
 Unlocking the Power of Parallel Computing: GPU technologies for

 Ocean Forecasting

 Andrew R. Porter 1 and Patrick Heimbach 2

 1 Science and Technology Facilities Council, Daresbury Laboratory, Hartree Centre, Daresbury, UK
 2 Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA

 Correspondence to : Andrew Porter (andrew.porter@stfc.ac.uk)

 Actions on this paper :
 1. Please, review the abstract and correct it.
 2. Please, go to the section “Competing interests” and if the default statement is wrong, please change.
 3. Additional sections “Data and/or code availability”, “Authors contribution” and “Acknowledgements” can

 be completed also during the review phase, but if you prefer to complete now, please do.

 Find here some information (suggested title and list of authors, including affiliations), that will help you to speed up the
 submission process:

 Title Unlocking the Power of Parallel Computing: GPU technologies for Ocean Forecasting

 ID
 First name
 (incl. middle
 names)

 Last name email

 Affiliation (if you are registered, this is
 disabled, but I report in any case. It is
 mandatory ONLY for the
 Corresponding Author)

 1 Andrew
 Robert Porter andrew.porter@stfc.ac.uk

 Science and Technology Facilities
 Council, Daresbury Laboratory,
 Hartree Centre, Daresbury, UK

 Abstract. Operational ocean forecasting systems are complex engines that must execute ocean models with high

 performance to provide timely products and datasets. Significant computational resources are then needed to run

 high-fidelity models and, historically, technological evolution of microprocessors has constrained data parallel scientific

 computation. Today, GPUs offer a rapidly growing an additional and valuable source of computing power rivaling to the

 traditional CPU-based machines: the exploitation of thousands of threads can significantly accelerate the execution of many

 models, ranging from traditional HPC workloads of finite-difference/volume/element modelling through to the training of

 deep neural networks used in machine learning and artificial intelligence. Despite the advantages, GPU usage in ocean

 forecasting is still limited due to the legacy of CPU-based model implementations and the intrinsic complexity of porting

 core models to GPU architectures. This review explores the potential use of GPU in ocean forecasting and how the

 1

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

mailto:andrew.porter@stfc.ac.uk

 computational characteristics of ocean models can influence the suitability of GPU architectures for the execution of the

 overall value chain: it discusses the current approaches to code (and performance) portability, from CPU to GPU,

 differentiating among including tools that perform code-transformation, easing the adaptation of Fortran code for GPU

 execution (like PSyclone) or , direct use of OpenACC directives (like ICON-O), to adoption of specific frameworks that

 facilitate the management of parallel execution across different architectures , and also to the exploiting use of new

 programming languages and paradigms .

 1 Introduction

 Operational Ocean Forecasting Systems (OOFS) are computationally demanding, and large compute resources are required

 in order to run models of useful fidelity. However, this is a time of great upheaval in the development of computer

 architectures. The ever-shrinking size of transistors means that current leakage (and the resulting heat generated) now

 presents a significant challenge to chip designers. This breakdown of 'Dennard Scaling' (transistor power consumption is

 proportional to area as in Dennard et al., 1974) began in about 2006 and means that it is no longer straightforward to

 continually increase the clock frequency of processors. Historically this has been the main source of performance

 improvement from one generation of processor to the next (Figure 1). Although the number of transistors per device

 continues to rise, they are increasingly being used to implement larger numbers of execution cores. It is then the job of the

 application to make use of these additional cores to achieve a performance improvement. Graphical Processing Units (GPUs)

 are a natural consequence of this evolution. Originally developed to accelerate rendering of computer-generated images (a

 naturally data-parallel task thanks to the division of an image into pixels), scientists were quick to seize on their potential to

 accelerate data-parallel scientific computation. Therefore, manufacturers today produce HPC-specific "GPUs" that are purely

 intended for computation. The suitability of this hardware for the training of deep neural networks used in machine learning

 and artificial intelligence has stimulated massive development and competition amongst GPU vendors. Because of the

 exploding interest of AI applications in virtually all sectors of industry, the commercial HPC market is undergoing a seismic

 shift toward GPU-based hardware, with serious implications for available HPC architectures in the future, to which OOPC

 will have to adapt.

