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7 Abstract.

8 A new conceptual framework for the assessment of the physical state of the general natural water basin was introduced and

9 then tested for the Baltic Sea. The model includes the analysis of mutual variability of ocean heat content (OHC), freshwater
10 content (FWC), subsurface temperature and salinity, atmospheric forcing functions along with salt transport across the open
11 boundaries as well as river runoff. The random forest model was used as the main analyses tool to highlight statistical
12 dependencies between state variables and potential forcing factors. Results show a distinct ocean warming trend in the Baltic
13 Sea over a 30-year period, which covaried at interannual scale with air temperature at 2-meter height, evaporation and wind
14 stress magnitude. Interannual changes of FWC were explained by large volume saline water inflows, net precipitation and
15 zonal wind stress. This framework offers a new perspective of the potential impact of a shallowing mixed layer depth,
16 resulting from sustained sensible heat flux changes at the air-sea interface, on salt export and the overall reduction of FWC in
17 the Baltic Sea. The study brought up that interannual variations of temperature and salinity within the vertically extended
18 halocline layer are major contributors to the OHC and FWC changes in the Baltic Sea.
19
20 Short Summary. In the last three decades, the Baltic Sea has experienced an increase in temperature and salinity. This trend
21 aligns with the broader pattern of atmospheric warming. The significant warming and the yearly fluctuations in the ocean's
22 heat content in the Baltic Sea are largely explained by subsurface temperature variations in the upper 100-meter layer, which
23 includes the seasonal thermocline and the permanent halocline. These fluctuations are influenced by factors such as air
24 temperature, evaporation, and the magnitude of wind stress. The changes in the sea's liquid freshwater content are primarily
25 driven by salinity shifts within the halocline layer, which extends vertically from 40 to 120 meters depth. However, salinity
26 changes in the upper layer play a minor role in the yearly variability of the freshwater content. The inflow of saline water,
27 overall precipitation, and zonal wind stress are the principal factors affecting the freshwater content changes in the Baltic
28 Sea.
29



30 1 Introduction

31 Amidst global warming, increased air temperatures have led to higher ocean water temperatures and the melt of land-based
32 ice (IPCC, 2021). The former has caused a rise in Ocean Heat Content (OHC), while the latter has introduced significant
33 amounts of freshwater into the ocean, contributing to the rise in global sea levels. In 2023, there was an exceptional increase
34 in global sea surface temperature over the period 1973-2024 (McGrath et al., 2024), and OHC reached unprecedented levels
35 (Cheng et al., 2024). In the Baltic Sea, the temperature trends for the period 1850-2008 show fast warming at the surface
36 (~0.06 K decade™) and bottom (>0.04 K decade™), and slow in the intermediate layers (< 0.04 K decade™) (Dutheil et al.,
37 2023). Surface warming has progressively increased over time, primarily due to the sensible heat flux and latent heat flux
38 (Kniebusch et al., 2019a). Trends in Fresh Water Content (FWC) are not as consistent globally as those of OHC (Boyer et al.,
39 2007), although the rise in global sea level is widely acknowledged (Frederikse et al., 2020). Salinity patterns differ across
40 various ocean regions of the world (Skliris et al., 2014), with the North Atlantic—North Pacific salinity contrast increasing by
41 5.9% + 0.6% since 1965 (Lu et al., 2024). At a regional scale in the Baltic Sea, FWC has shown a significant downward
42 trend over the last 30 years (Raudsepp et al., 2023). Windsor et al. (2001) demonstrated that long-term variations in the
43 freshwater content (FWC) of the Baltic Sea are closely linked to accumulated changes in river runoff. Building on this work,
44 Rodhe and Winsor (2002) concluded that the recycling of Baltic Sea water at the junction between the Baltic Sea and the
45 North Sea is a crucial process in determining the sea’s salinity. An increase in freshwater supply to the Baltic Sea will

46 intensify water recycling, resulting in lower salinity, and vice versa.

47 The analysis of the physical state of natural water basins typically focuses on the evolution and spatial distribution of
48 temperature and salinity and corresponding uncertainty estimations (Lindestroem et al. 2012), which are essential ocean
49 variables (EOV). These variables are four dimensional and therefore provide spatially and temporarily resolved description
50 of the state of the water body. Meanwhile, OHC and FWC are vital integral characteristics of the ocean, indicative of a water
51 body's energy and mass, respectively. While OHC is a well-established indicator in ocean and climate research, its

52 counterpart, ocean FWC, has received less attention.

53 We propose a new conceptual framework for assessing the physical state of the Baltic Sea by integrating multiple physical
54 and statistical approaches (Fig. 1). The framework is based on two main physical indicators: OHC and FWC. These
55 indicators are used to describe the energy and mass balance of the Baltic Sea. The study identifies the major variables

56 affecting these indicators, including subsurface temperature, salinity, atmospheric forcing factors, and salt transport.

