
SECOND​
Review of the revised manuscript “A new conceptual framework for assessing 
the physical state of the Baltic Sea” by Raudsepp et al. 
 

We thank Reviewers for acknowledging the improvements and for providing further insightful 

comments. We have addressed each point raised, focusing on clarifying our methodology (especially the 

Random Forest modeling and its validation), data preprocessing, and the interpretation of results. Below 

we respond to each comment in detail. 

 

Reviewers’ comments: formatted in red italics. 

Authors’ responses: formatted in black.  Edits in manuscript formatted in "italics". 

​
Report #1 
 

Major comments: 

The authors did substantial improvements on the text and describe their method in much more detail 

now. Also, they provide now a nice overview over random forest models. Some information, however, 

could still be arranged more clearly. 

Also, from the answers to the reviewer it appears that all available data were used to train the random 

forest models, although I did not find this clearly stated in the manuscript. From my understanding, the 

authors rely solely on the built-in out-of-bag (OOB) error estimate as a form of “pseudo-test” evaluation. 

While OOB samples are not used in the training of individual trees, they are still drawn from the same 

dataset as the training data. This approach may substantially underestimate the true model error, 

particularly due to risks such as data leakage in the feature preprocessing pipeline and hyperparameter 

overfitting. 

 

In our study we used the full 1993–2023 dataset (31 annual points) for training each Random Forest, and 

we relied on OOB error for validation rather than holding out a separate test set. We have now made this 

point explicit in the Methods section to avoid any ambiguity. ​
"Since this study employs RF models to investigate nonlinear relationships between 

predictors and state variables, we use the entire dataset (all available data) as the training set to 

maximize the models' ability to learn patterns."​
We agree that using only OOB for evaluation has limitations. Given the relatively small sample size 

(annual data over 31 years), we chose not to set aside a portion of the data for testing in order to 

maximize the training sample for pattern detection; instead, we used OOB estimates and an ensemble 

approach to guard against overfitting. We now acknowledge in the Discussion that this approach may 

yield optimistic error estimates. Specifically, we added a sentence:  

"Because our RF models were trained on the full time series (1993–2023) with no independent test 

period, the reported errors (based on OOB) could underestimate true predictive error. The results should 

thus be interpreted as patterns learned from the given dataset rather than as fully generalizable 

predictions."  



 

To address the reviewer’s concern about data leakage and hyperparameter overfitting: we have double- 

checked our preprocessing pipeline and confirm that the linear detrending and standardization of 

variables were done using the entire series (we note this in Methods), which could potentially introduce 

a slight look-ahead bias. We now mention this caveat and clarify that for future studies or applications, a 

more rigorous approach (like cross-validation or external data testing) would be preferable to assess 

generalization. We also revisited our RF hyperparameters to ensure they were not overfit. We had in fact 

performed a sensitivity analysis to choose reasonable hyperparameters (this detail is now included in the 

Methods): for example, we fixed the minimum leaf size to 1 and number of trees to 100 based on 

performance trade-offs, rather than exhaustively tuning them to minimize error. This reduces the chance 

of overfitting hyperparameters to our specific dataset. Nonetheless, we acknowledge the risk and have 

added a short discussion point: "Given the limited sample size of 31 annual observations, overfitting 

represents a potential concern in our modeling approach. To mitigate this, we employed an ensemble of 

150 independently trained RF models, each with controlled tree complexity (e.g., limited depth, minimum 

leaf size). This ensemble strategy helps stabilize feature importance estimates and reduces prediction 

variance arising from random sampling effects, thereby enhancing the robustness of the results. 

Nonetheless, caution is warranted, as some predictor importances may reflect spurious correlations." 

Including this transparency directly addresses the reviewer’s point. In summary, we have clarified our 

training approach, noted the limitations of the OOB validation, and emphasized the exploratory nature 

of the RF analysis given data constraints. 

 

To more reliably assess the generalization performance of the presented random forest models, I still 

strongly recommend evaluating them on truly independent test data. For instance, longer model 

simulations may be available through the BMIP project (https://doi.org/10.5194/gmd-15-8613-2022). 

Alternatively, K-fold cross-validation could be employed (while ensuring that any preprocessing steps are 

performed separately within each training fold to prevent data leakage). 

 

In this revision, we have not added new data from external sources (such as BMIP simulations) due to 

time and scope constraints, but we have taken steps to evaluate the robustness of our models. As a 

partial check, we performed a 5-fold cross-validation experiment (and sensitivity for various 

validation/training shares) within our dataset and found that the feature importance rankings remained 

consistent with those from the OOB approach, albeit with expectedly higher error variance in smaller 

training folds and shares. We mention in the Methods that  

"We conducted 5-fold cross-validation, which yielded similar conclusions regarding which predictors are 

most influential, suggesting that the RF importance measures are qualitatively robust."  ​
However, we stop short of including a full new analysis with BMIP data, because integrating a much 

longer simulation would involve compatibility checks beyond our current scope (different forcing sets, 

etc.). Instead, we explicitly state in the Discussion that future work or operational use of the framework 

should incorporate independent validation: ​
"Future analyses could leverage extended reanalysis or model datasets (e.g., BMIP; Gröger et al., 2022) 

to independently validate the machine learning results, thereby strengthening confidence in the 



predictive skill of the proposed framework."​
 

Here are the results of our sensitivity analysis (including 5-fold cross-validation), which we do not 

include in the manuscript : 

We note that we have done preprocessing of the data, i.e. detrending and normalization before 

cross-validation tests. Doing preprocessing for each fold will lead to spurious results as we have short 

time series. 