 Unlike CPUs which tend to have relatively few but powerful (general purpose) processor cores, GPUs support hundreds of

 simpler cores running thousands of threads which can get data from memory very efficiently. The simplicity of these cores

 makes them more energy efficient and therefore GPUs tend to offer significantly greater performance per Watt. With energy

 consumption of large computing facilities now the key design criterion, GPUs are an important part of the technology being

 used in the push towards Exascale performance and beyond (e.g. Draeger and Siegel, 2023). As an illustration, in the

 November 202 4 2 incarnation of the Top500 list (Strohmaier et al., 202 0 4), nine eight of the machines in the top ten are

 equipped with GPU some form of accelerator s and the majority of those are GPUs from either NVIDIA , Intel or AMD.

 Although CPUs are present in these machines, their primary role is to host the GPUs which provide the bulk of the compute

 2

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 performance. GPUs are therefore a major feature of the current HPC landscape, and their importance and pervasiveness is

 only set to increase.

 Figure 1: 50 years of microprocessor (CPU) evolution showing the breakdown of Dennard scaling (Rupp, 2022)

 2 Computational Characteristics of Ocean Models

 To understand why GPUs are well suited to running OOFS, it is important to consider their computational characteristics.

 The equations describing ocean evolution form a system of partial differential equation equations that are are solved

 numerically by discretizing the model domain and then using a Finite Difference, Finite Volume or Finite Element scheme.

 In these forms, the bulk of the computational work takes the form of stencil computations where the update of a field at a

 given grid location requires that many other field values be read from neighbouring locations. This means that the limiting

 factor in the rate at which these computations can be done is how quickly all these values can be fetched from memory (so

 called 'memory bandwidth'). (Finite element schemes do have the advantage of shifting the balance in favour of doing more

 arithmetic operations but memory bandwidth still tends to dominate.) These computations are of course repeated across the

 entire model grid meaning that it is a Same Instruction Multiple Data (SIMD) problem. OOFS are therefore a very good fit

 3

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 for GPU architectures which naturally support massively data-parallel problems and typically provide much higher memory

 bandwidth than CPUs.

 For execution on distributed-memory computers, OOFS typically use a geographical domain decomposition where each

 processor is assigned a part of the model domain. In order to handle stencil updates at the boundaries of a processor's

 sub-domain, it must exchange information with those processors operating on neighbouring sub-domains. Obviously, there is

 a cost associated with performing these exchanges which high-performance processor interconnects can only do so much to

 mitigate. As more processors are thrown at a problem in order to reduce the time to solution, the size of their sub-domains

 decreases and so too does the amount of computation that each must perform. Consequently, the relative cost of

 inter-processor communication becomes more significant and, after a certain point (the "strong-scaling limit"), will begin to

 dominate. At this point, using further processors will bring only limited performance improvements, if any.

 Inter-processor communication on a GPU-based machine can be more costly as messages may have to go via the CPUs

 hosting the GPUs unless a machine has both hardware and software support for direct GPU-GPU communication.

 Communication avoiding/minimising strategies are therefore more important on these architectures. These can include

 algorithmic design (e.g. Silvestri et al, 2024) to allow for the overlap of communication and computation or simply the use of

 wider halo regions to reduce the frequency of halo exchanges.

 3 The use of GPUs in Ocean Forecasting

 Although GPUs are now a well-established HPC technology with potentially significant performance advantages for OOFS,

 they are not yet widely adopted in the ocean-forecasting community. For example, in Europe, NEMO (Madec et al., 202 3 4)

 is the most important ocean-modeling framework; it is used operationally by Mercator Ocean International, the European

 Centre for Medium-Range Weather Forecast s ing (ECMWF) , the UK Met Office and the Euro-Mediterranean Centre on

 Climate Change, and other Institutes worldwide. NEMO is implemented in Fortran and parallelised with MPI and as such is

 limited to running on CPUs only. The German weather service (DWD) uses ICON-Ocean (Korn, 2017) which is also a

 Fortran model. Experiments are in progress with the use of OpenACC directives to extend this code to make use of GPUs

 but this functionality is not used operationally.