57 The framework follows a three-stage process: time-series analysis, depth-based variability analysis and causal relationships
58 using machine learning. The initial phase consists of calculating the time series of OHC and FWC for the entire Baltic Sea.
59 This provides insights into long-term trends and interannual variability. In basins covered partially by sea ice, the annual

60 mean ice extent (MIE) is considered an important integral characteristic. The next step examines the horizontally averaged
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vertical distribution of temperature (for OHC) and salinity (for FWC) to determine which depth ranges contribute the most to
their variations. While this does not directly attribute causal links, the vertical profiles of temperature and salinity provide
strong indications of which forcing factors might be responsible for changes in OHC and FWC. The final stage integrates
forcing functions and ocean state characteristics to identify causal relationships. A Random Forest (RF) model is employed
to highlight statistical dependencies between oceanic state variables and external forcing mechanisms. This machine-learning

approach enables the identification of general patterns in the temporal evolution of the Baltic Sea's physical state.

Our proposed framework integrates the analysis of OHC and FWC by considering both their bulk integral values and their
vertical distributions, allowing for the identification of key depth ranges contributing to their variability — which goes beyond
other similar frameworks. Unlike the GOOS EOV framework (https://goosocean.org/), which focuses on structured global
ocean monitoring without machine learning-based causal analysis, our approach explicitly incorporates machine learning to
identify potential drivers of variability. Compared to the IPCC Climate and Ocean Monitoring Framework (IPCC AR6
(2021) Ocean Observations Chapter https://www.ipcc.ch/report/ar6/wgl/), which relies on dynamical climate models for
global-scale processes, our framework is designed for regional-scale Baltic Sea analysis, offering a more localized and
detailed assessment. Finally, while the NASA Salinity and Heat Budget Analysis (NASA Salinity Budget Project
https://podaac.jpl.nasa.gov) is largely empirical and focused on global salinity and heat transport, our approach provides a
structured three-stage methodology, incorporating not only empirical analysis but also a cause-and-effect exploration using
machine learning. This makes our framework uniquely suited for regional climate monitoring and actionable insights into the

physical state of the Baltic Sea.

This conceptual framework is designed as an indicator-based approach relevant to policymakers. It enables the monitoring of
climate change impacts on the Baltic Sea while maintaining a balance between scientific rigor and practical accessibility. The
framework is not meant to serve as a comprehensive dynamical model but rather as a scientifically robust tool for assessing

the state of the Baltic Sea and guiding regional management decisions.
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86 Figure 1: Conceptual Scheme of the Baltic Sea State parameters.

87 The study aims to evaluate a framework for assessing the physical state of the Baltic Sea by integrating annual mean values
88 of OHC, FWC, subsurface temperature and salinity, atmospheric forcing functions, salt transport, and river runoff. The
89 objective is to use a data-driven RF approach as the primary analysis tool to parse out nonlinear relationships and feature
90 importances from a broad dataset. This study introduces an integrative, basin-wide approach, defining the entire Baltic Sea
91 as a single water body for analysis. It computes a time series of total OHC and FWC for the whole sea. Rather than focusing
92 solely on local variations, the methodology emphasizes these integrated indices as representations of the sea’s overall state.

93 This holistic integration marks a shift from the segmented or localized analyses of the past.

94 The Baltic Sea is recognized for its spatially pronounced heterogeneous structure. Its various subregions may exhibit distinct
95 temporal variations in key state variables and overall dynamics, making it a complex environment for testing the conceptual
96 framework. The Baltic Sea, a shallow marginal sea in northeastern Europe, is characterized by its hydrographic fields and
97 sea ice conditions (Leppéranta and Myrberg, 2009). Salinity levels are affected by saline water inflows from the North Sea
98 through the Danish straits, riverine freshwater inputs, and net precipitation (Lehmann et al., 2022). Major Baltic Inflows,
99 which introduce saline and oxygen-rich water, are sporadic and unpredictable (Mohrholz, 2018). Temperature fields are
100 influenced by the heat exchange with the atmosphere. The residence time of the Baltic Sea's water is several decades long
101 (Meier et al., 2022). The vertical salinity stratification is defined by the halocline's depth, featuring a well-mixed surface

102 layer and a slightly stratified layer beneath. Water temperature plays a crucial role in forming secondary stratification related



103 to the temperature of the upper mixed layer. Seasonal temperature cycles lead to partial freezing of the Baltic Sea in winter.
104 Changes in sea ice extent over time are a vital indicator of climate change for the area. A reduction in maximum ice extent
105 impacts the sea's vertical stratification and the seasonal trends in ocean heat and freshwater content (Raudsepp et al., 2022;
106 2023). Despite global warming, there has not been a significant increase in the Baltic Sea's relative sea level (Ranasinghe et

107 al., 2021), which instead shows a strong seasonal cycle.

108 2 Data and methods

109 Table 1: Product Table

Product | Product ID & type Data access Documentation
ref. no.
1 BALTICSEA MULTIYEAR | EU Copernicus Marine Quality Information Document (QUID):
PHY 003 011; Numerical Service Product (2023); Panteleit et al. (2023);
models Product User Manual (PUM):
Ringgaard et al. (2024)
2 ERAS; Numerical models Copernicus Climate | Product reference:
Change Service (2023) Hersbach et al., 2023

Journal article:
Hersbach et al., 2020

3 E-HYPE; Numerical models SMHI Donnelly et al., 2016

110 2.1 Oceanographic and atmospheric data

111 The Baltic Sea physics reanalysis multi-year product (BAL-MYP; Table 1 product reference 1) is derived from the ocean
112 model NEMO v4.0 (Gurvan et al., 2019). It assimilates satellite observations of sea surface temperature (SST) (EU
113 Copernicus Marine Service Product, 2022) and in-situ temperature and salinity profiles from the ICES database (ICES Bottle
114 and low-resolution CTD dataset, 2022). The model data is provided on a grid with a horizontal resolution of 1 nautical mile,
115 including 56 vertical layers, covering the entire Baltic Sea and the transition zone to the North Sea. The dataset covers the

116 period from 1993 to 2023, with the model setup detailed in the Product User Manual (PUM, Ringgaard et al., 2024).

