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Abstract. Data assimilation is a process for integrating models and observations into comprehensive and reliable estimates of 

the ocean state. It is used to produce near-real time initial conditions (analyses) from which ocean forecasts are produced and 

to generate reconstructions of the past state of the ocean (reanalyses). Here we provide an overview of the methods currently 

used in ocean systems for assimilating satellite and in-situ observations, together with a brief review of methods being 15 

developed which will be implemented in future operational systems, including the use of machine-learning techniques that 

provide a way to improve their efficiency. A list of data assimilation software used by most of the global and regional 

operational ocean forecasting systems is provided, together with its availability. A discussion of practical considerations for 

employing data assimilation software and techniques operationally is also given, including the types of observations which are 

commonly used, and the implementation choices made by existing operational systems at global and regional scales is 20 

summarized.   

 

1 Introduction 

Accurate estimates of the state of the ocean are required for many purposes. Observations provide direct information about the 

ocean but are sparse in time and space. Numerical models can give information everywhere and describe the time evolution of 25 

the ocean but are prone to error. Data assimilation (DA) is the process by which these two sources of imperfect information 

are combined, taking into account their errors, in order to produce complete and accurate estimates of the ocean (Moore et al., 

2019; Hoteit et al., 2018; Alvarez-Fanjul et al. 2022; Stammer et al., 2016; Carrassi et al., 2018). These estimates are used to 

produce historical reanalyses of the ocean (Storto et al., 2019; Heimbach et al., 2019) and in near real-time to initialize forecasts 

(Moore et al., 2019).  30 

Data assimilation is used in global, regional and coastal ocean forecasting systems. The characteristics of the models used in 

each setting can be different including the resolution, processes represented and the model components. Global models are 

usually coupled physical ocean/sea-ice models, with a strong move at many operational centers to coupled 
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atmosphere/ocean/sea-ice models. Regional and coastal models usually resolve more of the higher-frequency processes which 

become more important in shallow seas, and often include coupled physical/biogeochemical components. The observations 35 

available for assimilation also often have different characteristics with different technologies needed to measure the ocean 

closer to the coast. The methods used to initialize forecasts in these different settings have to take into account the 

characteristics of the model and observations available so that the variability associated with the important processes can be 

constrained.  

Many of the data assimilation methods used in ocean forecasting were originally developed for numerical weather prediction 40 

(with the notable exception of the ensemble Kalman Filter). The dominant spatial and temporal scales in the ocean are quite 

different to the atmosphere though, with the first baroclinic Rossby radius of deformation being a few 10s of kilometers at 

mid-latitudes (see e.g. Chelton et al., 1998) with temporal scales ranging from days to weeks. To resolve the open-ocean 

mesoscale at mid-latitudes, model resolutions of the order of at least 1/12° are required (Hewitt et al., 2016) and the aim of 

many global ocean data assimilation systems is to initialise the ocean state at these scales. Observations of the surface ocean 45 

are available at fairly high resolution from satellites, but observations of the sub-surface ocean are much sparser. Sophisticated 

methods are therefore required to make the most of the observations to constrain models of the 3D ocean on the desired scales. 

The integration of high-resolution models along with the high computational processing required for implementing an 

advanced data assimilation method demands computational resources that are available at only a small number of ocean 

forecasting centers and research institutions worldwide. 50 

Errors in ocean models arise due to approximations in their numerical formulation, errors in the parameterisation of unresolved 

physics, and errors in the inputs to the model including the surface atmospheric forcing, river inputs, and the lateral boundary 

conditions for regional systems. The ocean is a chaotic system, so small differences in the initial state grow over time, 

especially in strongly eddying regions. All these sources of uncertainty contribute to the model forecast error, estimates of 

which are needed for data assimilation. Observations also contain errors and measure the ocean on different spatial scales (to 55 

each other and to the model). Estimates of the errors in the different observations are therefore also needed, including the 

component due to the measurement itself, as well as the component due to the difference in the representation of the ocean by 

the observation and model (Janjić et al., 2018).  