 In the US, NOAA's Real-Time Ocean Forecast System (https://polar.ncep.noaa.gov/global/) is based on HYCOM (HYbrid

 Coordinates Ocean Model, Chassignet et al., 2009). HYCOM too is a Fortran code parallelised using a combination of

 OpenMP and MPI. Although not used operationally, the Energy Exascale Earth System Model (E3SM) is also significant. It

 utilizes the MPAS (Model for Prediction Across Scales) Ocean, Sea-Ice and Land-Ice models (Ringler et al., 2013) which

 again is implemented in Fortran with MPI . Although a port of this was attempted through the addition of OpenACC

 directives, it has been abandoned due to poor GPU performance (Petersen, 2024). Instead, a new, unstructured-mesh ocean

 model named Omega is being developed in C++ from the ground up. (although some experimental ports have been

 performed using OpenACC directives). Other widely used ocean general circulation models include the The MIT General

 4

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 101

 102

 103

 104

 105

 106

 107

 108

 Circulation Model (MITgcm, Marshall et al., 1997) and the Modular Ocean Model, version 6 (MOM6; Adcroft et al., 2019) ,

 and the Regional Ocean Modeling System (ROMS; Moore et al., 2004) is also widely used and , both of which again are is

 Fortran codes with support for distributed- and shared-memory parallelism on CPU.

 The Japanese Meteorological Agency runs operational forecasts using the Meteorological Research Institute Community

 Ocean Model (MRI.COM) (Tsujino et al., 2010). As with the previous models, this too is implemented in Fortran with MPI

 and thus only runs on CPU.

 For regional (as opposed to global) forecasts, the Rutgers Regional Ocean Modeling System (ROMS) (Shchepetkin and

 McWilliams, 2023) is used by centers worldwide including the Japan Fisheries Research and Education Agency, the

 Australian Bureau of Meteorology and the Irish Marine Institute. ROMS too is a Fortran code parallelised using either MPI

 or OpenMP (but not both combined) and thus is restricted to CPU execution. Although various projects have ported the code

 to different architectures (including the Sunway architecture for China's Tianhe machine, Liu et al., 2019), these are all

 standalone pieces of work that have not made it back into the main code base.

 4 Discussion

 From the preceding section, it is clear that OOFS are currently largely implemented in Fortran with no or limited support for

 execution on GPU devices. The problem here is that OOFS comprise of large and complex codes which typically have a

 lifetime of decades and are constantly being updated with new science by multiple developers. Maintainability, allowing for

 the fact that the majority of developers will be specialists in their scientific domain rather than in HPC, is therefore of vital

 importance. Given that such codes are often shared between organizations, they must also run with good performance on

 different types of architecture (i.e. be 'performance portable').

 Previously, one generation of supercomputers looked much like the last and therefore the evolution of these computer

 models was not a significant problem. However, the proliferation of computer hardware (and, crucially, the programming

 models needed to target them) that has resulted from the breakdown of Dennard scaling has changed this (Balaji, 2021) . With

 the average supercomputer having a lifetime of just some five years, OOFS are now facing the problem of adapting to future

 supercomputer architectures and this is difficult because the aims of performance, performance portability and code

 maintainability often conflict with each other (Lawrence et al., 2018).

 Transformation of existing codes : To date there have been various approaches to this problem. NEMO v.5.0 is in the process

 of (Madec et al., 2024) has adopt ing ed the PSyclone code-transformation tool (Adams et al., 2019) that enables an HPC

 expert to transform Fortran source code such that it may be executed on GPU using whichever programming model (i.e.

 OpenACC or OpenMP) is required. Previous, unpublished work F found that f or a low-resolution, (1 degree) global mesh, a

 single NVIDIA V100 GPU gives a perform ance ed some 3.6x better than an HPC-class Intel socket. For a high-resolution,

 (1/12th degree) global mesh, ~90 A100 GPUs g i a ve the same performance as ~270 Intel sockets (Porter et al., 2023 - in

 prep.) . In both cases this is an ocean-only configuration with virtually all compute being performed on the GPUs. This is

 5

 109

 110

 111

 112

 113

 114

 115

 116

 117

 118

 119

 120

 121

 122

 123

 124

 125

 126

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

 137

 138

 139

 140

 important since any computation happening on the CPU incurs substantial data-transfer costs as data is moved from the GPU

 to the CPU, updated, and then transferred back to the GPU. (The advent of hardware support for unified CPU/GPU memory

 should reduce the cost of this.) As noted earlier, ICON-O is being extended manually with OpenACC directives (although

 these are only supported on NVIDIA hardware) . There are examples of recent (i.e. experimental) models that have moved

 away from Fortran in favor of higher-level programming approaches. Thetis (Kärnä et al., 2018) implements a Discontinuous

 Galerkin method for solving the 3D hydrostatic equations using the Firedrake framework. This permits the scientist to

 express their scheme in the Python implementation of Unified Form Language (Alnæs et al., 2014). The necessary code is

 then generated automatically. The Veros model (Häfner et al., 2021) takes a slightly different approach: its dynamical core is

 a direct Python translation of a Fortran code and thus retains explicit MPI parallelisation. The JAX system

 (http://github.com/google/jax) for Python is then used to generate performant code for both CPU and GPU. The authors

 report that the Python version running on 16 A100 GPUs gives the same performance as 2000 CPU cores for the Fortran

 version (although this comparison is slightly unfair as the CPUs used are several generations older than the GPUs).

