling  portability  to  a 

 variety  of  different  hardware.  However,  it  is  hard  to  insulate  the  oceanographer  from  the  syntax  of  the  framework  (which  are 

 often  only  available  in  C++)  and,  while  the  framework  may  be  portable,  obtaining  good  performance  often  requires  that  it  be 

 used  in  a  different  way  from  one  platform  to  another.  In  OpenMP  for  instance,  the  directives  needed  to  parallelise  a  code  for 

 a multi-core CPU are not the same as those needed to offload code to an accelerator. 

 New  programming  languages  :  The  Climate  Modeling  Alliance  (CliMA)  has  adopted  a  radically  new  approach  by  rewriting 

 ocean  and  atmospheric  models  from  scratch  using  the  programming  language  Julia  (Perkel,  2019;  Sridhar  et  al.,  2022). 

 Designed  to  overcome  the  “two-language  problem”  (Churavy  et  al.,  2022),  Julia  is  ideally  suited  to  harness  emerging  HPC 

 architectures  based  on  GPUs  (Besard  et  al.,  2017;  Bezanson  et  al.,  2017).  First  results  with  CliMA’s  ocean  model, 

 Oceananigans.jl  (Ramadhan  et  al.,  2020),  run  on  64  NVIDIA  A100  GPUs  exhibit  10  Simulation  Years  Per  Day  (SYPD)  at  8 

 km  horizontal  resolution  (Silverstri  et  al.,  2024).  This  performance  is  similar  to  current-generation  CPU-based  ocean  climate 

 models  run  at  much  coarser  resolution  (order  25-50  km  resolution).  Similarly  promising  benchmarks  have  been  obtained 

 with  a  barotropic  configuration  of  a  prototype  of  the  MPAS-Ocean  model,  rewritten  in  Julia  (  Bishnu  Strauss  et  al.,  2023). 

 Such  performance  gains  hold  great  promise  for  accelerating  operational  ocean  prediction  at  high  spatial  resolution  run  on 

 emerging HPC hardware. 

 Toward  energy  efficient  simulations  :  Increased  resolution,  process  representation,  and  data  intensity  in  ocean  and  climate 

 modeling  is  vastly  expanding  the  need  for  compute  cycles  (more  cores  and  smaller  time  steps).  As  a  result,  the  ocean, 

 atmosphere,  and  climate  modeling  community  has  recognized  the  need  for  their  simulations  to  become  more  energy  efficient 

 and  reduce  their  carbon  footprint  (Loft,  2020;  Acosta  et  al.,  2024;  Voosen,  2024).  Owing  to  their  architecture,  GPUs  can  play 
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 a  significant  role  at  in  reducing  energy  requirement  requirements  .  A  related  research  frontier  being  spearheaded  by  the 

 atmospheric  modeling  community  is  the  use  of  mixed  or  reduced  precision  to  speed  up  simulations  (Freytag  et  al.,  2022; 

 Klöwer  et  al,  2022;  Paxton  et  al.,  2022),  with  a  potentially  desirable  side  effect  of  natively  capturing  stochastic 

 parameterizations  (Kimpson  et  al.,  2023).  GPUs  are  ideally  suited  for  such  approaches,  but  successful  implementation 

 depends heavily on the model’s numerical algorithms. 

 Data-driven  operational  ocean  forecasting  :  Operational  weather  and  ocean  forecasting  are  facing  the  potential  of  a  paradigm 

 shift  with  the  advent  of  powerful,  purely  data-driven  methods.  The  numerical  weather  prediction  (NWP)  community  has 

 spearheaded  the  development  of  machine  learning-based  emulators  that  perform  several  orders  of  magnitudes  faster  than 

 physics-based  models  (e.g.,  Bouallègue  et  al.,  2024;  Rasp  et  al.,  2024).  Such  emulators  have  the  potential  to  revolutionize 

 probabilistic  forecasting  and  uncertainty  quantification,  among  others.  The  computational  patterns  underlying  the  ML 

 algorithms,  such  as  parallel  matrix  multiplication,  are  ideally  suited  for  general-purpose  GPU  architectures.  Whereas  these 

 methods  have  been  driven  to  a  large  extent  by  private  sector  entities  and  require  access  to  increasingly  large  GPU-based 

 HPC  systems  for  training,  corresponding  efforts  in  operational  ocean  forecasting  are  only  now  beginning  to  catch  up.  A 

 review  of  the  rapidly  changing  landscape  of  AI  methods  in  the  context  of  ocean  forecasting  is  attempted  in  Heimbach  et  al. 

 (2024). 

 The  focus  of  this  paper  is  on  the  use  of  GPUs  to  accelerate  traditional,  numerical  simulations  of  the  ocean.  However,  we  also 

 note that 
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