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Abstract. Artificial intelligence and machine learning are accelerating research in Earth system science, with huge potential 

for impact and challenges in ocean prediction. Such algorithms are being deployed on different aspects of the forecasting 

workflow with the aim of improving its speed and skill. They include pattern classification and anomaly detection, regression 

and diagnostics, state prediction from nowcasting to synoptic, sub-seasonal, and seasonal forecasting. This brief review 15 

emphasizes scientific machine learning methods that have the capacity to embed domain knowledge, to ensure interpretability 

through causal explanation, to be robust and reliable, to involve effectively high dimensional statistical methods, supporting 

multi-scale and multi-physics simulations aimed at improving parameterization, and to drive intelligent automation as well as 

decision support. An overview of recent numerical developments is discussed, highlighting the importance of fully data-driven 

ocean models for future expansion of ocean forecasting capabilities. 20 

1 Introduction  

Research into applications of artificial intelligence (AI) and machine learning (ML) in ocean, atmospheric and climate sciences 

has accelerated at a breathtaking pace over the last 5 years or so (e.g., Schneider et al., 2023; Eyring et al., 2024). With 

essentially all these applications concerned with ML, we will drop the more broadly defined “AI” term in most of the following, 

except when used by references cited. We will also take the perspective of scientific machine learning (SciML), defined in a 25 

2019 U.S. Department of Energy report on “Basic Research Needs for Scientific Machine Learning” (Baker et al., 2019), 

which emphasizes five key elements of SciML algorithms: (i) ML approaches that incorporate domain knowledge, such as 

physical principles, symmetries, constraints, expert feedback, computational simulations, and formal uncertainties; (ii) ML 

approaches that are interpretable, such that user’s confidence in ML-based model predictions may be bolstered by causal 

explanations based on a user’s domain knowledge; (iii) ML approaches that are robust and reliable as a prerequisite to for 30 

making high-stakes, high-regret decisions; (iv) ML approaches that are data-intensive, i.e., that ingest high-dimensional, noisy, 

and uncertain input data which contain complex structures and which require statistical and probabilistic methods to deal with  

ill-conditioning, non-uniqueness, and over-fitting; (v) ML approaches that enhance modeling and simulation to support, e.g., 
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multi-scale, multi-physics simulations in terms of improved model parameterization or model acceleration; and (vi) ML 

approaches to support intelligent automation and decision support, which can range from quality control to application-oriented 35 

post-processing workflows. Arguably, all of these criteria are fundamental to the uses of ML in ocean prediction. 

Next, following the review by Reichstein et al. (2019), it is useful to distinguish different categories of ML applications, (A) 

classification and anomaly detection, which is concerned with, e.g., finding extreme event patterns or the classification of 

important structures or regimes; (B) regression, which is concerned with state reconstruction of important state variables, 

parameters, or diagnostics (metrics) from available data; and (C) state prediction, ranging from nowcasting to operational 40 

forecasting, to sub-seasonal to seasonal prediction. A comprehensive collection of review articles on deep learning in Earth 

sciences is Camps-Valls et al. (2021), covering both algorithmic foundations as well as examples of all three categories. 

Because the subject of this document is on ocean prediction, we will focus the following on the third category, state prediction. 

2 State prediction 

The workflow of operational ocean prediction largely follows that of numerical weather prediction (NWP). Its core engine is 45 

a data assimilation (DA) framework, consisting of a physical model, i.e., a complex algorithm for solving a set of partial 

differential equations (PDEs), a workflow for quality-controlling and ingesting diverse observational data streams into the DA 

system (ideally in near-real time), and an optimal estimation algorithm that combines models and data in a formal manner that 

produces statistically optimal forecasts (Park and Zupanski, 2022). As pointed out by S. Penny in a 2022 U.S. National 

Academy of Sciences workshop on Machine Learning and Artificial Intelligence to Advance Earth System Science (NASEM, 50 

2022), ML approaches hold the prospect for accelerating various elements of the DA workflow. We briefly summarize ML 

approaches targeting the physical model as well as the DA algorithm. Opportunities in the application of ML for partial 

differential equation (PDE) based models fall into two main categories, one concerned with targeted insertion of ML within a 

physical model, sometimes termed “soft AI”, the other with the complete replacement of the physical model by a surrogate 

model, termed “hard AI” (Chantry et al., 2021). In the former, certain elements or subcomponents of a physical model are 55 

replaced by a surrogate model (e.g., a neural network), whereas in the latter, the entire model is emulated. 