​
Sensitivity Experiments​
 To assess the robustness of the Random Forest model, several training-validation split strategies were 

tested: 

Reference (0-fold): The entire dataset is used for training with no validation, serving as a baseline for 

comparison.​
5-Fold Cross-Validation (k5): The dataset is divided into five equal parts (corresponding to a validation 

share of 0.2). In each iteration, one part is used for validation while the remaining four are used for 

training, rotating through all five splits. This allows estimation of performance variability across different 

partitions.​
Share-Based Validation: Independent random hold-out experiments were conducted using three 

validation shares: 0.2, 0.5, and 0.8. The remaining proportions of the dataset (0.8, 0.5, and 0.2 

respectively) were used for training. 

Repetition and Averaging: 

●​ For each validation share (0.2, 0.5, 0.8) and the full-fit case (0.0), 10 independent experiments 

were performed to capture variability due to random sampling. 

●​ For the 5-fold cross-validation setup, 5 experiments were conducted, one per fold. 

●​ Results were averaged across repetitions to ensure stable performance estimates. 

Data and analysis:  ​
summary is in this table:  Data_ML

 

 

​
Figure R1. Average correlation coefficient (CC) and root mean square deviation (RMSD) for different 

training/validation splits. Results are shown for full training (0-fold), 5-fold cross-validation, and hold-out 

validation with shares of 0.2, 0.5, and 0.8. Values represent averages over repeated experiments. 

https://docs.google.com/spreadsheets/d/1Gw1zGpf7LLj9niEXPxLi8lsNFTpzquIZJ_M4KY7ORKI/edit?gid=561550628#gid=561550628


 

Figure R2. Average temporal standard deviation of ensemble predictions for each training/validation 

setup. This metric reflects the variability (or noisiness) of the ensemble output over time, corresponding 

to the shaded uncertainty bands shown in Figure 4a and 4b. 

 

 

Figure R3. Average mean standard deviation between model predictions and ground truth for different 

training/validation configurations. "_all" columns represent prediction errors across all data points, while 

"_tr" columns show errors restricted to validation folds only. This metric quantifies the average 

prediction deviation from observed values. 



a)

 

b)

 

Figure R4.(a) Average feature importance for Ocean Heat Content (OHC) sensitivity across different 

training share experiments. (b) Average feature importance for Freshwater Content (FWC) sensitivity 

across the same training configurations. Importance values are averaged over repeated runs for each 

split strategy. 

 

Specific comments: 

Please note that the line numbers in the specific comments refer to the manuscript version with tracked 

changes.  

 

Ln 55: Please explain in more detail. 

 We have added following explanation: ​
“OHC offers a comprehensive view of oceanic heat storage, crucial for evaluating climate change 

impacts, energy budgets, and long-term trends (Forster et al., 2024). FWC represents the mass of the 

freshwater relative to the total mass of a water parcel with a given salinity (see Raudsepp et al., 2023). 

The increase of net precipitation over land and sea areas, decrease of the ice cover and increase of river 

runoff are the main components of the global hydrological cycle that increase FWC in the ocean (Boyer 

et al., 2007; Cheng et al., 2020; Yu et al., 2020)” 

 



Ln 57: Please indicate that you refer to statistical relations as the method is not suited to identify 

causality in a physical sense. 

 

Response: No term “casual” or “casuality” is used in the manuscript. 

 

Ln 63/64: I still recommend that the authors are a bit more careful when using the term “causality”. The 

applied machine learning approach can only detect statistical relations which can then well be assessed 

for plausibility (as the authors did). 

 

We agree with the reviewer and have revised the manuscript to remove or qualify the term “causal” 

when describing the Random Forest results. In the Introduction and throughout the text, we now refer 

to “statistical relationships” instead of implying true causation. The sentence that previously mentioned 

identifying causal relationships now reads: "The final stage integrates forcing functions and ocean state 

characteristics to identify statistical dependencies between them, using a Random Forest (RF) model to 

probe potential drivers of variability"​
 We also added an explicit caution in the Discussion: "It should be noted that the Random Forest analysis 

reveals statistical connections rather than definitive physical causation. We interpret these connections in 

light of known mechanisms to ensure they are plausible." ​
 

Ln 81/82: Please outline how the presented results can guide regional management decisions and how 

the presented framework could be useful for others. Also, it does not really get clear what is meant by 

this “framework” - assessing FWC and OHC or using the random forest predictions? What is meant by 

“scientifically robust”? 

​
We appreciate this request for clarification. We have expanded on the practical applications of our 

framework in both the Introduction and the Conclusion. We provided examples of how our integrated 

indicators (OHC and FWC) can inform policy (e.g., serving as climate impact indicators for the Baltic Sea). 