Here we provide a summary of the status of ocean data assimilation as part of a special issue introduced by Alvarez Fanjul and 

Bahurel (2024). The next section gives a brief overview of data assimilation theory to put into context the various schemes 60 

used in operational ocean forecasting centers. The data assimilation software used at many of the operational centers is also 

described including community open-source software as well as other code developed and used at some of the main institutes. 

An overview of the practical considerations needed to apply data assimilation effectively in an operational setting is given. We 

then describe the current status of data assimilation as applied in many operational ocean forecasting centers, followed by a 

summary. 65 
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2 Data assimilation methodology 

A variety of DA methods are being used or currently tested to develop Operational Ocean Forecasting Systems (OOFSs) 

(Moore et al., 2019). These first followed the 3D formulation of the DA problem (3DDA) in which the ocean state at a given 

time is estimated based only on the available observations at that time. 3DDA is often cast as a least-squares fitting problem 

whose solution minimizes a composite objective function involving a data-misfit term and a regularization term representing 70 

prior knowledge on the ocean state, called the background/prior and usually taken as the most recent ocean forecast. Both 

terms of the objective function are generally weighted by their respective observations and background error covariances, 

which can be also imposed following a (stochastic) Bayesian inverse formulation of the 3DDA problem under the assumption 

of Gaussian observations and background errors (Moore et al., 2019; Hoteit et al., 2018). When the observational operator 

relating the ocean state to the observations is linear, the 3DDA problem has an analytical solution, known as the Best Linear 75 

Unbiased Estimator (BLUE); when not, this operator is either linearized to compute the Optimal Interpolation (OI) solution, 

or the objective function is directly minimized using a gradient-based iterative optimization algorithm to compute the 3D 

variational DA (3DVAR) solution. 

The solution of the 4D DA problem is more advanced as it is estimated based on a set of observations that is available over a 

given period of time (Weaver et al. 2003). It can be computed following a straightforward extension of the 3DVAR problem 80 

by formulating an objective function in which the data-misfit term constrains the ocean model prediction to the observations 

in time. When the ocean model and its forcing are considered perfect, only the ocean state at the start of the observation period 

needs to be estimated. The resulting strongly constrained (by the ocean model equations) 4DVAR solution is then integrated 

forward with the model beyond the observations period to compute the ocean forecasts. In contrast, the weak constraint 

4DVAR problem considers model errors in the ocean model, which can be then estimated as part of the objective function 85 

minimization process. Jointly estimating the ocean initial state and model errors at every time step can quickly become 

computationally intractable. This was elegantly addressed by moving the optimization in the observation space, which should 

be of much smaller dimension in this case, using the dual formulation or Representer method (Bennett, 2005). In between the 

strong and weak constraint 4DVAR, a large variety of different implementations exist, for instance estimating the ocean model 

parameters (e.g., mixing schemes) and inputs (e.g., atmospheric forcing, open boundary conditions, bathymetry, etc.) as part 90 

of the minimization process. This has been successfully demonstrated with the MIT general circulation model (MITgcm) 

(Forget et al., 2015) and the Regional Ocean Modeling System (ROMS) (Moore et al., 2019). In all 4DVAR methods, the 

computation of the objective function gradients required for the minimization process can be efficiently implemented through 

the adjoint model, governed by the adjoint equations to the ocean tangent linear model (Moore et al., 2004; Vidard et al., 2015). 