117 The BAL-MYP has been extensively validated, as documented in the Quality Information Document (QulD; Panteleit et al.,
118 2023), focusing on the period from Ist January 1993 to 31st December 2018. Additionally, the BAL-MYP data were
119 evaluated using a clustering method with the K-means algorithm (Raudsepp and Maljutenko, 2022), which provided insights
120 into the reanalysis accuracy by categorising errors (Lindenthal et al., 2023). Fifty-seven percent of the data are clustered with
121 a bias of dS=-0.40 g/kg and dT=-0.02 °C, encompassing 57% of all data points with RMSE S=0.92 g/kg and T=0.54 °C.

122 These points are distributed throughout the Baltic Sea. Clusters with high positive and negative temperature biases account



123 for 11% and 8% of total points, respectively, with marginal salinity biases and relatively even spatial distributions across the
124 Baltic Sea. Twenty-six percent of the points have low temperature but high salinity errors, both negative and positive,
125 predominantly located in the southwestern Baltic Sea, indicating occasional underestimation or overestimation of the

126 inflow/outflow salinity.

127 OHC offers a comprehensive view of oceanic heat storage, crucial for evaluating climate change impacts, energy budgets,
128 and long-term trends (Forster et al., 2024). OHC directly reflects Earth's energy imbalance, making it a key metric for
129 tracking global warming, unlike basin-averaged temperature, which lacks a direct connection to energy budgets (von
130 Schuckmann et al., 2016, 2023). Consequently, OHC is prioritized in climate models and international assessments (IPCC,
131 2019) due to its direct relationship with anthropogenic forcing and its predictive value for future climate scenarios. The daily
132 OHC has been computed for each model grid cell from reanalysis (product reference 1), following the methodology of
133 Meyssignac et al. (2019)

134 OHC = p *cp * (T +273.15) (1),

135 where p is the density of seawater calculated following the TEOS10 (IOC et al. 2010), cp is specific heat capacity calculated

136 as a third order polynomial function of salinity and temperature according to Millero et al.(1973), T is daily temperature.
137

138 Ocean FWC is deemed more significant than mean salinity for understanding climate dynamics and ocean processes. FWC
139 provides a holistic measure of freshwater storage and its effects on ocean circulation, climate, and sea-level rise (Solomon et
140 al., 2021; Fukumori et al., 2021). It directly measures freshwater inputs (e.g., ice melt, river runoff, rainfall) or losses (e.g.,
141 evaporation), whereas mean salinity only indicates the average salt concentration, ignoring volume (Hoffman et al., 2023). A
142 minor salinity change over a large water volume could signify a substantial freshwater flux, which mean salinity alone would

143 not reveal (Schauer and Losch, 2019). The FWC was calculated at each grid point and day as Boyer et al. (2007)
144 FWC = p(Sref, Tref, p) / p(0, Tref,p ) - (Sref-S) /S (2)

145 The three-dimensional temperature (Tref) and salinity (Sref) fields are temporal averages over the period of 1993-2023. A
146 detailed description of the calculation procedure is available in Raudsepp et al. (2023). The OHC and FWC were calculated
147 by spatially integrating the gridded OHC, (1), and FWC, (2), over the Baltic Sea, and then the annual mean OHC and FWC

148 values were calculated from these daily values.

149 The Mixed Layer Depth (MLD), also referred to as the Upper Mixed Layer (UML), was included in the analysis using data
150 from a multi-year reanalysis product (Table 1, Ref. 1). The MLD was calculated based on density stratification following the
151 method of de Boyer Montégut et al. (2004), which defines MLD as the depth at which seawater density deviates from the
152 reference density at 10 m depth by a specified threshold. For the Baltic Sea, this threshold was adjusted to 0.03 kg/m?* to

153 better represent the characteristics of the regional upper mixed layer (Panteleit et al., 2023).



154 Atmospheric data were obtained from the ERAS reanalysis (Table 1 product ref 2) for the period 1993-2023. The parameters
155 included 2-meter air temperature, total precipitation, evaporation, wind stress magnitude, and the x- and y-components of
156 wind stress, along with total cloud cover and surface net solar radiation. The time series for the annual mean values of these

157 atmospheric parameters were computed as horizontal averages across the Baltic Sea region.