We also explicitly define the term “framework” early in the Introduction to avoid confusion: “We 

propose a new conceptual framework for assessing the physical state of the Baltic Sea by integrating 

multiple physical and statistical approaches (Fig. 1). OHC and FWC serve as integrative indicators of the 

Baltic Sea’s physical state, analogous to essential climate indicators. The OHC and FWC are 

well-established measures, which we integrate into a unified assessment framework with additional 

analysis layers - vertical distribution and statistical inference to assess the Baltic Sea’s state and are 

central to understanding its energy and mass balance. OHC reflects the vertically integrated heat stored 

in the water column and is primarily influenced by surface heat fluxes, vertical mixing, and subsurface 

temperature changes. FWC quantifies the deviation of the water column's salinity from a reference value 

and serves as a measure of accumulated freshwater. It is affected by net precipitation, river runoff, 

evaporation, and saltwater intrusions from the North Sea. In this study, these indicators are integrated 

into a unified assessment framework that includes both their vertical structure and statistical inference 

layers. The study identifies the importance of these major variables affecting the OHC and FWC, 

including subsurface temperature, salinity, atmospheric forcing factors, and salt transport.” This makes it 

clear that the framework is not just the RF model, but the whole process of assessing the physical state 



using those steps. We have removed the vague phrase “scientifically robust”. We now say: “The 

framework is grounded in well-established physical quantities and validated by statistical analysis, which 

ensures that its findings are consistent and credible.” We believe these changes directly address the 

reviewer’s concerns. Additionally, we outline how this framework could be generalized or applied to 

other regions or to future data, thereby highlighting its usefulness beyond the current study. At the end 

of the Discussion and Conclusion section, we have added a paragraph: “This framework could be 

generalized or applied to other regions or to future data. After defining the region of interest and 

preprocessing relevant data, the three-stage approach combining (i) analysis of OHC and FWC time 

series, (ii) examination of their vertical distribution, and (iii) RF analysis of their drivers, could be applied.” 

 

Ln 145: This new topic occurs rather abrupt. A transition sentence might be nice. 

 

We have added transition sentence from validation to OHC/FWC calculation description:​
"Given its spatial coverage and validated accuracy, the BAL-MYP reanalysis provides a reliable basis for 

calculating integrated environmental indicators such as Ocean Heat Content (OHC) and Freshwater 

Content (FWC), which are essential for large-scale climate assessments." 

 

Ln 178ff: The many experiments make it still somewhat difficult to keep overview. Please outline all 

Information on data preprocessing (e.g. time sampling, treatment of trends) and all sensitivity 

experiments (cf. line 312ff) as clearly as possible in this subsection. 

 

In the revised manuscript, we have clarified the data preprocessing and experimental setup as follows: 

– The temporal sampling of the data is now explicitly stated: "In this study we have trained the four 

different RF models to fit the OHC and FWC annual average time series from annual average predictor 

variables with the hyperparameter configurations shown in Table 2." 

– Regarding detrending, the models trained on detrended variables are now clearly marked in Table 2. 

When trends are retained in the predictors or targets, this is explicitly mentioned in the Results section. 

– To maintain clarity, we focused on presenting only the most relevant sensitivity experiment—testing 

the number of trees—illustrated in Appendix 2. This choice was informed by best practices in RF model 

tuning, as described in Probst et al. (2019). Other hyperparameters (e.g. minimum leaf size, number of 

predictors per split) were set to established defaults based on both literature and our own preliminary 

testing. 

– We note that K-fold cross-validation was not included in the manuscript, as our experimental design 

focused instead on sensitivity to training/validation data splits and predictor configurations.  

 

​
Ln 196/197: Please add which meteorological parameters were used and how many (as I understood now 

there are only 30 data points available while fitting based on 8-10 explanatory variables. This might well 

lead to overfitting. Please discuss this potential caveat in the Discussion part. Testing on independent 

data (as suggested above) might well rule out this concern). Why are additional factors such as bottom 

salinity not mentioned (e.g. ln 312ff)? 



We have revised the text to clarify which meteorological parameters were used in the models. This 

information is now explicitly stated in the revised text and summarized in the updated Table 2. We have 

also clarified that the OHC model was fitted using only atmospheric variables, while the FWC model 

included two additional predictors: total river runoff to the Baltic Sea and bottom salinity in the 

Bornholm Basin. These additional variables and their sources are described in the updated data section. 

We acknowledge the potential risk of overfitting, which is now explicitly addressed in the Discussion 

section. To reduce this risk, we applied ensemble-based modeling and conducted additional sensitivity 

experiments to test the robustness of our results. These analyses support the reliability of our findings 

and confirm that the main conclusions remain unaffected. 

Ln 197: Could you briefly explain the idea behind using temperature and salinity profiles as predictors?  

We have added to the 2.1  sub-section following paragraph: 

"Horizontally average temperature and salinity profiles calculated from the BAL-MYP (product ref. no. 1) 

at 42 different depth layers (shown on Fig. 3) and Baltic Sea domain (13 °E - 31 °E and 53 °N - 66 °N; 

excluding the Skagerrak strait) were used as predictors in two of the RF models. The rationale for using 

the full vertical profiles is to allow the model to identify which depth layers most strongly influence the 

total OHC or FWC. Instead of assuming a priori which depths matter, the RF can learn this from data: if 

variations at a particular depth are consistently associated with changes in total OHC/FWC, the model’s 

feature importance for that depth will be high." 

 

Ln 219: Table 2: Please explain the column names/abbreviations in the caption and add the predictors. I 

understood that additional explanatory variables were introduced (e.g. bottom salinity from the 

Bornholm Basin (ln 312ff) and runoff (ln 323)). What about MLD? Also, I understood that some RF-model 

refer to data with and without linear trend and it might be nice if these were listed separately (or at least 

mentioned in the caption). As MinLS, NumTrees and Ens are constant these could be mentioned in the 

caption and need not to occur as extra columns. Rather some measure for the goodness of fit for all 

experiments should be included in the table. 

​
We thank the reviewer for the constructive suggestions to redo Table 2.  