Coding and running the adjoint model can be demanding in both human effort and computational resources.  95 

The observational and background error covariances are key in determining the 3D and 4D DA solutions. The first sets the 

weights of the data-misfit terms and their correlations to avoid overfitting the observations while accounting for redundant 

information (Moore et al., 2019). The second constrains the DA solution by enforcing some dynamical relationships in the 
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initial state and/or smoothness on the estimated inputs and parameters to enable a proper propagation of the observations’ 

information into all ocean model variables (Moore et al., 2019). 100 

The DA methods discussed so far are designed to compute a deterministic estimate of the ocean state (the maximum a posteriori 

of the Bayesian inversion problem), and therefore do not provide a framework to quantify the uncertainties in the ocean 

forecasts, the covariance of which could be used as the background for the next DA cycle. This sets the stage to the filtering 

DA methods which sequentially compute the solution of the Bayesian inversion problem by considering the observations as 

they become available. The filtering formulation of the DA problem allows for model and observational errors and involves 105 

computing the probability distribution of the ocean state conditioned on all previous observations. This provides a recursive 

framework suitable for OOFSs where the model is used for forecasting the ocean state and its error statistics (forecast step), 

which are then updated with the new incoming observations based on Bayes’ rule (analysis step) (Hoteit et al., 2018).  

The Bayesian filtering problem can be conceptually solved by the Kalman filter (KF) when the underlying dynamical and 

observational models are linear and their errors are Gaussian, in which case the forecast and analysis distributions are Gaussian 110 

and the analytical form of their mean (state estimate) and covariance are available. Ocean general circulation models are 

however nonlinear, and the discrete dimension of the underlying ocean state can be very large. This motivated the development 

of a variety of simplified and extended variants of the KF for ocean DA, either by (i) linearizing the ocean dynamics and 

enforcing low-rank error covariance matrices (e.g., Singular Evolutive Extended – SEEK - filters), or (ii) using the widely 

celebrated ensemble KF (EnKF) methods (Vetra-Carvalho et al., 2018). EnKF methods use samples to compute statistical 115 

approximations of the first two moments of the ocean state forecast and analysis distributions. Given an analysis ensemble, an 

EnKF integrates its members, eventually with perturbed noise to account for model errors, forward with the ocean model for 

forecasting, and the resulting forecast ensemble statistics are then updated with the incoming observations using the KF 

analysis step. The latter is referred to as stochastic when the KF analysis step is applied on each forecast ensemble member 

using perturbed observations, so that the analysis ensemble covariance matches that of the KF, and deterministic (e.g., ETKF, 120 

EAKF, SEIK, DEnKF) when the KF analysis step is directly applied on the mean and covariance of the forecast ensemble, 

after which a deterministic resampling step is needed to resample a new analysis ensemble (Hoteit et al., 2018).  

EnKFs are generally integrated with relatively small ensembles (~100 samples) to limit their computational cost, making their 

sample covariances low-rank and thus necessitating localization/covariance-tapering techniques to confine the spatial range of 

their correlations (Hoteit et al., 2018). Limited ensemble size can also result in underestimation of the ensemble variance 125 

leading to the need for ensemble inflation (Evensen et al., 2022). To further reduce the computational requirements, EnKFs 

are also often implemented with static ensembles, only using the ocean model to compute the forecast starting from the analysis 

state (ensemble OI – EnOI - methods), or their ensembles augmented with pre-selected static members (Hybrid EnOI-EnKF 

methods) (Counillon et al., 2009). On the other side of the spectrum, more sophisticated filtering methods have been also 

proposed to move beyond the Gaussian error assumption by employing Monte-Carlo approximations of the forecast and 130 

analysis distributions, so-called Particle Filters, or through Gaussian mixture approximations which when implemented within 
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an ensemble framework reduce to some sort of ensemble of EnKFs (van Leeuwen at al., 2019). These methods are however 

still in testing phases and are yet to be applied in operational settings. 