158 2.2 Random Forest

159 Random Forest (RF) is an ensemble learning method predominantly used for classification and regression tasks (Breiman,
160 2001). It functions by building multiple decision trees during the training phase and outputs the class that is the mode of the
161 classes (classification) or the mean prediction (regression) of the individual trees. This method enhances accuracy and helps
162 prevent overfitting, thus making it resilient to noise in the dataset. RF proves to be highly effective in analyzing complex
163 interactions between variables, such as the relationships between marine state variables and atmospheric parameters. Its
164 effectiveness is due to its capability to manage high-dimensional data and its resistance to outliers and noise, which are
165 prevalent in environmental datasets. Additionally, RF is adept at detecting nonlinear relationships between predictor

166 variables (atmospheric parameters) and response variables (marine state variables), which linear models often overlook.

167 In the context of an RF model, feature importance is a technique that identifies the most influential input features (variables)
168 in predicting the output variable. The importance of each feature is determined by the decrease in model accuracy when the
169 data for that feature is permuted, while all other features remain unchanged. If permuting a feature's values significantly
170 increases the model's error, that feature is deemed crucial for the model's predictions. This approach aids in discerning the
171 contribution of each feature to the model's decision-making process and in identifying key atmospheric parameters that
172 significantly impact marine state variables. A positive value for a feature implies that permuting that predictor variable's
173 values raises the model's prediction error, indicating the variable's importance for the model’s predictive accuracy. A higher

174 positive value suggests greater reliance on that variable by the model.

175 In this study we have trained the four different RF models to fit the OHC and FWC timeseries with the hyperparameter
176 configurations shown in Table 2. Two models are trained to predict the OHC and FWC values from the set of the
177 meteorological variables (var suffix) and two from the horizontally averaged temperature and salinity profiles (zax suffix).
178 To optimize the performance of the RF models while ensuring robustness and generalizability, a set of hyperparameters was
179 selected based on sensitivity analysis conducted for number and depth of the trees (Fig A2). The minimum leaf size (MinLS)
180 was set to 1, allowing the trees to fully grow and capture complex data patterns. The number of predictors to sample at each
181 split (Pred2Samp) was dynamically determined as one-third of the total number of predictors, tackling a balance between
182 feature randomness and predictive strength. This approach promotes diversity among trees while preventing excessive
183 correlation. The number of trees (NumTrees) in each RF model was set to 100, providing sufficient ensemble stability while
184 maintaining computational efficiency. Since this study employs RF models to investigate nonlinear relationships between

185 predictors and state variables, we use the entire dataset as the training set to maximize the models' ability to learn patterns.

7



186 To further enhance predictive reliability, assess uncertainty, and evaluate the stability of both predictions and feature

187 importances, an ensemble of 150 independently trained RF models was constructed.

188 We employed MATLAB's TreeBagger function to assess the feature importance of atmospheric predictors on marine state
189 variables. The "OOBPermutedPredictorDeltaError’ method, a robust metric from MATLAB's TreeBagger, quantifies each
190 predictor's importance via the out-of-bag (OOB) prediction error. This involves permuting each variable's values across OOB
191 observations for each tree. The resulting change in prediction error from these permutations is calculated for each tree. These
192 measures are averaged across all trees and normalised by the standard deviation of the changes, providing a standardised
193 score that highlights the variables with the most significant impact on predictive accuracy. Averaging the feature importance
194 scores across all 150 models minimises the noise and variability from any single model's training, offering a more consistent

195 and dependable indication of each atmospheric parameter's contribution to predicting marine state variables.

196 Table 2. Hyperparameter configurations for different Random forest models

Model NumTrees MinLS Pred2Samp Ens
RF_OHCzax 100 1 14 150
RF_OHCvar 100 1 3 150
RF FWCzax 100 1 14 150
RF FWCvar 100 1 4 150
197
198

199 3 Results

200 Both OHC and FWC display a statistically significant linear trend, as shown in Figure 2. Using a z-score time series allows
201 for the comparison of trends per year (trend*) and data distributions without the influence of their units. OHC shows an
202 increasing trend* of 0.089+0.025, while FWC exhibits a decreasing trend* of -0.092+0.023, both comparable in magnitude
203 (Table 3). The corresponding absolute values are 0.34+0.095 W/m? for OHC and -36.99+9.20 km®/year for FWC (Table 3).
204 Between 1993 and 2003, OHC and FWC varied similarly, both rising and falling concurrently (blue dots in Fig. 2). After this
205 period, their patterns diverged (yellow and red dots in Fig.2). Interannual variations of the annual mean sea ice extent and
206 OHC are strongly correlated but in opposite phases. Among the forcing functions, the 2-meter air temperature shows a
207 distinct positive trend (Fig. 2), albeit weaker than the trends of OHC and FWC (Table 3). The air temperature over the Baltic
208 Sea area has risen with trend* of 0.074+0.031 (Table 3). Surface net solar radiation has a weaker but still significant positive

209 trend* of 0.058+0.035, and the evaporation time series shows a negative trend* of -0.04140.039 (Fig. 2, Table 3). Other



210 atmospheric variables did not exhibit statistically significant trends (Fig. 2). Correlation coefficients among various
211 atmospheric datasets were generally low (Table 4). The two highest correlation coefficients, 0.76 and 0.73, are between wind
212 stress magnitude and its zonal component, indicating a predominance of westerly airflow over the Baltic Sea, and between
213 2-meter air temperature and surface net solar radiation, respectively. The low correlations suggest a weak statistical
214 relationship between the annual mean atmospheric parameters, supporting the inclusion of all forcing functions in the RF

215 model.

