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Abstract. The severe changes in climate resulting in the polar oceans getting warmer – with drastic consequences to their 10 

physical, biogeochemical and biological state – require forecasting systems that can accurately simulate and skilfully predict 

the state of the ice cover and its temporal evolution. Sea-ice processes significantly impact ocean circulation, water mass 

formation and modifications, and air-sea fluxes. They comprise vertical processes, mainly related to thermodynamics, and 

horizontal ones, due to internal sea ice mechanics and motion. We provide an overview on how these processes can be modelled 

and how operational systems are working, in combination with data assimilation techniques, to enhance accuracy and 15 

reliability. We also emphasize the need for advancing research on improving such numerical techniques by highlighting 

currents limits and ways forward. 

1 Introduction 

The main objective of an operational sea-ice forecasting system is to provide users with a reliable estimate of the state of the 

ice cover and its temporal evolution. To meet this goal the system needs to be coupled to, or use data from, ocean and 20 

atmosphere forecasting systems. Some form of data assimilation is also required to provide the model with the best possible 

starting position, accounting for the chaotic nature of the atmosphere-ocean-ice system. Users of sea-ice forecasting systems 

can either be ship captains operating in the polar regions or intermediate service providers. With a changing climate and 

warming polar oceans, the number of stakeholders interested in operating in ice infested waters is growing. 

Sea-ice processes have a profound importance for the ocean circulation and water mass modifications, so that ocean models 25 

of the polar regions are always coupled to a sea-ice model, both for operational forecasting and climate projection purposes. 

Sea ice models have their origin in the climate modeling community in the 1970’s and were subsequently part of the ocean 

general circulation model. They have since then evolved to provide sea ice forecasts in their own right and have been made 

modular to avoid being bound to a given choice of physical ocean model (Blockley et al., 2020). Sea ice observations from 

satellites are assimilated in the prediction systems (Buehner et al., 2017). This chapter gives a summary of the short-term (up 30 

to 10 days) sea ice forecasting systems for the polar regions. 

https://doi.org/10.5194/sp-2024-24

Discussions

Preprint. Discussion started: 20 September 2024
c© Author(s) 2024. CC BY 4.0 License.



2 
 

2 Overview of processes in sea ice 

The physical processes simulated by sea-ice models are commonly split into two: vertical processes, related to thermodynamic 

growth and melt, and mechanical and dynamical processes influencing the horizontal movement of ice. This dynamic-

thermodynamic separation has practical advantages for computations.  35 

 2.1 Thermodynamics 

The ocean can freeze in different phases of sea ice, starting with frazil crystals and their conglomerates into a liquid mush 

referred to as grease ice, then pancake ice in the presence of waves or slush when the waves flood the snow (Wadhams 2000). 

Slush, grease, pancakes and ice may sound like a perfect birthday party, until you realize that there is also salt in the ice 

(Feltham et al., 2006, de la Rosa et al., (2011), Jutras et al., (2016)). The latter will slowly flow out of the ice through brine 40 

channels, but usually after its multi-year birthday party (e.g., Notz and Worster, 2009). Once a layer of ice has formed on the 

surface of the ocean, new ice is mostly formed from below as crystals moving upward from the ocean mixed layer affix to the 

base of the ice in a process known as ‘congelation growth’. Sea ice also freezes laterally within open leads and between ice 

floes. Snow accumulates on top of the sea ice and forms an efficient thermal insulator as well as a white coating that reflects 

solar radiation back to the atmosphere. A smaller amount of snow-ice comes from compacted snow above the ice. The 45 

insulating effect of snow inhibits both sea ice growth in early winter and sea ice melt in late winter (Bigdeli et al., 2020). 

When summertime approaches, the snow melts first, and forms melt ponds at the surface of the ice. These dark ponds absorb 

more solar radiation and enhance the summer melt.  

The sea ice itself can be seen as an insulating layer between the ocean and the atmosphere, with thick ice a better insulator 

than thin ice.  50 

2.2 Mechanics 

Sea ice deforms under the action of winds and currents. Their surface drag accumulated over hundreds of kilometers of sea ice 

results in formidable forces able to crack open the thickest ice or pile it up into pressure ridges, cracks, leads and ridges in 

what are called linear kinematic features of sea ice. First-year ice can become about 1 meter thick while multi-year ice is more 

often deformed via compressive stresses and can easily reach 2 meters or above. The convergence of ice is a major threat to 55 

navigation and only a few ice-strengthened vessels or icebreakers are designed to withstand such forces. The deformation of 

sea ice has been measured by drifting buoys and satellite data and scaling laws have revealed multi-fractal properties (Weiss 

and Marsan, 2004) and power-law behavior (Weiss et al., 2009). 