4DVAR and EnKFs were proven to provide viable and robust solutions for many ocean DA applications, and most ocean 

centers are currently developing their operational systems around these approaches. There are benefits and drawbacks in using 135 

an EnKF or a 4DVAR (Lorenc, 2003; Kalnay et al., 2007). EnKFs involve flow-dependent ensemble representation of the 

background, though rank-deficient. On the downside, the EnKF is generally only efficient for moderate model nonlinearity 

because of its second-order moments approximation of the error statistics. 4DVAR, on the other hand, should better handle 

nonlinearities, though the optimization of its objective function can be a complex task in the presence of strongly nonlinear 

dynamics (Moore et al., 2019; Hoteit et al., 2018), and can be implemented with a full-rank, albeit static, background error 140 

covariance matrix. 4DVAR further requires coding and maintaining the adjoint of the observation and forecasting models, 

which is quite demanding. The use of automatic differentiation in distributed HPC environments, which is receiving a 

renaissance in the context of machine learning, may overcome this limitation (Heimbach et al., 2005). Finally, 4DVAR does 

not lend itself easily to parallelization, while the important computational cost for computing the forecast ensemble can be 

drastically mitigated by trivial parallelization.  145 

There have been various attempts to merge the 4DVAR and EnKF approaches in order to combine their strengths, which 

introduced a new family of Hybrid Ensemble-Variational (EnVAR) methods. This includes (i) considering an ensemble of DA 

(EnDA) methods to obtain flow-dependent error representations, or (ii) the iterative Ensemble Kalman Filters (iEnKFs) and 

Smoothers (iEnKSs) which use a forecast ensemble to describe the background statistics and apply a nonlinear optimization 

to the 4DVAR objective function in the ensemble space (Sakov et al., 2012a), and (iii) the class of 4D Ensemble Variational 150 

(4DEnVAR) methods which also performs a set of 4DVAR optimizations in the subspace spanned by the ensemble using a 

set of perturbed observations (Liu et al., 2012). Different 4DEnVAR versions have been proposed (Bannister, 2017), 

employing hybrid background covariances, adjoint model or finite differences to compute the gradients, and different types of 

perturbations.  

Recently, machine learning (ML) techniques have been also considered to enhance the efficiency of the DA methods, in terms 155 

of both capacity and computations (Cheng et al, 2023). ML techniques harness neural networks’ (NNs) potential at 

approximating highly nonlinear functions, which may enable developing computationally less demanding forecasting models 

(Barthélémy et al., 2022), and backward models for efficient data fitting. NNs were also proposed as end-to-end replacement 

of the analysis steps (Beauchamp et al, 2023), and to parameterize and account for model errors (Farchi et al., 2021). 

3 Data assimilation software 160 

Data assimilation software packages come in all sizes and flavors. A first distinction needs to be made between educational 

packages that can be used for methodological developments and operational codes designed for high-performance computers. 

We will only consider the latter category in this section. A second distinction can be made between software aimed at 4DVAR 
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methods and those that take the EnKF as their target algorithm. These two types of software differ in their complexity and 

size, and therefore adopt different development strategies. There are thus several small-sized EnKF packages and a few more 165 

ambitious 4DVAR packages on the market. The latter may also include the EnKF as a small addition to their ensemble-

variational toolbox. Some of the packages (DART, PDAF, JEDI) have users in other research fields beyond ocean forecasting. 

See Table 1 for a list of commonly used DA software in ocean prediction systems. 

 

Table 1: Data assimilation software packages. 170 

Software 

name 

Target 

algorithm(s) 

Programming 

language 

Development 

community 

Code availability 

JEDI Variational 

DA. 

C++ JCSDA, 

NOAA, 

NASA, US 

Navy and Air 

Force, Met 

Office. 

Open source. 
https://github.com/JCSDA  

MITgcm Variational 

DA. 

Fortran. 
A version in 

Julia is under 

development. 

ECCO 

consortium, 

GECCO, MIT, 

Uni. Texas 

Open source. 
https://mitgcm.readthedocs.io/   
 

NEMOVAR Variational 

DA. 

Fortran CERFACS, 

ECMWF, Met 

Office, INRIA 

Not open source. 

OceanVar Variational 

DA. 

Fortran CMCC, CNR Not open source. 

ROMS Variational 

DA. 

