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Remarks: 

• Our responses to reviewers included in this document are the updated version 
based on the previously uploaded author comments (AC1, AC2) during the open 
discussion stage.  

 

• In situ data used for validation has been submitted to PANGAEA. It is now in the 
proof-reading stage and will be soon freely available via the doi link below: 
 
Xi, H., Wiegmann, S., Hohe, C., Schmidt, I., and Bracher, A.: A validation data set of 
phytoplankton pigment concentrations and phytoplankton groups measured on water 
samples collected from various expeditions. PANGAEA [data set], 
https://doi.org/10.1594/PANGAEA.982433 (dataset in review), 2025. 
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Author Comments in response to Referee #1 

Overview 

The authors discuss that changes in phytoplankton biomass, proxied by 
chlorophyll a concentration (Chla), partitioned between different phytoplankton functional types 
(PFTs) provides not only direct ecological information but also indirect information about 
environmental change due to niche differences between the functional types. PFTs in optical 
applications are groupings of phytoplankton separable by optical signatures of pigment 
composition (and possibly ancillary environmental information), that however contain a 
reasonable degree of taxonomical and ecological information. Such partitioning of bulk Chla can in 
principle be applied to remote sensing, and has been demonstrated globally for open ocean areas. 
However, due to the limited lifespan of orbital remote sensing missions, long term analysis based 
on remote sensing requires merging of data from multiple sensors, including harmonization to 
account for differences in sensor specification, calibration, and performance. Nonetheless, the 
official PFT product released by the Copernicus Marine Services (CMEMS) includes appropriate 
merging only for data between 2002 and Apr-2016, using data based only from the Sentinel-3 
mission from May-2016. This resulted in a continuity issue in the time series of PFT products from 
CMEMS. The authors attempted a previous harmonization method they had developed for a study 
in a specific ocean region, but despite it achieving a good performance on the global average, 
spatially resolved data over the globe showed large discrepancies between the datasets on 
regional scales. Therefore, the authors developed a new harmonization method that also takes as 
input the spatial information, in the form of geographic coordinates, in order to harmonize the data 
on a spatially resolved level, and the global average as a consequence.  This allowed the authors to 
evaluate a 2 decade long time series of PFT abundance at the global average and over selected 
regions. The authors then describe the temporal patterns observed and provide some comment 
concerning the use of this information. 

The study represents further progress in an relevant research topic, in which the consortium of 
authors includes recognized experts and leader in the field. It provides a method that potentially 
improves the official PFT CMS products, and provides new information on temporal and spatial 
changes of optical/ecological phytoplankton groups. The written and visual presentation is mostly 
clear, with exceptions noted in the detailed review below. 

While in general my perspective is positive, I do have concerns related to the methodology and 
results that can impact the interpretation in the study and I believe should be addressed for a 
publication. My comments are divided in three sections: Major comments and Minor comments, 
have comments that would be expected to be addressed by the authors for a publication, and 
Suggestions, which contain suggestion for improvement that need not be addressed by the 
authors. 

We thank the reviewer very much for providing us constructive and elaborate comments and 
suggestions, which help a lot to improve the quality of the manuscript. We have carefully 
addressed these points in our response below to each comment and also revised the manuscript 
accordingly as indicated in the responses. 

Major comments 
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1. Source data for PFT products and the need for harmonization at the PFT product level. 
Section 2.1 provides the description of the database used for the PFT products, indicating 
that GlobColour merged product is used from Jul-2002 to Apr-2016 and OLCI data used 
from May-2016 to present. The justification to not use the GlobColour merged product for 
the whole dataset period (Jul-2002 to present) is that VIIRS/SNPP data has been identified 
to contain biases possibly caused by sensor degradation. I have little experience with 
GlobColour or the CMEMS PFT product, so it is possible I’m missing something, but I do not 
find that justification to be sufficient, specially considering that among the authors are the 
producers of the GlobColour merged dataset. For example, is it the case that GlobColour 
cannot exclude VIIRS/SNPP data since 2017 from the merged product calculation due to 
some specific reason? Or is a solution being sought but not implemented in the time frame 
of this study? This is relevant because if the radiometric data, base for the PFT calculation, 
is not harmonized between sensors, then the PFT product will have to be harmonized, 
which is the topic of this study. And since Xi et al. (2023) have already dealt with such 
harmonization, the problem seems to be known for a few years. To be clear, I believe it is 
fair that the study took this course, but I’m missing more discussion on the why it was so. 
For example, regardless of the situation with GlobColour, as discussed above, this course 
could be justified if PFT derived from OLCI/Sentinel-3 alone would be superior (due to 
higher spatial resolution and more bands) but that does not seem to be the case as PFT 
data derived from OLCI/Sentinel-3 data is corrected to match the PFT data derived from the 
merged dataset. The authors could argue that the way forward is merging of the derived 
product (e.g., PFT) and not of the base radiometric data as the configurations of the new 
sensors become more diverse, and so the future of initiatives such as GlobColour is the 
merging of derived products. Again, I may be missing something, but it seems to me a 
clearer justification is necessary. 

