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My summary and recommendation

The authors present a “state of the art” view of machine learning with regard to how it has been
and can be used for ocean prediction. The manuscript is well organized, and has mostly
up-to-date citations - which is a serious challenge in this rapidly developing field. I think the
manuscript should be eventually published. However, I have two major comments that I believe
should be addressed before it can be published.

Major Comments

- The list of architectures given in section 2.2 should be revised. On the one hand,
considering “blocks” or components of the network, it is not really a comprehensive list
since it ignores

- Graph Neural Networks (i.e., the backbone of GraphCast, one of the leading
atmospheric emulators (Lam et al., 2023))

- Transformers, which have been revolutionary in other ML/AI fields like natural
language processing and image recognition/generation, and serves as the
backbone for some of the leading atmospheric emulators like Pangu Weather (Bi
et al., 2023), FuXi (Chen et al., 2023), FengWu (Chen et al., 2023), and in a
sense FourCastNet (although FNOs/AFNOs/SFNOs tend to “feel” different than
other transformers; Pathak et al., 2022)

- Regarding Convolutional Networks, at least some of the various works from Dale
Durran’s group should be listed, especially since the papers led by Weyn helped
kick off the ML weather emulation generally. For example (Weyn et al., 2019;
Weyn et al., 2020; Weyn et al., 2021; Karlbauer et al., 2023; Wang et al., 2024).

The architectures above have proven skill in emulating medium range weather, whereas
two of the architectures listed (LSTMs and Reservoir Computing) have not. Given that
the authors state that the ocean prediction workflow mirrors that of NWP, I think it is
therefore natural to make this comparison to Medium Range Weather. Moreover, for a
more generic list like what is shown in this paper one could put LSTMs and Reservoir
Computers under the same architecture umbrella, since they are both Recurrent Neural
Networks, and therefore share the same inductive biases as outlined by Battaglia et al.,
2016. As a final note on the RNNs, if Reservoir Computing is included in this list, then it



may be useful to include references that focus on GFD related emulation rather than just
Lorenz-like systems. For example Arcomano et al., 2020 & Smith et al., 2023 might be
useful to some readers.

However, note that the distinction between these “architectures” is somewhat soft here,
since for example:

● Pangu uses a Transformer as the processor, but uses CNNs during the encoding
steps.

● Both the AIFS (Lang et al., 2024) and GenCast (Price et al., 2024) uses a Graph
network based encoder/decoder, but uses a Transformer as the processor
(where for GenCast this is used as the Diffusion Denoiser rather than an
emulator, but the overall idea remains).

● The emulator developed by Karlbauer et al., (2023) uses a U Net (i.e.,
convolutional) backbone, but also includes Gated Recurrent Unit (GRU) blocks,
which is a Recurrent Neural Network “architecture”.

This is what I mean when I refer to these as “blocks” of a network architecture - the
components can be used interchangeably to make up a distinct emulator architecture.
Therefore, it’s somewhat unclear when these are listed as distinct components.

On top of that, I do not think that GANs should be given in the same list for several
reasons. First of all, this refers to a completely different method of training a network,
rather than an architectural “block” as noted above, and so it should be given in a
distinctly different list. Secondly, GANs are more or less not being used anymore, in
favor of Diffusion models (e.g., GenCast as in Price et al., 2024). That said, I believe the
more useful distinction here, which is separate from the list of architectural blocks noted
above, is the distinction between emulators that are trained to be deterministic forecast
models (which most of these citations fit under), versus generative models, i.e. models
that are designed to be probabilistic. A short list of popular generative model frameworks
would include: Variational Auto Encoders, Generative Adversarial Networks, and
Diffusion Models. Again, this is distinct from the list above because, for example, one
could use any of the blocks above as the denoiser in a Diffusion model - UNets, Graph
networks, transformers, or some combination thereof could be used.

- This is somewhat subjective, but I strongly oppose the “Hard AI” and “Soft AI”
terminology that is used. I recognize that the authors are using this in reference to the
work by Chantry et al., (2021). However, I think that these words tend to obfuscate the
task at hand, and I would instead suggest the following terms: “Emulators” or “Purely
data driven prediction models” or something like that instead of “Hard AI”, and “Hybrid
Physics and ML” or something like that for “Soft AI”. Other than the fact that Hard and
Soft do not actually describe the learning task, the main reason that I do not like these
terms is because designing a purely data driven model is not exactly harder than
developing a hybrid model. In fact, designing a hybrid model should be much harder
because it requires the dynamics/physics based model to have an adjoint, so that



gradient information can flow between the state vector (which is used to compute the
loss function) and the parameter values (i.e., neural network weights). There are very
few models which are actually fit for this task, and designing them to be so is extremely
challenging. Moreover, hybrid models are bound to the CFL condition, as any dynamical
model is, and therefore require much shorter timesteps than purely data driven
counterparts.

I don’t mean to belabor the point, but I think the numbers really do the talking. Consider
the comparison between the purely data driven emulator GraphCast (Lam et al., 2023)
and the hybrid physics/ML model NeuralGCM (Kochkov et al., 2024). For training,
GraphCast required 4 weeks of training on 32 TPU devices (128 TPU weeks), whereas
NeuralGCM required 3 weeks of training on 256 TPUs (768 TPU weeks) for a model
resolution that is ~3 times as coarse (0.7 degree vs 0.25 degree) and uses 5 million
fewer parameters (31 million vs 36 million). In terms of on-demand cost using Google
Cloud Platform, this amounts to a rough estimate of 21,500 USD to train GraphCast, vs
129,000 USD to train NeuralGCM.

All that to say, the “soft” problem actually seems a bit harder to me.

Minor comments

- Line 30: “prerequisite to for” -> “prerequisite for”
- Line 71: I would also include the following work in the list of hybrid dynamics/ML models:

Arcomano et al., 2023
- Line 78: PDE -> PDEs.
- Line 83: I think the “i.e.” should actually be “e.g.” since MSE based loss (i.e., L2 norm

loss) is only one example. Another popular choice is an L1 norm loss, although this has
similar detrimental effects like producing overly blurred output. In generative
applications, though, more generic loss functions are being used.

- Line 138: Since the positive side of FNOs is listed, and since this is for an ocean
audience, I would also list their main drawback for ocean applications - that they will be
challenging (and maybe infeasible) to use in the ocean due to non periodicity and
continental boundaries. This can create artifacts at the boundaries, which would limit
their stability, and overall attractiveness, in comparison to atmosphere applications.
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