216 Table 3. Linear annual trend values of z-scored time series (trend*), standard deviation (STD), linear trend of physical value
217 (Unit/year, except for OHC) and mean value (mean) of original time series. OHC: ocean heat content, FWC: fresh water
218 content, 72: 2 metre temperature, TP: total precipitation, EVAP: evaporation, Wstr: windstress, WUstr: windstress u
219 component, WVstr: windstress v component, 7CC: total cloud cover , SSR: surface net solar radiation, RNF" river runoff.

Variable: OHC FWC T2 TP EVAP  Wstr WUstr  WVstr TCC SSR  RNF
Unit MJ/m?  km? °C m/y m/y N/m? N/m? N/m? 1 W/m? m’/s

0.089 + -0.092 £ 0.074 =+ 0.032 + -0.041 + -0.0016 0.013 =+ 0.015 =+ -0.0077 0.058+ 0.0073 =+
trend*:  0.025 0.023 0.031 0.04 0.039 +0.0418 0.041 0.041 +0.0417 0.035 0.0417

STD: 122.02 402.00 0.73 0.071 0.041 0.0056 0.0100 0.0072 0.0226 3.16 1,687.92

0.344 -8.85 1.32 1.05 -1.75
trend: (W/m?) -36.987 0.054 0.0023 | -0.0016 x107% x10™* x10™* x10™* |0.18 12.31
mean: 60.20 -63.73  7.65 0.73 -0.55 0.0999 0.0244 0.0138 0.6493 ' 113.92 17,807.77

220

221 Table 4. Correlations coefficients (lower triangle) and StandardErrors (Gnambs, 2023) (upper triangle) of atmospheric
222 parameters. Correlation coefficients which pass two-tailed t-test at 95% confidence are in bold. OHC: ocean heat content,
223 FWC: fresh water content, 72: 2 metre temperature, TP: total precipitation, EVAP: evaporation, Wstr: wind stress magnitude,
224 WUstr: wind stress u component, WVstr: wind stress v component, 7CC: total cloud cover , SSR: surface net solar radiation.

72 P EVAP Wstr WUstr WVstr 7CcC SSR

72 0.19 0.17 0.17 0.15 0.14 0.15 0.09
P 0.12 0.18 0.17 0.18 0.18 0.13 0.17
EVAP -0.28 -0.18 0.19 0.18 0.16 0.19 0.15
Wstr 0.31 0.35 -0.10 0.08 0.15 0.18 0.19
WUstr 0.47 0.25 0.16 0.76 0.15 0.16 0.18
WVstr 0.48 0.16 0.37 0.43 0.43 0.19 0.19
7CcC -0.43 0.58 -0.04 -0.20 -0.42 -0.13 0.09

SSR 0.73 -0.31 -0.43 0.07 0.18 0.11 -0.73
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226 Figure 2: Trend analysis and probability distribution functions (PDFs) of the annual time series of standardized
227 (*z-scores) Baltic Sea state and meteorological parameters. To the left of the dashed line, the period-normalized annual
228 trend values (multiplied by the period length in years i.e. 30) are displayed as red (positive) and blue (negative) bars
229 with corresponding p-values (95% confidence level), along with whiskers representing +1 standard error (x ticks) and
230 the 95% uncertainty range (+ ticks). On the right side from the dashed line, probability density functions (PDFs) are
231 shown as the solid lines for the standardized time series, which are represented by colored dots. The color of the dots
232 represents the year on a common color scale shown at the OHC variable.
233 For each dashed axis following variable stands OHC: ocean heat content, FWC: fresh water content, 72: 2 metre
234 temperature, 7P: total precipitation, EVAP: evaporation, Wstr: windstress, WU/WVstr,: windstress u and v component,
235 TCC: total cloud cover , SSR: surface net solar radiation, RNF" river runoff.

236 In analyzing OHC variations, we use a RF model. This model employs horizontally averaged annual temperature values at
237 each depth level, derived from the depth levels of a multi-year product (Table 1 product ref 1), as input features. The RF
238 model finely replicates the annual OHC time series (Fig 3a), with high correlation coefficient (0.986) and a RMSD of the
239 standardized time series at 0.0016. However, it did not capture the extreme OHC event in 2020 or the low OHC extreme in
240 1996 (Fig. 3). Feature importance is significant within a depth range of 10-80 meters (Fig. 3b), with two peaks at depths of
241 18 and 60 meters, aligning with the average depths of the seasonal thermocline and the permanent halocline, respectively.
242 This suggests that interannual OHC variations are mainly influenced by temperature changes within these layers. Subsurface
243 temperatures from 1993 to 2023 indicate warming trends of approximately 0.06 °C/year across all depths (CMS 2024a).
244 From 1993 to 1997, deep water temperatures remained relatively low (below 6 °C). Since 1998, deeper waters have warmed,
245 with temperatures above 7 °C occupying the layer below 100 meters since 2019. The water temperature below the halocline
246 has risen by about 2 °C since 1993, and the cold intermediate layer's temperature has also increased during the 1993-2023
247 period.
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248 A similar method is employed to elucidate the inter-annual fluctuations of FWC, utilizing horizontally averaged salinity at
249 each depth level. The model's precision is slightly lower (Correlation: 0.973, RMSD of standardized time series: 0.004)
250 compared to that for OHC. The model consistently underperforms in predicting the FWC peaks, encompassing both the lows
251 and highs (Fig. 3¢). The most notable features cover the depth range of 40-120 meters (Fig. 3d), coinciding with a halocline
252 layer and its vertical extensions to both shallower and deeper depth. The salinity levels at the bottom layer are of secondary
253 importance to the inter-annual variations of FWC in the Baltic Sea. The salinity in the top 25-meter stratum exerts a minimal
254 influence on FWC changes. The interannual variability of salinity in the upper stratum is minor relative to the deeper
255 stratum. The salinity gradient ascends steadily from zero at a depth of 25 meters to 0.04 g/kg annually at 70 meters (CMS
256 2024b). The most marked trend, 0.045 g/kg per annum, occurs within the expanded halocline layer extending from 70 to 150
257 meters. Notably, there is a slight dip in the salinity trend to 0.04 g/kg per annum between the depths of 150 and 220 meters.
258 While this reduction is slight, it indicates that salt influx into the expanded halocline layer is more significant than into the

