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Abstract. The severe changes in climate resulting in the polar oceans getting warmer – with drastic consequences to their 10 

physical, biogeochemical and biological state – require forecasting systems that can accurately simulate and skilfully predict 11 

the state of the ice cover and its temporal evolution. Sea-ice processes significantly impact ocean circulation, water mass 12 

formation and modifications, and air-sea fluxes. They comprise vertical processes, mainly related to thermodynamics, and 13 

horizontal ones, due to internal sea ice mechanics and motion. We provide an overview on how these processes can be modelled 14 

and how operational systems are working, in combination with data assimilation techniques, to enhance accuracy and 15 

reliability. We also emphasize the need for advancing research on improving such numerical techniques by highlighting 16 

currents limits and ways forward. 17 

1 Introduction 18 

The main objective of an operational sea-ice forecasting system is to provide users with a reliable estimate of the state of the 19 

ice cover and its temporal evolution. To meet this goal, the system needs to be coupled to, or use data from, ocean and 20 

atmosphere forecasting systems. Some form of data assimilation is also required to provide the model with the best possible 21 

starting position, accounting for the chaotic nature of the atmosphere-ocean-ice system. Users of sea-ice forecasting systems 22 

can either be ship captains operating in the polar regions or intermediate service providers. With a changing climate and 23 

warming polar oceans, the number of stakeholders interested in operating in ice infested waters is growing. 24 

Sea-ice processes have a profound importance for the ocean circulation and water mass modifications, so that ocean models 25 

of the polar regions are always coupled to a sea-ice model, both for operational forecasting and climate projection purposes. 26 

Sea ice models have their origin in the climate modeling community in the 1970’s and were subsequently part of the ocean 27 

general circulation model. They have since then evolved to provide sea ice forecasts in their own right and have been made 28 

modular to avoid being bound to a given choice of physical ocean model (Blockley et al., 2020). Sea ice observations from 29 
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satellites are assimilated in the prediction systems (Buehner et al., 2017). This chapter gives a summary of the short-term (up 30 

to 10 days) sea ice forecasting systems for the polar regions. 31 

2 Overview of processes in sea ice 32 

The physical processes simulated by sea-ice models are commonly split into two: vertical processes, related to thermodynamic 33 

growth and melt, and mechanical and dynamical processes influencing the horizontal movement of ice. This dynamic-34 

thermodynamic separation has practical advantages for computations.  35 

 2.1 Thermodynamics 36 

The ocean can freeze in different phases of sea ice, starting with frazil crystals and their conglomerates into a liquid mush 37 

referred to as grease ice, then pancake ice in the presence of waves or slush when the waves flood the snow (Wadhams 2000). 38 

Slush, grease, pancakes and ice may sound like a perfect birthday party, until you realize that there is also salt in the ice 39 

(Feltham et al., 2006, de la Rosa et al., (2011), Jutras et al., (2016)). The latter will be rejected to the ocean through brine 40 

channels, but usually after its multi-year birthday party (e.g., Notz and Worster, 2009). Once a layer of ice has formed on the 41 

surface of the ocean, new ice is mostly formed from below as crystals moving upward from the ocean mixed layer affix to the 42 

base of the ice in a process known as ‘congelation growth’. Sea ice also freezes laterally within open leads and between ice 43 

floes. Snow accumulates on top of the sea ice and forms an efficient thermal insulator as well as a white coating that reflects 44 

solar radiation back to the atmosphere. A smaller amount of snow-ice comes from compacted snow above the ice. The 45 

insulating effect of snow inhibits both sea ice growth in early winter and sea ice melt in late winter (Bigdeli et al., 2020). 46 

When summertime approaches, the snow melts first, and forms melt ponds at the surface of the ice. These dark ponds absorb 47 

more solar radiation and enhance the summer melt.  48 

The sea ice itself works as an insulating layer between the ocean and the atmosphere, with thick ice a better insulator than thin 49 

ice.  50 

2.2 Mechanics 51 

Sea ice deforms under the action of winds and currents. Their surface drag accumulated over hundreds of kilometers of sea ice 52 

results in formidable forces able to crack open the thickest ice or pile it up into pressure ridges, cracks, leads and ridges in 53 

what are called linear kinematic features of sea ice. First-year ice (FYI) can become about 1 meter thick while multi-year ice 54 

(MYI) is more often deformed via compressive stresses and can easily reach 2 meters or above. The convergence of ice is a 55 

major threat to navigation and only a few ice-strengthened vessels or icebreakers are designed to withstand such forces. The 56 

deformation of sea ice has been measured by drifting buoys and satellite data and scaling laws have revealed multi-fractal 57 

properties (Weiss and Marsan, 2004) and power-law behavior (Weiss et al., 2009). 58 
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Waves formed in the open ocean will often reach the ice and attenuate within the ice pack, flexing and occasionally breaking 59 

the ice into smaller floes along the way. Smaller ice floes offer more reflecting edges and are more efficient at scattering waves. 60 