Waves formed in the open ocean will often reach the ice and attenuate within the ice pack, flexing and occasionally breaking 

the ice into smaller floes along the way. Smaller ice floes offer more reflecting edges and are more efficient at attenuating 60 

waves. This represents a negative feedback in the wave-ice interactions (Squire, 2020). This equilibrium results in a wave-

broken marginal ice zone (MIZ) which is typically 100 km wide in the Arctic but can reach 1000 km in the Southern Ocean 
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where waves are bigger and the ice thinner. Sea ice can also be submerged by waves, making it saltier at the surface. Wave 

effects enhance the lateral melting of ice during summer, but also enhance its freezing during winter. 

2.3 Biogeochemistry 65 

There is life in sea ice, not only the occasional seal innocently sunbathing as the polar bear lurks around, but as a dense activity 

under the sea ice following the growth of red ice algae (Duarte et al., 2017). The availability of light below the ice and the size 

of brine channels determines the growth of algae and the peculiar ecosystem that depends on them (Arrigo, 2014). 

2.4 Numerical models 

Many sea-ice models are complex community codes, simulating the dynamical properties (the constitutive law or rheology) 70 

and the thermodynamics of sea ice. The most widespread rheological model of sea ice is the Viscous-Plastic model, often met 

in the Elastic-Viscous-Plastic (EVP) form which is more efficient for massively parallel computing. One or the other is 

implemented in the Community sea Ice CodE (CICE), the Sea Ice modelling Integrated Initiative (SI3), the Louvain-la-Neuve 

sea Ice Model (LIM), the MIT general circulation model (MITgcm), and GFDL’s Sea Ice Simulator (SIS2). The previous 

models all use an Eulerian model grid, but a recent code, the neXt generation Sea Ice Model (neXtSIM) has adopted an adaptive 75 

Lagrangian mesh, as well as a more recent Brittle-Bingham Maxwell rheology (Ólason et al., 2022) that exhibits linear features 

of sea ice deformations apparent in Figure 1. All recent sea-ice models are multi-category models and thus explicitly simulate 

an ice thickness distribution. They also include a sea-ice age tracer and can thus predict areas of FYI and MYI. Their use in 

operational forecasts is indicated in Table 1.  

The above ocean and sea-ice models are coupled via advanced software (OASIS, ESMF, CCSM) that make them modular, but 80 

some ocean models come with an integrated sea ice model, for example the MITgcm, the MOM, the HBM and the FESOM2 

codes. The latter is using finite volume (Danilov et al., 2017). 

2.5 Data assimilation   

The most important step to initialize a forecast is to assimilate the latest available observations into a numerical model. Some 

of the most important observations are available in near-real time with sea-ice concentration, thickness, and motions, but 85 

feeding them into the model is a delicate matter (Bertino and Holland, 2017; Buehner et al., 2017). Unobserved variables as 

well as the ocean properties below the ice must be estimated by multivariate update because of the complex processes both 

within the sea ice and between the ice and ocean. The irregular observational sampling also requires a flow-dependent spatial 

interpolation. Operational centers run numerical models and data assimilation codes on dedicated High-Performance 

Computers (HPC). 90 
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Figure 1: Example of sea ice thickness analysis from the neXtSIM-F system, visualisation from the Copernicus Marine Services 
(http://marine.copernicus.eu). 

Table 1: List of present-day short-term Global and Arctic forecast systems including specification of spatial resolution, sea ice model, 
assimilation method, variables and website. Sea ice variables are SIC concentration, SIT thickness, SIUV motions, SIALB albedo, 95 
SNOW snow depth, SIAGE ice age. Note that the output spatial resolution may differ from the native resolution. Baltic forecasting 
systems are omitted for brevity. Ocean data assimilated are also omitted. * Output interpolated to 9 km. ** VENUS is deployed on 
demand.  