259 deeper strata. A salinity trend of 0.05 g/kg annually is detected in the deepest stratum of the Baltic Sea.

11
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Figure 3: OHC* and FWC* ensemble predictions (ens. mean as blue dots) using the horizontal average salinity and
temperature profiles (a), (b). The prediction features importance, with ensemble spread (1 STD shown with "+" marker),
for each depth in the upper 120 m layer shown on ¢) and d) and for full depth range in the upper-right inset panels. All
variables are z-scored.

265 Building a RF model targeting OHC and FWC timeseries with atmospheric forcing functions reveals the 2-meter air

266 temperature as the most significant contributor (Appendix 1). This correlation is physically plausible for OHC but less so for

267 FWC. The 2-meter air temperature affects the air-sea heat exchange via the sensible heat flux component. To further explore

268 the declining FWC trend, we examined interannual changes in the annual average upper mixed layer depth (MLD). In the

269 Baltic Sea, MLD varies widely across different areas and seasons. A shallowing of MLD is observed in the Baltic Proper and

270 to some extent in the Bothnian Sea, while a MLD deepening is noted in the Bothnian Bay, the Gulf of Finland, and the Gulf

271 of Riga. Typically, the Baltic Sea's stratification is influenced by salinity, although a seasonal thermocline forms across the

272 sea. In the northern and eastern basins, the dispersal of river water during spring and summer leads to the development of the

12



273 seasonal pycnocline. Conversely, in the southern Baltic Sea, the spread of river water is mostly restricted to the coastal areas,

274 so the mixed layer is less affected by the seasonal halocline.

275 We performed test experiments with the RF model, incorporating the upper mixed layer (UML) as an additional feature. We
276 determined the annual mean UML depth across the Baltic Sea and specifically for the Eastern Gotland Basin. The decline in
277 the UML depth was more significant in the Eastern Gotland Basin compared to the entire Baltic Sea. The UML depth in the
278 Eastern Gotland Basin decreased from 30 meters in 1993 to 22 meters in 2023. The MLD feature became more significant
279 than the 2-meter temperature in explaining the FWC when we considered the UML depth in the Eastern Gotland Basin.
280 However, the results were contentious when we applied the average UML depth for the entire Baltic Sea. An increase in the
281 2-meter temperature may cause a shallower mixed layer, potentially reducing the mixing between the surface freshwater

282 layer and the denser saline layer beneath.

283 By eliminating trends, we utilized RF models to identify the primary characteristics of the interannual fluctuations of OHC
284 and FWC. The ensemble mean forecast of OHC effectively captures these interannual changes (Fig. 4a), evidenced by a
285 correlation coefficient of 0.9012 and a RMSD of 0.3432. Factors such as 2-meter temperature, wind stress, and evaporation
286 significantly influence the interannual variability of OHC (Fig. 4c). Additionally, total cloud cover and solar radiation have a

287 minor impact on the shape of OHC.

288 In the FWC model, we incorporated bottom salinity from the Bornholm Basin as a supplementary feature. The direct
289 calculation of salt transport from model data across a section at the Baltic Sea entrance is error-prone. Utilizing daily average
290 cross-section velocities and salinities overlooks high-frequency fluctuations with considerable residual salt flux. The model's
291 precision in predicting accurate salinity levels at the Baltic Sea's entrance is quite low (Lindenthal et al., 2024). Time series
292 of bottom salinity changes in the Arkona and Bornholm Basins facilitate the tracking of the intermittent nature of water
293 inflow and outflow events. The Arkona Basin, being relatively shallow, is known for its dynamic nature regarding volume
294 and salt transport. Here, bottom salinity reflects the salinity shifts caused by inflow and outflow variations at the Baltic Sea
295 entrance. These variations mask the large volume inflows chiefly responsible for the Baltic Sea's salt influx, thus not
296 significantly affecting the Arkona Basin's bottom salinity over time. Conversely, the Bornholm Basin's greater depth means
297 its bottom salinity is less affected by the upper layer's varying salinity water movements. Hence, the Bornholm Basin's
298 bottom salinity serves as a more accurate indicator of the Baltic Sea's salt inflow. We also factored in the annual average

299 river runoff (Table 1 product ref 3) into the Baltic Sea in our RF model.