 Performance portability tools : Another popular approach to performance portability is to implement a model using a

 framework that takes care of parallel execution on a target platform. Frameworks such as Kokkos (Carter Edwards et al.,

 2014), SyCL and OpenMP are good examples and . the new "Omega" ocean component of E3SM mentioned previously is

 being developed to use Kokkos. In principle this approach retains single-source science code, while enabling portability to a

 variety of different hardware. However, it is hard to insulate the oceanographer from the syntax of the framework (which are

 often only available in C++) and, while the framework may be portable, obtaining good performance often requires that it be

 used in a different way from one platform to another. In OpenMP for instance, the directives needed to parallelise a code for

 a multi-core CPU are not the same as those needed to offload code to an accelerator.

 New programming languages : The Climate Modeling Alliance (CliMA) has adopted a radically new approach by rewriting

 ocean and atmospheric models from scratch using the programming language Julia (Perkel, 2019; Sridhar et al., 2022).

 Designed to overcome the “two-language problem” (Churavy et al., 2022), Julia is ideally suited to harness emerging HPC

 architectures based on GPUs (Besard et al., 2017; Bezanson et al., 2017). First results with CliMA’s ocean model,

 Oceananigans.jl (Ramadhan et al., 2020), run on 64 NVIDIA A100 GPUs exhibit 10 Simulation Years Per Day (SYPD) at 8

 km horizontal resolution (Silverstri et al., 2024). This performance is similar to current-generation CPU-based ocean climate

 models run at much coarser resolution (order 25-50 km resolution). Similarly promising benchmarks have been obtained

 with a barotropic configuration of a prototype of the MPAS-Ocean model, rewritten in Julia (Bishnu Strauss et al., 2023).

 Such performance gains hold great promise for accelerating operational ocean prediction at high spatial resolution run on

 emerging HPC hardware.

 Toward energy efficient simulations : Increased resolution, process representation, and data intensity in ocean and climate

 modeling is vastly expanding the need for compute cycles (more cores and smaller time steps). As a result, the ocean,

 atmosphere, and climate modeling community has recognized the need for their simulations to become more energy efficient

 and reduce their carbon footprint (Loft, 2020; Acosta et al., 2024; Voosen, 2024). Owing to their architecture, GPUs can play

 6

 141

 142

 143

 144

 145

 146

 147

 148

 149

 150

 151

 152

 153

 154

 155

 156

 157

 158

 159

 160

 161

 162

 163

 164

 165

 166

 167

 168

 169

 170

 171

 172

 173

 174

 a significant role at in reducing energy requirement requirements . A related research frontier being spearheaded by the

 atmospheric modeling community is the use of mixed or reduced precision to speed up simulations (Freytag et al., 2022;

 Klöwer et al, 2022; Paxton et al., 2022), with a potentially desirable side effect of natively capturing stochastic

 parameterizations (Kimpson et al., 2023). GPUs are ideally suited for such approaches, but successful implementation

 depends heavily on the model’s numerical algorithms.

 Data-driven operational ocean forecasting : Operational weather and ocean forecasting are facing the potential of a paradigm

 shift with the advent of powerful, purely data-driven methods. The numerical weather prediction (NWP) community has

 spearheaded the development of machine learning-based emulators that perform several orders of magnitudes faster than

 physics-based models (e.g., Bouallègue et al., 2024; Rasp et al., 2024). Such emulators have the potential to revolutionize

 probabilistic forecasting and uncertainty quantification, among others. The computational patterns underlying the ML

 algorithms, such as parallel matrix multiplication, are ideally suited for general-purpose GPU architectures. Whereas these

 methods have been driven to a large extent by private sector entities and require access to increasingly large GPU-based

 HPC systems for training, corresponding efforts in operational ocean forecasting are only now beginning to catch up. A

 review of the rapidly changing landscape of AI methods in the context of ocean forecasting is attempted in Heimbach et al.

 (2024).