Waves scattering represents a negative feedback in the wave-ice interactions, among other nonlinear energy dissipation 61 

processes (Squire, 2020). This equilibrium results in a wave-broken marginal ice zone (MIZ) which is typically 100 km wide 62 

in the Arctic but can reach 1000 km in the Southern Ocean where waves are bigger and the ice thinner. Sea ice can also be 63 

submerged by waves, making the surface more saline. Wave breaking effects enhance the lateral melting of ice during summer, 64 

but also enhance its freezing during winter. 65 

2.3 Biogeochemistry 66 

There is life in sea ice, not only the occasional seal innocently sunbathing as the polar bear lurks around, but as a dense activity 67 

under the sea ice following the growth of red ice algae (Duarte et al., 2017). The availability of light below the ice and the size 68 

of brine channels determines the growth of algae and the peculiar ecosystem that depends on them (Arrigo, 2014). The algae 69 

will find nutrients in the sea ice, some will be trapped in the ice during freezing, providing a sheltered food store for micro-70 

organisms and then later ejected to the ocean through brine channels (Lund-Hansen et al. 2024).  71 

Sea ice carries sediments while drifting from the shallow shelf seas to the central Arctic, together with nutrients, various 72 

biological materials and occasionally pollutants (Krumpen et al. 2019).   73 

Sea ice acts as a lid preventing the exchange of greenhouse gases between ocean and atmosphere, but the sea ice also holds its 74 

own carbon pump accounting for 30% of the Carbon uptake in the Arctic (Richaud et al. 2023).   75 

3 Numerical models 76 

Operational sea-ice models are based on complex community codes, simulating the dynamical properties (the constitutive law 77 

or rheology) and the thermodynamics of sea ice. The most widespread rheological model of sea ice is the Viscous-Plastic 78 

model, often met in the Elastic-Viscous-Plastic (EVP) form which is more efficient for massively parallel computing. One or 79 

the other is implemented in the Community sea Ice CodE (CICE), the Sea Ice modelling Integrated Initiative (SI3), the Louvain-80 

la-Neuve sea Ice Model (LIM), the MIT general circulation model (MITgcm), and GFDL’s Sea Ice Simulator (SIS2). The 81 

previous models all use an Eulerian model grid, but a recent code, the neXt generation Sea Ice Model (neXtSIM) has adopted 82 

an adaptive Lagrangian mesh, as well as a more recent Brittle-Bingham Maxwell rheology (Ólason et al., 2022) that exhibits 83 

linear features of sea ice deformations apparent in Figure 1. All recent sea-ice models are multi-category models and thus 84 

explicitly simulate an ice thickness distribution. They also include a sea-ice age tracer and can thus predict areas of FYI and 85 

MYI. Their use in operational forecasts is indicated in Table 1.  86 

The above ocean and sea-ice models are coupled via advanced software (OASIS, ESMF, CCSM) that make them modular, but 87 

some ocean models come with an integrated sea ice model, for example the NEMO, the MITgcm, the MOM, the HBM and 88 

the FESOM2 codes. The latter is using finite volume (Danilov et al., 2017).  89 
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 90 
Figure 1: Example of sea ice thickness analysis from the neXtSIM-F (left) system and the assimilated CS2SMOS data , visualisation 91 
from the Copernicus Marine Services (http://marine.copernicus.eu). 92 

4 Data assimilation   93 

The most important step to initialize a forecast is to assimilate the latest available observations into a numerical model. Some 94 

of the most important observations are available in near-real time with sea-ice concentration, thickness, and motions, but 95 

feeding them into the model is a delicate matter (Bertino and Holland, 2017; Buehner et al., 2017). Unobserved variables as 96 

well as the ocean properties below the ice must be estimated by multivariate update because of the complex processes both 97 

within the sea ice and between the ice and ocean. The irregular observational sampling also requires a flow-dependent spatial 98 

interpolation. Operational centers run numerical models and data assimilation codes on dedicated High-Performance 99 

Computers (HPC). 100 

The data assimilation methods in operation are most often the 3D-variational (3DVAR) method (Tonani et al., 2015; Waters 101 

et al., 2015; Mogensen et al., 2012; Hebert et al., 2015; Smith et al., 2016; Usui et al., 2006), assimilating sea-ice concentration 102 

and more recently sea-ice thickness (Mignac et al. 2022). The 4DVAR method is not presently used in operational forecasts 103 

but can provide long-term optimized model trajectories that are fully consistent with the model equations (Nguyen et al., 2021). 104 

The Ensemble Kalman Filter (EnKF) is also used in the TOPAZ system to assimilate concentrations, thickness, and motion 105 

vectors (Xie et al., 2017) and has been tested with neXtSIM (Cheng et al., 2023) although a cheaper nudging is used 106 

operationally (Williams et al., 2021). The EnKF does not intrude in the model software and the resulting forecast system is 107 

modular. Even though operational centers use the state of the art with respect to sea-ice data assimilation, they are still 108 

inaccurate in locating the ice edge (about 40 km at analysis time, Carrières et al., 2017), even less accurate in locating the 109 

boundary between FYI and MYI (200 km errors rather than 40 km).  110 

Biases in sea ice area coverage arise from multiple sources, primarily from biased ocean and atmospheric boundary conditions, 111 