Area 

Count

ry 

System 

name 

Resolutio

n at NP 

(km) 

Sea ice 

Model 

Assimilation 

(method and 

sea ice data) 

Variables 

distributed Website 

Arctic 

P.R. 

China 

ArcIOP

S 

18 km 

MITgcm 

LESTKF SIC, 

SIT 
SIC, SID, SIT 

http://www.oceanguide.
org.cn/IceIndexHome/T

hicknessIce 

Global USA RTOFS 
3.5 km 

CICE5 
3DVAR SIC 

SIC, SIT, SIUV 
https://polar.ncep.noaa

.gov/global/ 

Arctic 

Norwa

y 

TOPAZ

5 6.25 km CICE5 

EnKF SIC, 

SIUV, SIT 

SIC, SIT, SIUV. 

SNOW, SIALB, 

SIAGE 
https://marine.copernic
us.eu/ 
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Arctic 

Norwa

y 

neXtSI

M-F 

3km 

(output) neXtSIM Nudging SIC 

SIC, SIT, SIUV, 

SNOW, SIALB, 

SIAGE 
https://marine.copernic

us.eu/ 

Global France MOi 3.5 km LIM2 
SEEK SIC SIC, SIT, SIUV https://marine.copernic

us.eu/ 

Global 

Canad

a GIOPS 

12 km  

CICE4 

3DVAR SIC  CONCEPTS - 
Science.gc.ca 

Arctic 

Canad

a RIOPS 3.5 km CICE4 

3DVAR SIC  https://science.gc.ca/ei

c/site/063.nsf/eng/h_97

620.html 

Global USA 

GOFS3

.1 3.5 km CICE4 3DVAR SIC SIC, SIT, SIUV 

https://www7320.nrlssc

.navy.mil/GLBhycomcic

e1-12 

Global Europe 

ECMW

F 

12 km LIM2 3DVAR SIC SIC, SIT https://www.ecmwf.int/

en/forecasts/datasets/s

et-i 

Arctic 

Denma

rk DMI 

10 km CICE4 Nudging SIC  http://ocean.dmi.dk/mo
dels/hycom.uk.php 

Global UK 

Met 

Office 

coupled 

DA 

12 km  CICE5 3DVAR SIC SIC, SIT, SIUV 

https://marine.copernic

us.eu/ 

Global UK 

Met 

Office 

FOAM 3.5 km 

CICE5 3DVAR SIC   

Arctic

** Japan 

VENU

S 2.5km 

IcePOM N/A SIC, SIT https://ads.nipr.ac.jp/ve

nus.mirai/#/mirai 

 

The data assimilation methods in operation are most often the 3D-variational (3DVAR) method (Tonani et al., 2015; Waters 100 

et al., 2015; Mogensen et al., 2012; Hebert et al., 2015; Smith et al., 2016; Usui et al., 2006), assimilating sea-ice concentration 

and more recently sea-ice thickness (Mignac et al. 2022). The 4DVAR method is not presently used in operational forecasts 

but can provide long-term optimized model trajectories that are fully consistent with the model equations (Nguyen et al., 2021). 

The Ensemble Kalman Filter (EnKF) is also used in the TOPAZ system to assimilate concentrations, thickness, and motion 

vectors (Xie et al., 2017) and has been tested with neXtSIM (Cheng et al., 2023) although a cheaper nudging is used 105 

operationally (Williams et al., 2021). The EnKF does not intrude in the model software and the resulting forecast system is 
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modular. Even though operational centers use the state of the art with respect to sea-ice data assimilation, they are still 

inaccurate in locating the ice edge (about 40 km at analysis time, Carrières et al., 2017), even less accurate in locating the 

boundary between first-year and multi-year Ice (200 km errors rather than 40 km). 

With improved observational data coverage and increased computational power, rapid improvements in sea ice modelling and 110 

forecasting capabilities are expected in the coming decade. One research thrust concerns the modelling of sea ice as individual 

floes (e.g., Horvat et al., 2022). A second thrust concerns the development of improved and faster numerical solvers (e.g., Shih 

et al., 2023). Finally, machine learning approaches are flourishing, which seek to develop fast, surrogate modelling and 

forecasting capabilities (e.g., Hoffman et al., 2023, Durand et al., 2024, Gregory et al., 2024). 

 115 
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