 The focus of this paper is on the use of GPUs to accelerate traditional, numerical simulations of the ocean. However, we also

 note that

 References

 Acosta, M. C., Palomas, S., Ticco, S. V. P., Utrera, G., Biercamp, J., Bretonniere, P.-A., Budich, R., Castrillo, M., Caubel, A.,

 Doblas-Reyes, F., Epicoco, I., Fladrich, U., Joussaume, S., Gupta, A. K., Lawrence, B., Sager, P. L., Lister, G., Moine, M.-P.,

 Rioual, J.-C., … Balaji, V.: The computational and energy cost of simulation and storage for climate science: lessons from

 CMIP6. Geoscientific Model Development, 17(8), 3081–3098. https://doi.org/10.5194/gmd-17-3081-2024 , 2024.

 Adams, S. V., Ford, R. W., Hambley, M., Hobson, J. M., Kavcic, I., Maynard, C. M., Melvin, T., Mueller, E. H.,

 Mullerworth, S., Porter, A. R., Rezny, M., Shipway, B. J. and Wong, R.: LFRic: Meeting the challenges of scalability and

 performance portability in Weather and Climate models. Journal of Parallel and Distributed Computing, 132, 383-396.

 https://doi.org/10.1016/j.jpdc.2019.02.007 , 2019.

 Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C. O., Dunne, J. P., Griffies, S. M., Hallberg, R.,

 Harrison, M. J., Held, I. M., Jansen, M. F., John, J. G., Krasting, J. P., Langenhorst, A. R., Legg, S., Liang, Z., McHugh, C.,

 Radhakrishnan, A., … Zhang, R.: The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation

 Features. Journal of Advances in Modeling Earth Systems, 11(10), 3167–3211. https://doi.org/10.1029/2019ms001726 ,

 2019.

 7

 175

 176

 177

 178

 179

 180

 181

 182

 183

 184

 185

 186

 187

 188

 189

 190

 191

 192

 193

 194

 195

 196

 197

 198

 199

 200

 201

 202

 203

 204

 205

https://doi.org/10.5194/gmd-17-3081-2024
https://doi.org/10.1016/j.jpdc.2019.02.007
https://doi.org/10.1029/2019ms001726

 Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E. and Wells, G. N.: Unified Form Language: A Domain-Specific

 Language for Weak Formulations of Partial Differential Equations, ACM Trans. Math. Softw., 40(2), doi:10.1145/2566630

 Carter Edwards, H., Trott, C.R., and Sunderland, D. (2014). Kokkos: enabling manycore performance portability through

 polymorphic memory access patterns, Journal of Parallel and Distributed Computing, 74(12), 3202-3216.

 https://www.osti.gov/servlets/purl/1106586 , 2014.

 Balaji, V.: Climbing down Charney’s ladder: machine learning and the post-Dennard era of computational climate science.

 Philosophical Transactions of the Royal Society A, 379(2194), 20200085. https://doi.org/10.1098/rsta.2020.0085 , 2021.

 Besard, T., Foket, C. & Sutter, B. D.: Effective Extensible Programming: Unleashing Julia on GPUs. IEEE Transactions on

 Parallel and Distributed Systems, 30(4), 827–841. https://doi.org/10.1109/tpds.2018.2872064 , 2017.

 Bezanson, J., Edelman, A., Karpinski, S. and Shah, V. B.: Julia: A Fresh Approach to Numerical Computing. SIAM Review,

 59(1), 65–98. https://doi.org/10.1137/141000671 , 2017 .

 Bishnu, S., Strauss, R. R. & Petersen, M. R.: Comparing the Performance of Julia on CPUs versus GPUs and Julia-MPI

 versus Fortran-MPI: a case study with MPAS-Ocean (Version 7.1). Geoscientific Model Development, 16(19), 5539–5559.

 https://doi.org/10.5194/gmd-16-5539-2023 ; , 2023.

 Bouallègue, Z. B., Clare, M. C. A., Magnusson, L., Gascón, E., Maier-Gerber, M., Janoušek, M., Rodwell, M., Pinault, F.,

 Dramsch, J. S., Lang, S. T. K., Raoult, B., Rabier, F., Chevallier, M., Sandu, I., Dueben, P., Chantry, M. & Pappenberger, F.:

 The Rise of Data-Driven Weather Forecasting: A First Statistical Assessment of Machine Learning–Based Weather Forecasts

 in an Operational-Like Context. Bulletin of the American Meteorological Society, 105(6), E864–E883.

 https://doi.org/10.1175/bams-d-23-0162.1 , 2024.