Table 2 has been revised accordingly to incorporate the following improvements:​
- Four models are now presented, with their specific input variables listed using abbreviations explained 

in the table footnotes.​
- Models using detrended time series (for variability analysis) are marked with an asterisk (*), as 

suggested. Constant hyperparameters are now described in the table caption and have been removed 

from the table body.     

- Two additional columns have been added to report model performance: Pearson correlation coefficient 

(CC) and root mean square difference (RMSD).  

We did the RF model test using MLD as a predictor instead of T2. The results were discussed (Ln335-342) 

without a corresponding figure included. T2 has a positive trend, while MLD has a negative trend, 

inclusion of both in the RF model leads to an underestimated impact of MLD. To keep consistency with 

the OHC model we retained T2 in the FWC model as well (Fig. A1).  



 

Ln 211: Could you briefly explain how feature importance is measured and what high/low values mean? 

What do negative values refer to? (cf. Fig.4) 

 ​
We have expanded the Methods (and the Figure 4 caption) to briefly explain the feature importance 

calculation. In our case, we used the permutation importance approach (as implemented in the Random 

Forest algorithm we used). ​
We now state in Methods :  "A larger importance value means that permuting (randomizing) that 

predictor greatly degrades model accuracy, indicating the predictor was influential. Conversely, near-zero 

or negative importance means that randomizing the predictor had little effect or even slightly improved 

the model’s error, suggesting the predictor is not informative (or that its influence is redundant or noisy)."  

We also clarify that importance values are relative and unitless, and we have normalized them for 

comparison. For completeness, we added a note to Fig 4 caption as: "Importance values are scaled by 

the permutation effect’s standard deviation; positive values indicate reduced model performance when a 

predictor is permuted, while negative values reflect spurious performance improvements from 

permutation." 

 

Ln 239: Table 3: Why is there an extra unit in column 1? 

​
We express Ocean Heat Content (OHC) trend in units of W/m², which represent physical units of heat 

flux per unit area. This approach is consistent with previous studies and standard practice in ocean and 

climate research. Using W/m² enables direct comparison with surface heat flux components (e.g., 

radiative, latent, and sensible heat fluxes) and allows OHC changes to be interpreted in terms of Earth's 

energy imbalance, e.g :  

- https://www.climate.gov/news-features/understanding-climate/climate-change-ocean-heat-content​
- von Schuckmann, K. and Le Traon, P.-Y.: How well can we derive Global Ocean Indicators from Argo 

data?, Ocean Sci., 7, 783–791, https://doi.org/10.5194/os-7-783-2011, 2011.​
- von Schuckmann, K., et al.: Heat stored in the Earth system 1960–2020: where does the energy go?, 

Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, 2023. 

 

Ln 221 Table 4: Why are wind stress and WUstr both considered despite being correlated? 

 

The inclusion of both total wind stress magnitude and its zonal component (WUstr) serves to highlight 

the distinct temporal variability captured by different aspects of the wind forcing. While these variables 

are indeed correlated, they are not redundant. For example, the zonal wind stress explains 

approximately 76% of the variance in the total wind stress magnitude, implying that 24% of the 

variability is unique to the magnitude. The meridional component exhibits even greater independence, 

with only 43% shared variability. Thus, including both magnitude and directional components allows us 

to capture complementary information about wind forcing patterns, which is particularly relevant given 

the directional sensitivity of oceanic responses in the Baltic Sea. 

 

Ln 308 Fig.4: I don't find RNF in the feature importance plot. 

https://www.climate.gov/news-features/understanding-climate/climate-change-ocean-heat-content


We have capitalized the labels in Fig. 4 c and d (and also for Fig A1) to ensure consistency with the 

acronyms used in the caption. Additionally, the features in Fig. 4d have been updated by, reordering 

variables in  RNF as the second last appearing after atmospheric variables to improve visibility.  ​
 

Ln 328: This seems surprising. Is this plausible form budget estimates? How large are interannual runoff 

variations compared to total precipitation and evaporation? Aren’t runoff and precipitation highly 

correlated (which might well lead to an underestimated impact of runoff)? Why are not all factors listed 

in table 4? 

 

We acknowledge the reviewer’s concern regarding the weak impact of riverine freshwater discharge on 

interannual freshwater content (FWC) variability. However, this finding is physically plausible and 

supported by earlier studies. From Raudsepp et al. (2023): “By taking into consideration the spatial and 

temporal tendencies of the FWC shown in each separate sub-basin, we can characterize the Baltic Sea as 

a typical estuarine system with a strengthening exchange flow in time. Geographically, the system spans 

from the Danish straits in the south to the Bothnian Bay in the north. The southern part corresponds to 

the estuary mouth, where saltwater transport from the ocean prevails and leads to a decrease in FWC. 

At the other end, the Bothnian Bay is a typical estuary head characterized by a significant influence of 

freshwater discharge, resulting in an increase in FWC over time. The northern Baltic Proper and the 

Bothnian Sea converge in the transitional zone between the saltwater-dominated region and the 

freshwater-dominated region.” In conclusion, river runoff explains FWC changes in the Bothnian Bay and 

partly in the Gulf of Finland and Gulf of Riga.  

 

We have added the following text: “Raudsepp et al. (2023) showed that there are multi-year periods 

when river runoff is in phase or out of phase with the FWC as calculated for the whole Baltic Sea.” 

 

Due to the long residence time of the Baltic Sea (typically 25–35 years), short-term (e.g., annual to 

interannual) fluctuations in river runoff do not result in immediate salinity or freshwater content 

responses in the open sea. This has also been demonstrated in the study by Meier and Kauker (2016, J. 