Fortran ROMS 

community 

Open source. 
https://www.myroms.org/   
 

DART Ensemble DA. Fortran NCAR Open source. 
https://dart.ucar.edu  

EnKF Ensemble DA. Fortran NERSC Open source. 
https://github.com/nansencenter/enkf-

topaz  

https://github.com/JCSDA
https://mitgcm.readthedocs.io/
https://www.myroms.org/
https://dart.ucar.edu/
https://github.com/nansencenter/enkf-topaz
https://github.com/nansencenter/enkf-topaz
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EnKF-C Ensemble DA. C Bureau of 

Meteorology 

Open source. 
https://github.com/sakov/enkf-c  

NEDAS Ensemble DA Python, parallel NERSC Open source.  

https://github.com/nansencenter/NEDAS  

OAK Sequential 

DA. 

Fortran U. Liège Open source. 
https://github.com/gher-uliege/OAK  

OpenDA Ensemble DA. Java TU Delft Open source. 
https://www.openda.org  

PDAF Ensemble DA. Fortran AWI Open source.  
https://pdaf.awi.de 

SAM2 SEEK filter. Fortran Mercator 

Ocean 

International, 

ECCC. 

Not open source. 

Sequoia Sequential 

DA. 

Fortran OMP/LEGOS Available on demand. 
https://sirocco.obs-mip.fr/  

 

The above software packages have mainly been used on high-performance computers (HPCs) and some of them on personal 

computers. The NEMOVAR and MITgcm 4DVAR codes, and the NEDAS ensemble code, are actively being developed for 

use on GPU-based systems. However, all the DA software listed above have lived long enough to be ported several times to 

different HPC architectures with different compilers and can be qualified as portable. 175 

4 Practical implementations in operational systems 

Several factors dictate the practical implementation of ocean DA systems within an operational environment. The primary 

controlling factors in any operational environment typically relate to (i) scheduling of the DA analysis and forecast phases 

with respect to the competing demands of other essential activities (e.g. numerical weather prediction, hydrological forecasts, 

etc); and (ii) the release of analysis-forecast products in a timely manner so that they are of maximum benefit to the users. 180 

These overarching criteria therefore, in turn, dictate the configuration of the forecast model and the data assimilation approach 

that may be used.  

In the case of ensemble approaches, such as the EnKF or EnVar, there may be a trade-off between model resolution and the 

ensemble size in that computation time increases with resolution. Thus, with limited resources fewer ensemble members can 

be run within the constraints imposed by (i) and (ii). An advantage of ensemble approaches is that each ensemble member can 185 

be computed independently, meaning that in very large HPC environments, many ensemble members can be run 

https://github.com/sakov/enkf-c
https://github.com/nansencenter/NEDAS
https://github.com/gher-uliege/OAK
https://www.openda.org/
https://pdaf.awi.de/
https://sirocco.obs-mip.fr/
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simultaneously. Here again though there can be a trade-off between resolution and ensemble size. While most ocean models 

scale reasonably well on parallel computing architectures, wall-clock time typically does not scale linearly with the number of 

cores. Hence, there is a point of diminishing returns whereby it may be better to allocate fewer cores to the business of 

computing ensemble members at the expense of a longer wall-clock time for each member, rather than dedicating a very large 190 

number of cores to a single task.  

Unlike ensemble methods, the traditional approaches to variational data assimilation, namely 3DVAR and 4DVAR, are strictly 

sequential and cannot be parallelized in time. In other words, the inner- and outer-loop iterations of the cost function 

minimization algorithm must be performed sequentially. The sequential iterative nature of variational approaches therefore 

imposes a heavy computational burden on the data assimilation phase of the analysis-forecast cycle, especially in the case of 195 

4DVAR. This burden is alleviated in some 4DVAR systems by performing the inner-loop minimization steps at lower model 

resolution – for example, a reduction of the horizontal resolution by a factor of 2 typically yields a factor of 8 reduction in 

wall-clock time assuming that the inner-loop time step can be halved also. Performing the inner-loops at lower arithmetic 

precision (i.e. 32 bit arithmetic versus 64 arithmetic) can lead to further cost savings. In 4DVAR, the inner-loop iterations 

involve integrations of the tangent linear (TL) and adjoint (AD) versions of the forecast model. Further reductions in 200 

computational cost can therefore also be achieved by reducing the complexity of the TL and AD models. Time-parallel 

formulations of 4DVAR based on a saddle-point algorithm also yield substantial computational savings (Fisher and Gurol, 

2017; Moore et al, 2023). 