300 The ensemble mean predictions of the FWC are marginally less precise, with a correlation coefficient of 0.8994 and a root
301 mean square difference of 0.3624. Notable peaks in the FWC occurred in 1993, 2002, and 2013, each followed by a swift
302 decline in subsequent years (Fig. 4b). The bottom salinity in the Bornholm Basin, serving as an indicator for salt flux into the
303 Baltic Sea, along with total precipitation and the zonal wind component, are the primary factors influencing the FWC's

304 interannual variations (Fig. 4d). Riverine freshwater discharge does not impact the FWC's interannual variations. A reduction
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305 in FWC is associated with an increase in water salinity. The rise in the Baltic Sea's salinity is attributed to the transport of
306 saline water through the Danish straits. The highest values of bottom salinity align with the Major Baltic Inflows of 1993,
307 2002, and 2014.
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309 Figure 4: Time series of detrended OHC* (a) and FWC* (b) ensemble predictions (ens. mean as blue dots) using RF
310 ensembles. Ensembles of corresponding models feature importances with ensemble spread ("+" markers corresponding
311 to 1 STD) shown on (c) and (d) for OHC and FC respectively. All variables are z-scored. OHC: ocean heat content,
312 FWC: fresh water content, 72: 2 metre temperature, TP: total precipitation, EVAP: evaporation, Wstr: windstress,

313 WU/WVstr: windstress u and v component, TCC: total cloud cover, SSR: surface net solar radiation, RNF" river runoff,
314 sobBor: bottom salinity in the deepest location of the Bornholm basin.

315 4. Discussion and Conclusions

316 We proposed a new conceptual framework in which the Baltic Sea's state is defined by two main factors: OHC and FWC.
317 OHC and FWC are proposed as key descriptors of the Baltic Sea’s physical state because they encapsulate the overall
318 thermal and haline content of the entire basin. While temperature and salinity at specific locations or layers provide detailed
319 information, OHC and FWC offer a high-level integration of those details. This integration is particularly useful for
320 monitoring long-term trends and basin-wide changes, which is why we argue that OHC and FWC effectively define the

321 large-scale physical state.
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322 We employed the RF model (Breiman, 2001) to link the atmospheric and hydrologic variables with the variability of OHC
323 and FWC. Our analysis across the entire Baltic Sea reveals the direct impact of atmospheric forcing on ocean warming.
324 Moreover, this framework provides new insights into the role of salt import/export in FWC's interannual variability, and
325 draws on the basin-wide decline of FWC, elevating the potential role of a flatting MLD from long-term sensible flux change
326 at the air-sea interface. Particularly, results reveal that the Baltic Sea has undergone substantial change over the past decade

327 as evidenced by the increase in OHC over the last thirty years.

328 Simultaneously, there has been a reduction in FWC, suggesting an increase in seawater salinity. The analysis of average
329 subsurface temperature and salinity indicates that interannual variations in OHC and FWC are mainly influenced by
330 temperature shifts in both the seasonal thermocline and permanent halocline and changes in salinity within the permanent
331 halocline. This highlights the critical need for a comprehensive framework while reporting on the state of the Baltic Sea,
332 allowing for the evaluation of basin-wide conditions, including its trends, interannual variations, and extremes, as well as the
333 factors driving these changes. Using this approach could prove to be a valuable asset for the science-policy interface, aiding

334 in regional evaluations of the sea state. .

335 Previous studies have reported a positive trend in OHC and a negative trend in FWC (Raudsepp et al., 2022; 2023), along
336 with an inverse relationship between OHC and the maximum ice extent in the Baltic Sea (Raudsepp et al., 2022). The
337 increase in OHC has been attributed to the rising air temperature over the Baltic Sea, yet the decline in FWC remains largely
338 unexplained. Raudsepp et al. (2023) noted that neither salt transport to the Baltic Sea, net precipitation, nor total river runoff
339 accounted for the FWC's downward trend. Despite this, deepwater salinity in the central Baltic Sea has been increasing at a
340 rate of 0.2-0.25 g kg' per decade (Lehmann et al., 2022). A basin-wide analysis linking FWC changes to atmospheric forces
341 revealed a relation with air temperature, a connection that is physically tenuous, prompting further investigation into other
342 factors. This led to the hypothesis that the decreasing trend in the upper mixed layer thickness in the Baltic Sea might be
343 influencing FWC changes. Over the last three decades, there has been a noticeable reduction in the upper mixed layer depth.
344 While it is plausible to suggest a dynamic relationship between the shrinking mixed layer depth and the decrease in FWC,

345 verifying this hypothesis requires more research than what is covered in the present study.