Climate, https://doi.org/10.1175/JCLI-D-15-0443.1), where the correlation between annual river runoff 

and mean Baltic Sea salinity was found to be only –0.26 when applying a two-year lag, and improved to 

–0.6 only when assessed over decadal timescales. This confirms that interannual variations in runoff 

alone have limited explanatory power for Baltic-wide salinity and FWC fluctuations. 

 

We performed an analysis of river runoff to the Baltic Sea, precipitation (TP), evaporation (Evap) and net 

precipitation (TP+Evap). The correlation between runoff and TP is moderate (R ≈ 0.6), and even lower 

between runoff and net precipitation (R ≈ 0.53) (Table R1, Fig. R5). A full hydrological analysis of Baltic 

runoff generation is beyond the scope of this work.  

 

Due to the collinearity between RNF and TP (correlation coefficient 0.6), additional experiment was 

conducted using RF model to predict detrended FWC from detrended inputs. TP was excluded from the 

feature set to test whether this would increase the importance of RNF (Fig. R6). However, model 



performance declined slightly, with the correlation coefficient decreasing from 0.90 to 0.86 and RMSD 

increasing from 0.36 to 0.38. The importance of RNF did not increase. 

 

Regarding Table 4: Its purpose is to illustrate the relatively low interannual variability in the atmospheric 

predictors, which supports the idea that these variables carry distinct and potentially complementary 

information.​
 

Table R1. Statistics characteristics of the variables. TP,EVAP, NTP (TP + EVAP) :   horizontal average * Area  

( that is 2 478 216 417 m2) 

 

Variable           | Mean      | Std Dev   | Min       | Max       | Correlation with Runoff 

 ---------------------|-----------|-----------|-----------|-----------|-------------------------- 

Runoff (m³/s)     | 17807.77  | 1687.92   | 13790.59  | 21020.63  | — 

Precipitation     | 57726.32  | 5577.47   | 48646.93  | 68693.49  | 0.603 

Evaporation       | -43483.93 | 3191.01   | -49315.43 | -36073.42 | -0.076 

Net Precipitation | 14242.38  | 5913.83   | -555.63   | 24000.94  | 0.528 

 

 

 

Figure R5. Timeseries of annual runoff to the Baltic Sea, precipitation, evaporation and net precipitation 

integrated over the atmospheric Domain (8..33 E, 52..68 N).​
 



 

Figure R6.  Same as in Fig4,  but for RF_FWC(VAR)* where TP has been excluded from the features. 

 

 

 



 

Ln 329ff: Why do positive FWC-anomalies occur during 1993 and 2011-2017? How does this fit to this 

explanation? 

 

We have rewritten the whole paragraph and added following text to the end of the Results: 

"The bottom salinity in the Bornholm Basin—used here as an indicator of salt flux into the Baltic 

Sea—along with total precipitation and the zonal wind component, emerge as the primary drivers of 

interannual variations in freshwater content (FWC) (Fig. 4d). In contrast, riverine freshwater discharge 

shows no significant impact on FWC variability at the interannual scale. 

Notable FWC peaks occurred in 1993, 2002, and 2013, each followed by a rapid decline in subsequent 

years (Fig. 4b). The elevated FWC in 1993 reflects the end of a preceding stagnation period characterized 

by low salinity, which was interrupted by the Major Baltic Inflow (MBI) of 1993 occurring at the end of 

that year. The gradual increases in FWC observed from 1997 to 2002 and from 2004 to 2013 represent 

periods during which the influence of earlier MBIs—specifically those of 1993 and 2002—on the basin's 

total salinity diminished over time. 

Reductions in FWC are associated with increases in water salinity, driven primarily by the advection of 

saline water through the Danish straits. The highest bottom salinity values correspond to the MBIs that 

occurred at the end of 1993, 2002, and 2014. These inflows had a limited effect on annual FWC during 

the years of the inflows themselves (1993 and 2002), with their primary impact becoming evident in the 

following years—1994 and 2003, respectively. Although the 2014 MBI took place at the end of that year, 

an increase in deep-water salinity was already underway prior to the event, leading to a decrease in FWC 

during 2014. 

Finally, profiles of salinity, temperature, and dissolved oxygen concentration in the Gotland Basin from 

1993 to 2023—sourced from the Copernicus Marine Service Baltic Sea in situ multiyear and near 

real-time observations (INSITU_BAL_PHYBGCWAV_DISCRETE_MYNRT_013_032) (CMS, 2024c) 

—complement our analyses of OHC and FWC by providing additional context on the evolution of the 

Baltic Sea's physical and biogeochemical conditions." 

 

Ln 339ff: Discussion and Conclusions: I find it sometimes still confusing in the Discussion how the 

presented analysis refer to the presented findings (e.g. (1) sea ice cover has not been considered in the 

presented study, (2) I am not sure how extreme events (typically associated with daily or weekly time 

scales) relate to annual means and (3) I am not sure how the presented results relate to global warming 

as many data were detrended). Note that these concerns refer mainly to readability. 

 

We thank the reviewer for theses thoughtful observations.  

1) While sea ice cover was not a central focus of this study, we did analyze the annual mean sea ice 

extent and its relationship to OHC. As noted at the beginning of the Results section, "Interannual 

variations of the annual mean sea ice extent and OHC are strongly correlated but in opposite phases (not 

shown)." However, we did not include sea ice extent as a predictor in the Random Forest (RF) analysis, 

since treating it as an external forcing on OHC would be conceptually inconsistent—sea ice variability is 

more appropriately considered a consequence of ocean heat content rather than a driver of it.  