 Chassignet, E.P., Hurlburt, H.E., Metzger, E.J., Smedstad, O.M., Cummings, J., Halliwell, G.R., Bleck, R., Baraille, R.,

 Wallcraft, A.J., Lozano, C., Tolman, H.L., Srinivasan, A., Hankin, S., Cornillon, P., Weisberg, R., Barth, A., He, R., Werner,

 F., and Wilkin, J.: U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM).

 Oceanography, 22(2), 64-75. https://doi.org/10.5670/oceanog.2009.39 , 2009.

 Churavy, V., Godoy, W. F., Bauer, C., Ranocha, H., Schlottke-Lakemper, M., Räss, L., Blaschke, J., Giordano, M., Schnetter,

 E., Omlin, S., Vetter, J. S. & Edelman, A.: Bridging HPC Communities through the Julia Programming Language. arXiv.

 https://doi.org/10.48550/arxiv.2211.02740 , 2022.

 Dennard, R. H., Gaensslen, F., Yu, H., Rideout, L., Bassous, E., and LeBlanc, A.: Design of ion-implanted MOSFET's with

 very small physical dimensions. IEEE Journal of Solid-State Circuits. SC-9 (5), 256–268, 1974.

 8

 206

 207

 208

 209

 210

 211

 212

 213

 214

 215

 216

 217

 218

 219

 220

 221

 222

 223

 224

 225

 226

 227

 228

 229

 230

 231

 232

 233

https://www.osti.gov/servlets/purl/1106586
https://doi.org/10.1098/rsta.2020.0085
https://doi.org/10.1109/tpds.2018.2872064
https://doi.org/10.1137/141000671
https://doi.org/10.5194/gmd-16-5539-2023
https://doi.org/10.1175/bams-d-23-0162.1
https://doi.org/10.5670/oceanog.2009.39
https://doi.org/10.48550/arxiv.2211.02740
https://doi.org/10.48550/arxiv.2211.02740

 Draeger, E. W. and Siegel, A.: Exascale Was Not Inevitable; Neither Is What Comes Next. Computing in Science and

 Engineering, 25(3), 79–83. https://doi.org/10.1109/mcse.2023.3311375 , 2023.

 Freytag, G., Lima, J. V. F., Rech, P. & Navaux, P. O. A. Impact of Reduced and Mixed-Precision on the Efficiency of a

 Multi-GPU Platform on CFD Applications. Lecture Notes in Computer Science, 570–587.

 https://doi.org/10.1007/978-3-031-10542-5_39 , 2022.

 Häfner, D., Nuterman, R. and Jochum, M.: Fast, cheap, and turbulent — Global ocean modeling with GPU acceleration in

 Python. Journal of Advances in Modeling Earth Systems, 13. doi:10.1029/2021MS002717, 2021.

 Heimbach, P., F. O’Donncha, T. A. Smith, J.M. Garcia-Valdecasas, A. Arnaud, and L. Wan: Crafting the Future: Machine

 Learning for Ocean Forecasting. State of the Planet, submitted. doi:10.5194/sp-2024-18, 2024.

 Kärnä, T., Kramer, S. C., Mitchell, L., Ham, D. A., Piggott, M. D. and Baptista, A. M. .: Thetis coastal ocean model:

 discontinuous Galerkin discretization for the three-dimensional hydrostatic equations. Geoscientific Model Development,

 11(11), 4359-4382. https://doi.org/10.5194/gmd-11-4359-2018 , 2018.

 Kimpson, T., Paxton, E. A., Chantry, M. & Palmer, T.: Climate‐change modelling at reduced floating‐point precision with

 stochastic rounding. Quarterly Journal of the Royal Meteorological Society, 149(752), 843–855.

 https://doi.org/10.1002/qj.4435 , 2023.

 Klöwer, M., Hatfield, S., Croci, M., Düben, P. D. & Palmer, T. N.: Fluid Simulations Accelerated With 16 Bits: Approaching

 4x Speedup on A64FX by Squeezing ShallowWaters.jl Into Float16. Journal of Advances in Modeling Earth Systems, 14(2),

 e2021MS002684. https://doi.org/10.1029/2021ms002684 , 2022.

 Korn, P.: Formulation of an unstructured grid model for global ocean dynamics, Journal of Computational Physics, 339,

 525-552. https://doi.org/10.1016/j.jcp.2017.03.009 , 2017.