The assimilation strategy employed also depends on the type of observations that are to be assimilated, and their distribution 

in time. In the case of a Kalman filter, while each observation can be assimilated sequentially at the associated observation 205 

time, this may not be an efficient strategy since this might require overly frequent stopping and restarting of the filter 

computations. Thus, it is often preferable to group together observations that are closely spaced in time and treat them as 

though they were available at the same time. This approach underpins the strategy of First-Guess at Appropriate Time (FGAT) 

which is commonly employed in conjunction with both ensemble approaches and 3DVAR. Such approaches necessitate the 

choice of a time-window over which the observations will be aggregated for assimilation. In between times, the forecast model 210 

is run to yield the first-guess or background for the next data assimilation cycle, so the time-window of aggregation also 

dictates how frequently the analysis-forecast cycle can be performed. For an EnKF, it is sufficient to store observation 

equivalents from each model ensemble member to calculate asynchronous cross-covariances (Sakov et al. 2010). In the case 

of 4DVAR, observations are typically assimilated at the actual time of observation. This involves integrations of the TL and 

AD models forward and backward in time. Since these are based on a linearized version of the forecast model, the validity of 215 

the linear assumption through time is an important consideration. In particular, linear instabilities can develop if appropriate 

care is not exercised. Therefore, while a long-time window in 4DVAR may be preferable so that the analysis is informed by 

more observations, this must be balanced by the validity of the linear assumptions employed in the TL and AD models, and 

the added computational burden of the longer assimilation window. 
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5 Ocean Observations 220 

While there is a common subset of observations from the global ocean observing system (GOOS) that are assimilated into 

ocean models, additional sources of data may be available for assimilation into regional ocean models that are not appropriate 

for global models. The GOOS and different types of observations available are discussed in the ETOOFS guide (Alvarez-

Fanjul et al., 2022). The mainstay of the GOOS is remote sensing observations of sea surface temperature (SST), sea surface 

height (SSH), sea surface salinity (SSS) and sea ice concentration. This is supported by the Argo network of profiling floats 225 

that provide vertical sections of temperature and salinity (and in some cases biogeochemical variables) mostly over the upper 

2000 m of the water column, although deep Argo floats below 2000 m are now also being deployed. In the tropical oceans, the 

observing system is augmented by networks of buoys that provide profiles of temperature (and in some cases salinity and 

currents) to depths of ~500 m. Observations from tagged marine mammals also provide useful information in some regions of 

the world ocean. In coastal regions, other data sources are often available that cannot be readily assimilated into global models 230 

because of the disparity in horizontal resolution. These include data from gliders and other autonomous underwater vehicles 

(AUVs), estimates of surface currents from high-frequency (HF) radars, other tagged marine mammals, moorings, drifters, 

and in some locations dedicated coastal arrays. 

All observations, regardless of their origin, must be subject to strict quality control (QC) standards before they can be 

assimilated into a model (Good et al., 2023). All operational centers employ sophisticated QC systems for flagging and 235 

rejecting erroneous observations and those of poor quality. In addition, the large volume of remote sensing observations from 

earth orbiting satellites must generally be thinned in space and time. There are three main reasons for this: first, remote sensing 

observations contain a great deal of redundancy which can be reduced by judicious thinning; second, the sheer volume of 

remote sensing observations can quickly overwhelm a data assimilation system if not appropriately thinned (particularly in 

light of the high redundancy); and lastly, accounting for correlated observation errors in data assimilation systems is technically 240 

challenging, so thinning the observations is one approach for reducing the degree of correlation. Another important aspect of 

operational data assimilation systems is the formation of so-called “super observations”. This refers to the procedure for 

combining multiple observations of the same type that fall within a model grid cell at the same observation time into a single 

datum (a super observation). This usually entails some simple averaging or aggregation procedure and is necessary in order to 

improve the numerical conditioning of the data assimilation inverse problem.  245 