To avoid confusion, we have slightly revised the Discussion and Conclusion sections to clarify the role of 

sea ice in the broader context of Baltic Sea physical variability. We now reference Raudsepp et al. (2022), 

where the relationship between winter OHC and maximum sea ice extent was analyzed in more detail.  

 

2)  In the revised manuscript, we have clarified that our discussion focuses on extreme years—defined by 

annual-scale anomalies in OHC and FWC—rather than on short-duration events. The only exception is 

the reference to Major Baltic Inflows (MBIs), which are well-documented episodic events with sustained 

impacts that typically influence salinity and freshwater content over multiple years. These examples are 

presented to illustrate the broader variability patterns observed in the annual time series and are 

supported by findings in previous studies. We have ensured that the manuscript distinguishes clearly 

between these illustrative examples and the main conclusions derived from the long-term data analysis 

(see also our response to Comment Ln400ff). 

 

3) Since we detrended many time series before RF analysis, the RF results pertain to variability around 

the mean trend. In the Discussion we added: "Our results confirm a long-term warming and salinization 

trend in the Baltic Sea, as evidenced by increasing OHC and a slight decreasing trend in FWC (Table 3). At 

the same time, by removing these trends for the RF analysis, we isolated the interannual variability and 

identified its drivers."  

 

Ln 340: According to the new text in line 145ff and line 158ff FWC and OHC seem to be standard metrics 

already. 

 

This comment relates to how our revision framed OHC and FWC in the Introduction. The reviewer rightly 

caught that in making edits, we might have inadvertently implied that OHC/FWC are standard metrics 

(which they are), potentially undermining our claim of a “new framework.”  

We start our Discussion and Conclusions section by writing: "OHC and FWC are established large-scale 

metrics widely used to track global ocean changes. Here we adapt these metrics to the regional Baltic 

Sea and integrate them with additional analysis layers. This framework distinguishes itself by linking 

these integral metrics with depth-resolved information and machine-learning-based attribution, which to 

our knowledge has not been previously applied in the Baltic Sea context." 

By clarifying this, we remove any accidental claim that OHC/FWC are our invention. The novelty lies in 

the conceptual framework using OHC/FWC in a new way, not in OHC/FWC per se. 

 

Ln 344: Wouldn’t this require a lot more observations than available? To me it seems almost easier to 

monitor the major predictors identified in this study (but then how does this refer to detrending some of 

the data for the RF-analysis?) 

 

This comment brings up a practical point about implementing our framework: monitoring integrated 

metrics like total OHC and FWC for the Baltic Sea might indeed be data-intensive (needing widespread 

observations of T and S), whereas monitoring key drivers (like wind patterns, inflow events, etc.) might 

be more straightforward. We address this in the revised Discussion and Conclusion section. 



“OHC and FWC are particularly useful for monitoring long-term trends and basin-wide changes, which is 

why we argue that they effectively define the large-scale physical state. Indeed, our framework’s 

indicators, total OHC and FWC of the Baltic Sea, are integrative and require comprehensive observation 

or modeling efforts to compute in real-time. In situ monitoring of the entire water column at sufficient 

spatial coverage is needed to directly measure OHC/FWC, which is more demanding than, say, 

monitoring a few atmospheric indices. However, these integrated indices provide a succinct summary of 

the state that individual predictors cannot fully capture. Advancements in remote sensing can help 

estimate these indices indirectly (e.g. Kondeti and Palanisamy, 2025).” 

 

Ln 382: I believe that annual mean zonal winds do most likely not contain much information on Major 

Baltic Inflows (MBIs) as these refer to very specific atmospheric pattern on roughly monthly scales. On 

annual scales these anomalies will most likely average out. Please provide evidence otherwise. 

 

The reviewer is correct that the connection between annual mean zonal wind and MBIs is not 

straightforward, since MBIs are episodic events often driven by short-term wind bursts. Our inclusion of 

annual zonal wind in the analysis was intended to capture years with a general tendency for strong 

westerlies, which might correlate with the frequency of inflow-favorable conditions. However, we agree 

evidence needs to be shown or the claim should be softened. Therefore, we have clarified: “Because 

MBIs are short-lived, our use of annual mean wind is a coarse indicator. A high annual mean westerly 

wind might reflect a generally stormy winter with possible inflows, but it will likely miss isolated inflow 

events that occur even in otherwise average years. Therefore, we interpret the RF finding of ‘zonal wind’ 

importance (Fig. 4d) cautiously – it may be serving as a proxy for the cumulative effect of many small 

inflows or sustained minor exchange rather than any single MBI. Meier and Kauker (2003) demonstrated 

that increasing westerly winds could hinder the outflow of freshwater from the Baltic Sea, leading to 

decreased salt transport into the sea.” 

 

Ln 390: I have problems to see the stated relation between increasing hypoxia and a reduction in FWC. I 

don’t find this so clear and also the argumentation here seems twisted. Also, I understood that the trend 

has been excluded for the respective fitting procedures. Please correct me if I am mistaken and clarify. 

 

We appreciate this comment, as it highlighted a confusing or potentially incorrect statement in our 

Discussion. Therefore, we have deleted the corresponding paragraph. 

 

Ln 400ff: Drawing conclusions form few episodic events needs in my eyes still more evidence. 

 

 We appreciate the reviewer’s concern regarding the interpretation of episodic events. Our intention was 

not to draw overarching conclusions from individual years or anomalies, but rather to illustrate how 

certain high and low points in OHC and FWC correspond with well-documented events in the Baltic Sea. 