 Lawrence, B. N., Rezny, M., Budich, R., Bauer, P., Behrens, J., Carter, M., Deconinck, W., Ford, R., Maynard, C.,

 Mullerworth, S., Osuna, C., Porter, A., Serradell, K., Valcke, S., Wedi, N. and Wilson, S.: Crossing the chasm: how to

 develop weather and climate models for next generation computers? Geoscientific Model Development, 11(5), 1799-1821.

 https://doi.org/10.5194/gmd-11-1799-2018 , 2018.

 Loft, R.: Earth System Modeling Must Become More Energy Efficient. Eos, Transactions American Geophysical Union,

 101. https://doi.org/10.1029/2020eo147051 , 2020.

 9

 234

 235

 236

 237

 238

 239

 240

 241

 242

 243

 244

 245

 246

 247

 248

 249

 250

 251

 252

 253

 254

 255

 256

 257

 258

 259

https://doi.org/10.1109/mcse.2023.3311375
https://doi.org/10.1007/978-3-031-10542-5_39
https://doi.org/10.5194/gmd-11-4359-2018
https://doi.org/10.1002/qj.4435
https://doi.org/10.1029/2021ms002684
https://doi.org/10.1016/j.jcp.2017.03.009
https://doi.org/10.5194/gmd-11-1799-2018
https://doi.org/10.1029/2020eo147051

 Madec, G. and NEMO System Team: NEMO ocean engine, Scientific Notes of Climate Modelling Center, 27, Institut

 Pierre-Simon Laplace (IPSL), doi:10.5281/zenodo.1464816, 2023. Madec, G. and the NEMO System Team, 2024. NEMO

 Ocean Engine Reference Manual, doi:10.5281/zenodo.1464816, 2024.

 Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for

 studies of the ocean on parallel computers. J. Geophysical Res., 102(C3), 5753-5766. https://doi.org/10.1029/96JC02775 ,

 1997.

 Moore, A. M., Arango, H. G., Lorenzo, E. D., Cornuelle, B. D., Miller, A. J. & Neilson, D. J.: A comprehensive ocean

 prediction and analysis system based on the tangent linear and adjoint of a regional ocean model. Ocean Modelling, 7(1–2),

 227–258. https://doi.org/10.1016/j.ocemod.2003.11.001 , 2004.

 Paxton, E. A., Chantry, M., Klöwer, M., Saffin, L. & Palmer, T.: Climate Modeling in Low Precision: Effects of Both

 Deterministic and Stochastic Rounding. Journal of Climate, 35(4), 1215–1229. https://doi.org/10.1175/jcli-d-21-0343.1 ,

 2022.

 Perkel, J. M.; Julia: come for the syntax, stay for the speed. 141–142. http://www.nature.com/articles/d41586-019-02310-3 ,

 2019.

 Petersen, M. R., Private communication, 2024.

 Porter, A. R., Dearden, C., Ford, R. W., Henrichs, J., Siso, S., Nobre, N., Müller, S. A., Coward, A., Bell, M. (2023). Using

 PSyclone 3.4 to achieve Performance Portability for NEMO 4.0 and NEMO-MEDUSA Ocean Models, in preparation.

 Ringler, T. Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W. and Maltrud, M.: A multi-resolution approach to global

 ocean modeling, Ocean Modelling, 69, 211-232. https://doi.org/10.1016/j.ocemod.2013.04.010 , 2013.

 Shchepetkin, A. F., and McWilliams, J.C.: A method for computing horizontal pressure-gradient force in an oceanic model

 with a nonaligned vertical coordinate. Journal of Geophysical Research: Oceans, 108(C3), 3090.

 https://doi.org/10.1029/2001JC001047 , 2003.

 Ramadhan, A., Wagner, G., Hill, C., Campin, J.-M., Churavy, V., Besard, T., Souza, A., Edelman, A., Ferrari, R. & Marshall,

 J.: Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs. Journal of Open Source Software, 5(53), 2018.

 https://doi.org/10.21105/joss.02018 , 2020.