The use of observations in data assimilation requires information about their uncertainties. The observation uncertainty consists 

of a component due to the instrument error and a component related to the different representation of the ocean by the 

observations and the model (for example representing different spatial and/or time scales; Janjić et al., 2018). Some observation 

types (e.g. satellite SST) are provided together with information about the expected uncertainty in each measurement and this 

information can be used directly in the data assimilation. For other observation types, estimates of the uncertainty have to be 250 

obtained from the literature. An example list of instrumental uncertainties for different observation types assimilated in a global 

ocean forecasting system is provided in Table 1 of Lea et al. (2022).    
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Since the observations are the only, albeit far from complete, measure of the true state of the ocean, they often form the basis 

for metrics that are used to monitor the performance of data assimilation systems. The statistics of the observation minus 

background (OmB) and observation minus analysis (OmA) provide information about the fit of the model to observations 255 

before and after the observations have been assimilated. The statistics of OmB and OmA provide an important diagnostic 

check on prior assumptions made about the background error and observation error covariances (Desrosiers et al. 2005). 

Inconsistencies between the actual and expected error statistics can be used to retune the data assimilation system, regardless 

of the data assimilation methodology employed. In variational data assimilation systems, continuous monitoring of the cost 

function and cost function gradient also provide useful diagnostics of system performance. The impact of different components 260 

of the observing system can also be quantified and monitored in various ways. This is commonly done in terms of the impact 

on the skill of forecasts that are initialized from the data assimilation analyses. By continuously monitoring the impact of each 

component of the observing system on forecast skill, data streams that consistently degrade the forecast skill can be flagged 

(and removed), and the degradation of any data stream over time can be identified. 

6 Current status of data assimilation in operational forecasting systems 265 

An overview of operational ocean data assimilation systems and their characteristics is provided in Figure 1 for global systems 

and Figure 2 for regional and coastal systems. Not all operational systems are covered here, but the figures provide information 

about the main choices which have been made by some of the existing operational centers producing near-real time forecasts 

in the configuration of their data assimilation schemes. The information represents the current operational status, but all centers 

are continually developing and improving their systems, and many have research configurations which are more sophisticated 270 

than those presented.  

In general, the global systems use somewhat simpler DA algorithms (though they are still complex in their implementation of 

those algorithms) than the regional and coastal systems, the exception being the BoM system which uses a hybrid-EnKF with 

48 dynamic members and 144 stationary low-mode members (Brassington et al., 2023). Many global forecasting groups use a 

3DVAR-FGAT algorithm (Barbosa Aguiar et al., 2024; Zuo et al., 2019; Cummings and Smedstad, 2013; Storto et al., 2016; 275 

Ravichandran et al., 2013) with some groups using a SEEK filter or LESTKF with a static ensemble (Lellouche et al., 2018; 

Smith et al., 2016; Li et al., 2021) . The reason these algorithms are generally simpler is largely due to the large number of 

grid points, especially in the higher resolution global systems, which restricts the options for more expensive algorithms when 

timely delivery of forecasts is the main goal. Some groups are testing more sophisticated schemes in research mode though, 

including those which make use of ensembles, e.g. MOI are testing LETKF, Met Office and ECMWF are testing hybrid-280 