but also intrinsic biases of the sea ice model itself. These biases interact with each other in complex ways (feedback loops or 112 
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cancellation of errors). Data assimilation methods rely on unbiasedness assumptions and do not remove biases entirely, often 113 

transferring them to unobserved variables. Short of a complete observing network, there are ongoing efforts in improving sea 114 

ice models that we believe can reduce biases, provided that incoming biases from new ocean and atmospheric models are also 115 

reducing. 116 

 117 
Table 1: List of present-day short-term Global and Arctic forecast systems including specification of spatial resolution, sea ice model, 118 
assimilation method, variables and website. Sea ice variables are SIC concentration, SIT thickness, SIUV motions, SIALB albedo, 119 
SNOW snow depth, SIAGE ice age. Note that the output spatial resolution may differ from the native resolution. Baltic forecasting 120 
systems are omitted for brevity. Ocean data assimilated are also omitted. * Output interpolated to 9 km. ** VENUS is deployed on 121 
demand.  122 

Area 

Coun

try 

Syste

m 

name 

Resolutio

n at NP 

(km) 

Sea ice 

Model 

Assimilation 

(method and 

sea ice data) 

Variables 

distributed Website 

Arctic 

P.R. 

China 

ArcIO

PS 
18 km 

MITgcm 

LESTKF SIC, 

SIT 
SIC, SIUV, 

SIT 

http://www.oceanguide

.org.cn/IceIndexHome/

ThicknessIce 

Glob

al USA 

RTOF

S 
3.5 km 

CICE5 
3DVAR SIC 

SIC, SIT, 

SIUV 

https://polar.ncep.noaa

.gov/global/ 

Arctic 

Norw

ay 

TOPA

Z5 6.25 km CICE5 

EnKF SIC, 

SIUV, SIT 

SIC, SIT, 

SIUV. SNOW, 

SIALB, SIAGE 
https://marine.copernic

us.eu/ 

Arctic 

Norw

ay 

neXtS

IM-F 

3km 

(output) 

neXtSI

M Nudging SIC 

SIC, SIT, 

SIUV, SNOW, 

SIALB, SIAGE 
https://marine.copernic
us.eu/ 

Glob

al 

Franc

e MOi 3.5 km LIM2 
SEEK SIC 

SIC, SIT, 

SIUV 
https://marine.copernic

us.eu/ 

Glob

al 

Cana

da GIOPS 
12 km  

CICE4 
3DVAR SIC  CONCEPTS - 

Science.gc.ca 

Arctic 

Cana

da RIOPS 3.5 km CICE4 
3DVAR SIC  

https://science.gc.ca/ei

c/site/063.nsf/eng/h_97
620.html 

Glob

al USA 

GOFS

3.1 3.5 km CICE4 3DVAR SIC 

SIC, SIT, 

SIUV 

https://www7320.nrlssc

.navy.mil/GLBhycomci
ce1-12 
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Glob

al 

Europ

e 

ECMW

F 
12 km* LIM2 3DVAR SIC SIC, SIT 

https://www.ecmwf.int/

en/forecasts/datasets/s

et-i 

Arctic 

Denm

ark DMI 
10 km CICE4 Nudging SIC  

http://ocean.dmi.dk/mo
dels/hycom.uk.php 

Glob

al UK 

Met 

Office 

couple

d DA 

12 km  CICE5 3DVAR SIC 
SIC, SIT, 

SIUV https://marine.copernic

us.eu/ 

Arctic Japan 

VENU

S** 2.5km 
IcePOM N/A SIC, SIT https://ads.nipr.ac.jp/ve

nus.mirai/#/mirai 

 123 

With improved observational data coverage, increased computational power, and improved representation of key physical 124 

processes, rapid improvements in sea ice modelling and forecasting capabilities are expected in the coming decade. One 125 

research thrust concerns modelling the marginal ice zone, most notably wave-ice interactions (e.g. Boutin et al., 2022) and 126 

modelling sea ice as individual floes (e.g., Horvat et al., 2022). A second thrust is improvements in the sea-ice rheology used 127 

for the pack ice (e.g. Ólason et al., 2022). Improved rheology will improve the ice drift and the location of the boundary 128 

between FYI and MYI (e.g. Regan et al., 2023). Finally, machine learning approaches are flourishing, which seek to develop 129 

fast, surrogate modelling and forecasting capabilities (e.g., Hoffman et al., 2023; Durand et al., 2024; Gregory et al., 2024). 130 

Sea-ice exists at the boundary between the atmosphere and ocean, so sea-ice forecasts depend on accurate atmosphere, ocean, 131 

and even wave forecasts. Improving those is, therefore, very important for improving sea-ice forecasts. We see fully coupled 132 

atmosphere-ocean-wave-ice models with fully coupled data assimilation as a vital long-term goal for sea-ice forecasting 133 

systems. 134 

Even though every improvement of the atmosphere, ice or ocean models is welcome, they require time-consuming rounds of 135 

testing in forced and coupled models. In the meantime, post-processing techniques, now aided by machine learning, are a 136 

novelty in sea ice forecasting (Parleme et al. 2021, 2023) and reanalysis (Edel et al. 2025).  137 
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