 Rasp, S., Hoyer, S., Merose, A., Langmore, I., Battaglia, P., Russell, T., Sanchez‐Gonzalez, A., Yang, V., Carver, R.,

 Agrawal, S., Chantry, M., Bouallegue, Z. B., Dueben, P., Bromberg, C., Sisk, J., Barrington, L., Bell, A. & Sha, F.:

 10

 260

 261

 262

 263

 264

 265

 266

 267

 268

 269

 270

 271

 272

 273

 274

 275

 276

 277

 278

 279

 280

 281

 282

 283

 284

 285

 286

https://doi.org/10.1029/96JC02775
https://doi.org/10.1016/j.ocemod.2003.11.001
https://doi.org/10.1175/jcli-d-21-0343.1
http://www.nature.com/articles/d41586-019-02310-3
https://doi.org/10.1016/j.ocemod.2013.04.010
https://doi.org/10.1029/2001JC001047
https://doi.org/10.21105/joss.02018
https://doi.org/10.21105/joss.02018

 WeatherBench 2: A Benchmark for the Next Generation of Data‐Driven Global Weather Models. Journal of Advances in

 Modeling Earth Systems, 16(6). https://doi.org/10.1029/2023ms004019 , 2024.

 Rupp, K: Microprocessor Trend Data, https://github.com/karlrupp/microprocessor-trend-data , 2022. Accessed 12/09/2024.

 Silvestri, S., Wagner, G. L., Constantinou, N. C., Hill, C. N., Campin, J.-M., Souza, A. N., Bishnu, S., Churavy, V., Marshall,

 J. C. and Ferrari, R.: A GPU-based ocean dynamical core for routine mesoscale-resolving climate simulations. ESSOAr.

 https://doi.org/10.22541/essoar.171708158.82342448/v1 , 2024.

 Sridhar, A., Tissaoui, Y., Marras, S., Shen, Z., Kawczynski, C., Byrne, S., Pamnany, K., Waruszewski, M., Gibson, T. H.,

 Kozdon, J. E., Churavy, V., Wilcox, L. C., Giraldo, F. X. & Schneider, T.: Large-eddy simulations with ClimateMachine

 v0.2.0: a new open-source code for atmospheric simulations on GPUs and CPUs. Geoscientific Model Development, 15(15),

 6259–6284. https://doi.org/10.5194/gmd-15-6259-2022 , 2022.

 Strauss, R. R., Bishnu, S. and Petersen, M. R.: Comparing the Performance of Julia on CPUs versus GPUs and Julia-MPI

 versus Fortran-MPI: a case study with MPAS-Ocean (Version 7.1). Geosci. Model Dev., 16, 5539-5559,

 https://doi.org/10.5194/gmd-16-5539-2023 , 2023 EGUsphere, 2023, 1–22. https://doi.org/10.5194/egusphere-2023-57 , 2023 . ¶

 Strohmaier, E., Dongarra, J., Simon, H., Meuer, M. and Meuer, H.: The Top 500.

 https://www.top500.org/lists/top500/list/202 2 4 /11/ , 202 2 4 .

 Tsujino, H., Motoi, T., Ishikawa, I., Hirabara, M., Nakano, H., Yamanaka, G., Yasuda, T., and Ishizaki, H.: Reference manual

 for the Meteorological Research Institute Community Ocean Model (MRI.COM) version 3. Technical Reports of the

 Meteorological Research Institute, 59, 273, 2010.

 Voosen, P.: Climate modelers grapple with their own emissions. Science, 384(6695), 494–495.

 https://doi.org/10.1126/science.adq1772 , 2024.

 Competing interests

 Author A. Porter has declared that he is an author of the PSyclone package and a co-chair of the NEMO HPC Working

 Group.

 Data and/or code availability

 No data or code is associated with this work. This can also be included at a later stage, so no problem to define it for the first

 submission.

 11

 287

 288

 289

 290

 291

 292

 293

 294

 295

 296

 297

 298

 299

 300

 301

 302

 303

 304

 305

 306

 307

 308

 309

 310

 311

 312

https://doi.org/10.1029/2023ms004019
https://github.com/karlrupp/microprocessor-trend-data
https://doi.org/10.22541/essoar.171708158.82342448/v1
https://doi.org/10.22541/essoar.171708158.82342448/v1
https://doi.org/10.5194/gmd-15-6259-2022
https://doi.org/10.5194/gmd-16-5539-2023
https://doi.org/10.5194/egusphere-2023-57
https://www.top500.org/lists/top500/list/2022/11/
https://doi.org/10.1126/science.adq1772

 Authors contribution

 This can also be included at a later stage, so no problem to define it for the first submission. AP created the first draft of this

 work. PH assisted with updating the text in the light of the reviews received.

 Acknowledgements

 This can also be included at a later stage, so no problem to define it for the first submission. The authors would like to thank

 the reviewers for bringing the E3SM work to their attention.

 12

 313

 314

 315

 316

 317

 318

 319

 320