3DEnVAR schemes (Lea et al., 2022; Chrust et al., 2024), and JMA are implementing 4DVAR (Fujii et al., 2023). The 

observations assimilated in these systems are fairly consistent across the different systems, with the main difference being 

whether the systems include sea-ice or atmosphere components. Some of the DA systems are focussed purely on the ocean, 

many include a sea-ice component, and some now run with a coupled atmospheric component, though these systems all still 
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use so-called “weakly” coupled DA where the DA in the atmospheric and ocean/sea-ice components are run separately, despite 285 

using coupled models (see for example Guiavarch et al., 2019 and de Rosnay et al., 2022). There is a large range of time 

windows used by the different systems, with the most common time window being 1 day, a short 6-hour window used in the 

Met Office coupled DA system (to match the time window in the atmospheric DA; Guiavarc'h et al., 2019), and with longer 

time windows of 5-7 days used by some systems. 

There is a wider range of DA algorithms employed in regional and coastal forecasting systems from EnOI/static SEEK filters 290 

(Carvalho et al., 2019; Ji et al., 2017; Smith et al., 2021; Escudier et al., 2022) and 3DVAR-FGAT schemes (Rahaman et al., 

2018; King and Martin, 2021; Coppini et al., 2023) through to the more sophisticated EnKF (Sakov et al. 2012b, Röhrs et al., 

2023), LESTKF (Brüning et al., 2021) and 4DVAR algorithms (Moore et al., 2023; Iversen et al., 2023; Hirose et al., 2019; 

Lee et al., 2018). Many of these regional systems also include biogeochemical DA (see Fennel et al., 2022 for a recent review), 

and some include coupled sea-ice DA (e.g. Sakov et al., 2012b). The range of observations assimilated is also quite varied 295 

with some systems only assimilating SST data while others include the full range of available observations including HF radar, 

gliders and biogeochemical data from satellites and in situ platforms. 

 

Figure 1: Operational global ocean data assimilation systems. For each institute, the following are listed: the DA algorithm (* 

indicates fixed basis version of the algorithm) and software; DA resolution and time window; Earth system components (O = physical 300 
ocean, SI = sea-ice, A = atmosphere, W = surface waves, BGC = ocean biogeochemistry, L=land); observations assimilated (SST = 

sea surface temperature, SLA = sea level anomaly, SIC = sea-ice concentration, SID = sea-ice drift, T/S = profiles of temperature 

and salinity, OC = satellite ocean color, BGC = biogeochemical profile data, HFR = HF radar). 
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 305 

Figure 2: Operational regional and coastal ocean data assimilation systems. See description for Figure 1. 

7 Future directions 

Operational ocean forecasting systems are under constant development, including the data assimilation component. There is a 

continued push towards higher resolution at many centers and an increase in the use of ensembles both for improved data 

assimilation and for providing forecast uncertainty information to users. These directions both require significant additional 310 

computational resources so improving the computational efficiency of data assimilation software, particularly on new 

computer architectures like GPUs, is important to allow more flexibility in the choice of algorithms and resolutions used. 

While there is evidence that increasing ensemble size provides greater improvements in forecast skill once the important 

processes are resolved, rather than further increasing model resolution (Thoppil et al., 2021), there is also continued research 

in improving assimilation methodology to allow sub-mesoscale processes to be constrained where there are sufficient 315 

observations (Ying, 2019, Jacobs et al., 2023). New observing systems are being developed and launched, in particular wide-

swath altimeter missions such as SWOT (Morrow et al., 2019) which allow improved constraints on mesoscale ocean forecasts 

(King et al., 2024; Liu et al., 2024; Benkiran et al., 2024). Treatment of spatially correlated observation errors is important to 

allow the most information to be extracted from such data, and various groups are developing methods to represent these in 

data assimilation systems (e.g. Guillet et al., 2019; Yaremchuk et al., 2024). Coupled ocean/atmosphere data assimilation is 320 
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also an evolving area (de Rosnay et al., 2022) with the development of more strongly coupled data assimilation algorithms 

requiring the use of consistent software across the different earth system components. The use of machine learning in the ocean 

forecasting process is also developing quickly with various applications in the context of data assimilation being tested and 

implemented (Heimbach et al., 2024).  

 325 
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