2.1 “Soft AI” – enhancing forecast models with ML algorithms 

A major source of model uncertainty is the parameterization of subgrid-scale (SGS) processes, both in terms of structural errors 

(formulation of functional representations of parameterizations) as well as parametric uncertainties (calibrating empirical 

parameters in the functional representations). Exciting efforts are underway to apply machine learning to replace conventional 60 

functional representations subgrid-scale turbulent oceanic processes with surrogate models that are based on machine learning 

(Bolton and Zanna, 2019; Zanna and Bolton, 2020, 2021; Frezat et al., 2021a, 2021b; Zhang et al., 2023; Sane et al., 2023, 

Perezhogin et al., 2023); a longer list of related efforts exists for numerical weather prediction and has been reviewed by 

Dueben et al. (2021) and Boualègue et al. (2024). These surrogates, mostly some form of neural networks, have been trained 
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on (i.e., fit to) what are considered simulations of much higher fidelity where these processes are resolved (e.g., large eddy 65 

simulations). Related efforts aim at learning improved parameterizations from online bias correction or analysis increments 

incurred in sequential data assimilation (e.g., Gregory et al., 2023, 2024). Rapid progress is expected on this front in the coming 

years. 

A second important application of “soft AI” is the desire to replace specific numerical algorithms within PDE-based models 

by surrogate models in order to accelerate the simulation’s time-to-solution. Studies exist within the generic field of 70 

computational fluid dynamics (Kochkov et al. (2021) and atmospheric modelling (Kochkov et al., 2024), and with ocean-

specific applications currently underway, all of which taking advantage of the concept of differentiable programming (Sapienza 

et al., 2024). For an overview of ideas of hybrid methods that integrate machine learning and physics-based modeling in Earth 

system modeling broadly, see Irrgang et al. (2021). 

2.2 “Hard AI” – replacing numerical simulations with surrogate models 75 

Over the last decade, with the acceleration of AI based solutions in other fields, a number of approaches to model the 

atmosphere and ocean using different hard AI have been developed. It is necessary to distinguish between three different 

conceptual approaches: (i) data driven, (ii) physics-informed, and (iii) neural network solvers for PDE. 

The first approach would be the adaptation of neural networks that have been proven useful in other fields to reproduce the 

results of numerical model simulations (see Minuzzi and Farina (2023), Xie et al. (2023), Xu et al. (2023), Puscasu (2014), 80 

Gracia et al. (2021), Accarino et al. (2021)). The results of these AI-based solutions may produce meaningless output, as the 

training strategy of a neural network is to minimize a mathematical loss function, i.e., the mean squared error between the 

prediction and the original target. An evolution of this approach is to include some physical constraints in the loss function in 

order to force the ML algorithm to produce more consistent outputs, as the Navier-Stokes equation (Ma et al., 2022; Daw et 

al., 2021). This method is known as physical-informed neural networks (PINNs; but see Du et al., 2023, for a cautionary tale 85 

on extrapolation using PINNs). Recently, another approach, which tries to solve differential equations using neural networks, 

is under development. Although this method is mostly developed for other physics fields, the methodology and knowledge can 

be applied to ocean modeling (Zubov et al., 2021; Smets et al., 2023). 

There are several neural network architectures that are actively being used for data driven or physical-informed networks: (i) 

Long Short-term Memory, (ii) Convolutional, (iii) Generative Adversarial Networks, and (iv) Reservoir Computing. 90 

Long Short-term Memory networks use a special type of neuron that keeps track of previous inputs (short-term memory) and 

are especially useful for predicting time-series, as the current state of the ocean is constrained by the previous states. 

Convolutional networks use a mathematical operation called convolution to compress information, learning features or patterns 

in the input. This kind of network is useful for 3D input data, i.e. feeding a 3D grid with the spatial grid of the ocean and the 

depth (third dimension) provide different variables values for each grid node, like sea surface temperature, height or current 95 

speed and direction. The Generative Adversarial Network combines two different networks, one is a generator that tries to 

produce a solution from an input and the second network has to determine whether the input is real data or produced by an AI. 

https://doi.org/10.5194/sp-2024-18

Discussions

Preprint. Discussion started: 20 September 2024
c© Author(s) 2024. CC BY 4.0 License.

dav
Highlight
Maybe some high level explanation of how this approach "tries to solve differential equations using NNs" would useful here



4 
 

These two networks compete one against the other (as adversaries), so when the generator network is good enough, the 

discriminator will not be able to determine if the image is real or fake. Finally, Reservoir Computing (RC), a method based on 

recurrent neural networks with a pool of interconnected neurons forming the “reservoir”, is particularly well adapted to the 100 

emulation of time series (e.g., Penny et al., 2022, Platt et al., 2023). 

These ML algorithms have been successful for the following applications: waves (James et al., 2018), sea surface temperature 

(Wolff et al., 2020), sea level (Nieves et al., 2021), dissolved oxygen (O'Donncha et al., 2022), ocean color (Chen et al., 2019), 

ocean surface circulation (Sinha and Abernathey, 2021), and sea ice drift (Andersson). 