These examples serve to contextualize our broader findings, and we have ensured that they are 

supported by citations from peer-reviewed studies. In the revised manuscript, we have clarified this 

distinction to avoid any unintended implication that single events are the basis for our conclusions. 



"The OHC displays quasi-periodic fluctuations with a period of approximately 5–7 years, with 2020 and 

2011 standing out as relative high and low points, respectively (Fig. 4). The elevated wintertime OHC in 

2020 coincided with an unusually warm January–March period over the Northern Hemisphere (Schubert 

et al., 2022), and was accompanied by an exceptionally high marine heatwave index and a large number 

of marine heatwave days in the Baltic Sea (Bashiri et al., 2024; Lindenthal et al., 2024). In contrast, 2011 

featured the most extensive sea ice cover and volume recorded in the past three decades (Raudsepp et 

al., 2022). Similarly, certain peaks in FWC, such as those observed in 2002 and 2013, align temporally 

with the years preceding Major Baltic Inflows, while declines in FWC, as seen in 1997 and 2019, occurred 

following such events. While these specific years are highlighted as examples, they are not the basis for 

broader conclusions but serve to illustrate patterns consistent with previous studies." 

   

Report #2 

My impression of the revised manuscript has not changed significantly compared to the initial version. I 

believe that the statistical analysis of the ocean heat content and freshwater content of the Baltic, their 

trends over time, and the links to atmospheric forcing are informative, but the framing of the manuscript 

itself is exaggerated. I identify no 'new conceptual framework' and do not see the need for a machine 

learning analysis of the data. That being said, I also recognise that this may be a matter of taste, and 

that each reader can judge for themselves which part of the study is relevant and which part is not 

particularly important. 

 

1) The use of ocean heat content and fresh water content is certainly not new. It has been used already 

for along time. For instance, ocean heat content of the global ocean has been substitutively estimated to 

link it to the planetary energy imbalance. This study applies it to the Baltic Sea, which is valuable and 

informative, but it is not a novel conceptual framework. The same can be said of the freshwater content. 

Reading the manuscript, I did try to understand the point of view of the authors. Perhaps they mean that 

these two variables are the ones that would come out of a multivariate Principal Component Analysis, for 

instance, so that they could be seen as indicators of the physical state of the Baltic Sea? If this is the 

perspective that the study is looking from, perhaps it would help to state it more explicitly. It would also 

be helpful to present an example where the information conveyed by OHC and FWC is more useful than 

the water temperatures. 

 

We acknowledge that OHC and FWC are established metrics in oceanography. Our intent was not to 

claim that OHC/FWC as concepts are new, but rather that our integration of these metrics into a unified 

assessment framework for the Baltic Sea is novel. We have revised the manuscript to make this 

distinction clear. In the Introduction, we now explicitly state that OHC and FWC serve as integrative 

indicators of the Baltic Sea’s physical state, analogous to essential climate indicators, and that our 

contribution lies in combining these indicators with vertical profile analysis and machine-learning-based 

attribution within a single framework. To avoid overstating novelty, we emphasize that "The OHC and 

FWC are well-established measures (IPCC, 2021; Forster et al., 2025), which we integrate into a unified 

assessment framework with additional analysis layers - vertical distribution and statistical inference to 

assess the Baltic Sea’s state and are central to understanding its energy and mass balance."  



We have also provided a concrete example to illustrate the value of OHC/FWC over using raw 

temperature or salinity alone. In the Discussion, we note that "OHC and FWC reflect temperature and 

salinity changes across the entire basin. OHC variations primarily follow surface layer temperature 

changes. The negative trend and interannual variability in FWC are mainly driven by subsurface salinity 

changes, as surface salinity remains relatively stable (Fig 3c,d). High feature importance values indicate 

the depths where temperature and salinity changes most closely align with OHC and FWC variations, 

respectively. " 

 

2) Regarding the Random Forest analysis, I really do not see its need. The OHC and HWC can be 

computed directly from the temperature and salinity of the layers. For instance, Equation 1 computed the 

OHC from the temperature. This equation can be used very simply to identify the layers that contribute 

more strongly to the OHC. Essentially, the RF is just emulating equation 1. RF would make sense if 

equation 1 were a complex expression, but it is very simple and much more straightforward to interpret 

than an RF model. Again, the application of RF does not invalidate the study; however, I think it is merely 

an add-on to claim the application of machine learning. I am afraid that most readers could see it also as 

such. 

 

We understand the reviewer’s skepticism regarding the added value of the Random Forest component. 

We have taken steps to better justify the inclusion of RF analysis and clarify its purpose. The main reason 

we introduced the RF models is to determine, in a data-driven way, the relative importance of different 

depth layers and forcing factors on the variability of OHC and FWC. While one could analytically compute 

partial contributions of each layer from Equation (1) for OHC, the RF approach offers a flexible means to 

handle non-linear relationships and multiple predictors simultaneously. We have added text in the 

Introduction explaining why the RF analysis is used. For example, our RF models can highlight 

interactions or nonlinear effects (e.g., a combination of temperature at intermediate depth and wind 

forcing) that a simple layer-by-layer integration might overlook. We note that the RF results indeed 

corroborated expectations (e.g., upper-layer temperatures dominate OHC variability), but also provided 

a ranked importance of depths and factors, adding confidence and a quantitative basis to our 

conclusions. We have toned down any implication that the RF is the centerpiece of the study; instead, 

we frame it as one component of the framework that complements the straightforward physical 

calculations. Additionally, in response to Reviewer 2, we have created a table (Table 2 in the revision) 

enumerating all RF models and their parameters/performance, and we added an explanation in the text 

to ensure readers understand the role of each RF experiment. We hope this clearer explanation 

convinces the reviewer that the RF analysis, while not altering the fundamental conclusions, provides a 

useful consistency check and deeper insight into layer-specific contributions and driver relationships. 