346 Interannual variations of OHC are influenced by air temperature, evaporation, and wind stress magnitude over the Baltic Sea
347 (Fig. 4). When considering the lesser impact of total cloud cover and surface net solar radiation, it becomes clear that air-sea
348 heat exchange primarily drives OHC changes in the Baltic Sea. Notably, the annual mean OHC parallels the long-term trend
349 of winter OHC in the Baltic Sea's upper 50-m layer (Raudsepp et al., 2022), highlighting the influence of seasonal ice cover
350 on OHC fluctuations. In seas with seasonal ice cover, the characteristics of sea ice are crucial for determining the sea's
351 physical state. Typically, the maximum sea ice extent in the Baltic Sea indicates the severity of the winters (Uotila et al.,

352 2015). Sea ice is vital for temporarily storing ocean heat and freshwater, then releasing it back into the sea.
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353 The interannual variations of FWC were associated with Major Baltic Inflows, overall precipitation, and zonal wind stress
354 (Fig. 4 d)). The signals of the MBIs are evident in the bottom salinity of the Bornholm Basin. Fig. 4 d) illustrates that
355 interannual variations in FWC are linked to the bottom salinity in the Bornholm Basin, which serves as a proxy for MBIs, as
356 well as zonal wind stress and net precipitation. Therefore, Fig. 4 d) highlights the drivers of FWC, while Fig. 3 d)
357 emphasizes the significance of halocline salinity's response to FWC. Consequently, we can infer that inflows from the North
358 Sea and net precipitation are responsible for changes in halocline salinity, with zonal wind facilitating these inflows.
359 However, we were unable to directly associate moderate and small inflows from the North Sea with changes in halocline
360 salinity. This aspect requires further investigation and precise simulation of salt transport between the North Sea and the

361 Baltic Sea, which is beyond the scope of the current study.

362 Major Baltic Inflows inflows are crucial in shaping the hydrophysical conditions of the central Baltic Sea's deep regions,
363 significantly affecting marine ecology across various trophic levels (Bergen et al., 2018). Without Major Baltic Inflows, the
364 deeper layers of the central Baltic become oxygen-depleted, leading to the emergence of hydrogen sulphide (as noted by
365 Savchuk, 2018). Furthermore, increased water temperatures have hastened oxygen depletion, causing the hypoxic areas to
366 expand (Safonova et al., 2024). Consequently, the ongoing reduction in FWC and the rise in OHC signal a growth in the

367 hypoxic and anoxic zones within the Baltic Sea.

368 Meier and Kauker (2003) demonstrated that increasing westerly winds could hinder the outflow of freshwater from the Baltic
369 Sea, leading to decreased salt transport into the sea. While several studies have underscored a correlation with river runoff

370 (Kniebusch et al., 2019b; Radtke et al., 2020; Lehmann et al., 2022), our research did not find this connection.

371 The OHC exhibits oscillations with a period of 5-7 years, reaching a high extreme in 2020 and a low extreme in 2011 (Fig.
372 4). The period from January to March 2020 was notably warm over the Northern Hemisphere (Schubert et al., 2022), which
373 was evident in the Baltic Sea's winter OHC (Raudsepp et al., 2022). Additionally, the year 2020 was marked by an
374 exceptionally high marine heatwave index (Bashiri et al., 2024) and a significant number of marine heatwave days
375 (Lindenthal et al., 2024). Conversely, 2011 saw the greatest sea ice extent and volume of the past three decades (Raudsepp et
376 al., 2022). Notably, high extremes in FWC, such as those in 2002 and 2013 (Fig. 4 b)), precede Major Baltic Inflow events,

377 whereas low extremes, such as those in 1997 and 2019, follow several years after these events.

378 Global warming, with its increased frequency and intensity of extreme events, has had widespread negative impacts on
379 nature and significant socioeconomic repercussions (IPCC, 2021). Our methodology has highlighted the extremes of
380 interannual variability in OHC and FWC. In our study, we utilized the RF model to investigate the relationships between
381 changes in OHC and FWC and their potential drivers. Although the model pinpointed the primary factors, it failed to capture
382 the extremes (Gnecco et al., 2024), as illustrated in Fig. 4a,b. RF models tend to underperform when extreme values are not
383 well-represented in the training data, a common issue in ecological modeling and other practical applications (Fox et al.,

384 2017). This can result in a bias where the model does not recognize or accurately predict rare but impactful events, such as
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385 extreme weather conditions, uncommon species occurrences, or anomalies in financial markets (Fox et al., 2017).
386 Acknowledging this, we hypothesize that while primary forces set the stage for extreme events, these events themselves fall
387 outside the scope of standard interannual variability and stem from a distinct combination of forces. Consequently, it is
388 advantageous to analyze extreme events independently from typical interannual variations (Nontapa et al., 2020; Chen et al.,
389 2021). To account for the variations in OHC and FWC, models other than RF, such as deep machine learning models, could
390 be employed, especially if the temporal resolution is monthly (e.g., Barzandeh et al., 2024) or finer, ensuring a representative
391 dataset is available. Advancing this methodology will further our comprehension of the causes behind extreme events,

392 thereby improving our predictive abilities.
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578 Appendix 1

579 We also examined the fit of the trend-included time series and their correspondence with meteorological variables for OHC
580 and FWC (Figure Al). The correlation coefficient and RMSD for the OHC model are 0.9537 and 0.4310, respectively; for
581 FWC model, they are 0.8897 and 0.5994.
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582

583 Figure Al. Same as in Figure 4, but the RF_*var models are fit for the original FWC and OHC including trends.

23



584 Appendix 2
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586 Figure A2. Random forest models for *zax a) and *var b) sensitivity to log,, of the number of trees (NumTrees)
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