3 Enhancing data assimilation with ML algorithms 105 

There is a strong conceptual correspondence between machine learning and data assimilation (e.g., Abarbanel et al., 2018). 

This provides various opportunities for embedding ML approaches within operational data assimilation workflows deployed 

in ocean prediction. Examples so far are largely restricted to “toy problems” (such as the “Lorenz 96 model”) or reduced-order 

versions of Earth system models but targeting eventual applications for ocean prediction (Bocquet et al., 2020; Brajard et al., 

2021; Penny et al., 2022). 110 

3.1 “Hard AI” – replacing numerical simulations with surrogate models 

The concept of digital twins (DTs) is rapidly gaining traction within the ocean science community and Earth system science 

more broadly (e.g., Bauer et al., 2021a, 2021b). Following the definition from NASEM (2022) (see also Niederer et al., 2021; 

National Academies of Sciences, Engineering, and Medicine, 2023), a DT is “a set of virtual information constructs that mimics 

the structure, context and behavior of an individual/unique physical asset, or a group of physical assets, is dynamically updated 115 

with data from its physical twin throughout its life cycle and informs decisions that realize value. A digital twin is highly 

dynamical, mimicking the time evolution of its physical asset (PA) via advanced simulation and emulation capabilities; it is 

updated by ingesting vast amounts of observational data of diverse types; and it enables WHAT-IF queries and multiple 

realizations to support prediction of responses of the PA to hypothetical perturbations with quantified uncertainties.” 

Virtually all aspects of ocean forecasting – and ML opportunities therein – may be viewed through the DT lens, from the need 120 

to generate high-fidelity simulations or digital representations, ingesting, i.e., assimilating large, heterogeneous data streams, 

the development of fast surrogates or emulators to either accelerate simulations or provide comprehensive uncertainty 

estimates, to the generation of diagnostic data that create value for (possibly rapid) decision support. 

3.2 Challenges 

Among the challenges of fully realizing the opportunities of ML approaches in ocean prediction is the fact that, in the absence 125 

of adequate, densely sampled observational data, most ML applications rely on the use of data obtained from high-fidelity 

model simulations as training data sets. These data sets are very expensive to generate, limited in the temporal ranges that they 
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can represent, remain subject to unquantified structural and parametric model uncertainty, require vast amounts of storage 

(order of PetaBytes), and are thus challenging to query. Cloud-based solutions are the most promising approach for ubiquitous 

data access and analysis capabilities “close to the data” (Abernathey et al., 2020).  130 

Within the realm of machine learning (ML) applications for ocean forecasting, progress has been somewhat limited. Recent 

developments, however, have marked a shift in this landscape, particularly with the introduction of Fourier Neural Operators 

(FNOs) for modeling oceanic processes, as suggested by Bire et al. (2023), Chattopadhyay et al. (2023), and Sun et al. (2024). 

These studies present fully data-driven ocean models that match the capabilities of traditional numerical ocean models in 

predicting high-resolution sea surface height (SSH) fields. FNOs, already established in the domain of weather forecasting 135 

(e.g., Bonev et al., 2023; Watt-Meyer et al., 2023), are attractive for their performance in learning complex, high-dimensional 

mappings and their ability to incorporate physical laws and constraints, which are prominently observable in the spectral 

domain. Concurrently, Wang et al. (2024) introduced a transformer-based model tailored for oceanic applications, 

demonstrating performance that rivals that of leading operational global ocean forecasting systems. Similar advances are being 

made in data-driven prediction of sea ice cover in the polar oceans (see Bertino and Heimbach, this issue). This body of work 140 

signifies the emergence of a promising research avenue in fully data-driven ocean modeling, despite it still lagging 

considerably behind the advancements seen in weather forecasting. We posit that the drive of Hard AI solutions in NWP by 

private sector companies is related to the prospect of high-stakes / high-reward applications. Such applications for ocean 

predictions should be better articulated to attract similar research efforts. Careful evaluation of skill, such as now being 

discussed more comprehensively in NWP (e.g., Charlton-Perez et al., 2024) will also be required for operational ocean 145 

prediction. 

Another challenge presents the extension of ML applications to seasonal, inter-annual and multi-decadal (i.e., climate) time 

scales (see e.g., the discussion in Gentine et al. (2021) and Beucler et al. (2024)). Here, the increased need of models or 

invariant operators (physics-based or surrogates) to conserve fundamental properties (mass, energy, momentum, active tracers) 

puts severe demands on ML approaches. Arguably, as these approaches increasingly incorporate physical knowledge, they 150 

will converge to the realm of classical inverse methods (Willcox et al., 2021). In this context, the concepts of differentiable 

programming and “online learning” are rapidly gaining traction to bridge physics-based modeling with SciML (e.g., Gelbrecht 

et al., 2023; Shen et al., 2023; Zhang et al., 2023; Sane et al., 2023, Kochkov et al., 2024). 
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