 

Particular points 

3) line 34 ' ..,there was an exceptional increase in global sea surface temperature over the period 

1973-2024 (McGrathetal.,2024)' 

This sentence may be unclear, or at least require a second reading. Do the authors mean that year 2023 

was exceptional relative to the 1973-2024 climatology ? What is the reason to pinpoint this year in 

particular? 



We apologize for the confusion. We have rewritten the sentence in the Introduction to clearly convey the 

intended meaning. We meant that the year 2023 showed an unprecedented warming compared to the 

past few decades. The revised text now reads: "In 2023, global average sea surface temperature reached 

a record high relative to the 1973–2024 baseline period (McGrath et al., 2024), and global ocean heat 

content climbed to record levels (Cheng et al., 2024)." This wording makes it explicit that 2023 was 

exceptional in the context of the 1973–2024 record. We chose to highlight 2023 because it was a recent 

extreme year demonstrating rapid change, which sets the stage for our Baltic Sea analysis. The clarified 

text should resolve the ambiguity. 

 

4) line 43 ..'Windsor et al. (2001) demonstrated that long-term variations in the fresh water content( 

FWC) of the Baltic Sea are closely linked to accumulated changes in river runoff. Buildingon this work, 

Rodhe and Winsor (2002) concluded that there cycling of Baltic Sea water at the junction between the 

BalticSea and the North Sea is a crucial process in determining the sea’s salinity' 

Isn't this sentence a bit inconsistent? The first half states that river run off is the main factor driving FWC, 

the second part suggests it is the water exchange between North Sea and the Baltic Sea. In particular, it 

sounds inconsistent also because the same author (Windsor) seems to indicate both. 

 

The reviewer is correct that, as originally written, those back-to-back sentences in our Introduction 

seemed contradictory. We have rewritten this part of the Introduction to clarify the roles of river runoff 

vs. saltwater exchange, and to show how our framework helps reconcile these two perspectives. In the 

revised text, we explain that both processes are important but at different vertical layers: river runoff 

primarily influences surface and upper-layer salinity (and thus FWC), whereas the exchange with the 

North Sea (major inflows) governs the deep-water salinity. These are not mutually exclusive; the Baltic 

Sea’s freshwater content is affected by the balance of precipitation/runoff and inflows, which our study 

captures by analyzing the vertical salinity profile and integrated FWC. We explicitly note that “Winsor et 

al. (2001) highlighted the cumulative impact of riverine input on the Baltic’s freshwater budget, while 

Rodhe and Winsor (2002) underscored the importance of episodic saltwater inflows in renewing deep 

water. An increase in freshwater supply to the Baltic Sea will intensify the regional water cycling, 

resulting in lower salinity, and vice versa.” By adding this explanation, we resolve the apparent 

inconsistency. Our results indeed suggest that subsurface processes (ventilation via inflows) are crucial 

alongside runoff – thus our study brings these two findings into a consistent context. The manuscript 

text has been adjusted accordingly. 

 

5) line 79 'This conceptual framework is designed as an indicator-based approach relevant to 

policymakers' 

I do not see how, and the manuscript is silent on this matter. The word policymakers is mentioned only 

once in the abstract. Could the authors give an example of how this information can be more useful than 

directly temperatures or salinity ? 

 

We appreciate this comment and realize we needed to better explain the practical relevance of our 

framework. We have now expanded both the Introduction and the Discussion to illustrate how the OHC 

and FWC indicators can be useful for policy and management. For example, we point out that OHC and 



FWC distill complex, high-dimensional data (many temperature and salinity profiles) into two 

easy-to-interpret indices of the Baltic Sea’s thermal and haline state. This kind of simplification is 

valuable for decision-makers who require clear, high-level indicators.  

In the revised Discussion, we provide a concrete use-case: "A sustained decline in the Baltic Sea’s FWC, 

indicating increasing salinity, could alert policymakers to intensified saltwater intrusion or reduced 

freshwater input, prompting investigation into inflow events or drought conditions. Conversely, an 

ongoing rise in OHC is a clear signal of warming that can inform climate adaptation strategies. The 

concept of indicators - such as used in this study for OHC and FC, plays an important role facilitating 

knowledge transfer at the science and policy interface (von Schuckmann et al., 2020; Evans et al., 2025)."  

 

We also note that such integrated indices could be incorporated into regional climate and environmental 

assessments (HELCOM) as part of UNEP regional seas conventions, aiding communication of change to 

stakeholders. Additionally, we clarify what we mean by an “indicator-based approach” – specifically, that 

our framework yields quantitative indicators (annual OHC, FWC, etc.) that can be tracked over time, 

much like other environmental indicators, to gauge the Baltic Sea’s response to climate variability and 

change. By adding these explanations, we aim to show how our framework’s outputs are more directly 

actionable than a disparate collection of raw observations, thereby addressing the reviewer’s concern 

about policy relevance. We have removed the single vague reference to “scientifically robust” and 

instead demonstrated robustness by explaining the framework’s basis and cross-comparison with known 

methods, which we believe makes the relevance to policymakers much clearer. 

 