We respond to this comment from the following aspects: 

• GlobColour merged products on the Copernicus Marine Service 

GlobColour (https://hermes.acri.fr/) provides merged ocean color (OC) products and also 
products from single sensors, however, only all sensor merged OC products and Sentinel 
3A/B OLCI products from GlobColour have been implemented to the Copernicus Marine 
Ocean Data Store through the Copernicus OC-TAC (Ocean Color Thematic Data Assembly 
Center) consortium, consistent with another version ESA-CCI (OCCCI) products. Therefore, 
two datasets are supplied by GlobColour on the Copernicus Marine Service: 
1. Merged products (all available OC sensors including OLCI) with the longer timeseries; 
2. OLCI products with a better spectral resolution and higher frequency of revisit (sum 

Sentinel 3A OLCI and + Sentinel 3B OLCI). 

Our PFT products for the Copernicus Marine Service are meant to be derived from the 
merged OC products and OLCI data too, to keep the consistency of the source data. 
However, we had to include more Rrs bands data (at least eight) than that are available on 
the Copernicus Marine Service (which is five merged bands) to train our PFT algorithms, so 
we used the merged Rrs data from GlobColour instead which provides more available bands 
from SeaWiFS, MODIS, MERIS, and VIIRS SNPP sensors (either merged or single sensor).   

• VIIRS SNPP data 
We understand the reviewer’s point that one should avoid using products that are sought to 
be biased due to sensor drifting. GlobColour takes directly the VIIRS data with the NASA 

https://hermes.acri.fr/
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(re)processing, which is the same as for the MODIS Aqua data. Such drifting in the VIIRS 
data after 2017 could not be resolved before we performed our study. However, we could 
not exclude VIIRS data because our PFT retrieval algorithm was developed based on the 
eight Rrs bands from the merged sensors which after 2012 are from MODIS and VIIRS 
merged data. We had to include VIIRS to generate a complete PFT product time series from 
2002 onwards, and due to the drifting of VIIRS we can only choose one year overlapping 
with OLCI in this study.  

Good news is that lately the GlobColour has implemented the latest reprocessing 
(R2022.0) where the VIIRS SNPP drift has been corrected, and its time series shows good 
consistency with other sensors such as MODIS and VIIRSJ1 as highlighted by the NASA 
monitoring (https://oceancolor.gsfc.nasa.gov/data/analysis/global/). With that we can 
investigate (but not in this study) a longer overlapping period by reproducing all the relevant 
PFT products and check the validity of the approach. 

• Harmonization 

The inconsistency between PFT estimates from merged OC sensors and OLCI are inherent 
because two sets of models have been used, even though both are empirical orthogonal 
function based (Xi et al. 2021), they are based on different spectral bands information, 
trained with two different satellite-in situ matchup data sets spanning different time 
periods with different amount of matchup points, i.e. for merged OC sensors we obtained 
~1500 matchup data points from 2002 to 2016, and for OLCI only ~ 300 from 2016 to 2021 
which is simply due to the shorter time span and fewer data being publicly available for the 
most recent years. Though the algorithm is based on more spectral information because 
more bands are available from OLCI, our uncertainty analysis following Xi et al (2021) has 
revealed that the OLCI derived PFTs bear higher per-pixel uncertainty than the PFTs from 
the merged OC sensors. This is possibly due to the smaller training data set. Therefore, we 
decided to correct OLCI derived PFTs to the merged OC sensor derived PFT for deriving a 
consistent data set. Our first attempt was the straightforward linear regression correction 
as proposed in the Xi et al. (2023) study. However, this method is ineffective in reducing the 
spatial discrepancies. Therefore, we finally employed in this study the random forest 
regression, among several ML methods tested, to resolve the spatial inconsistency, which 
performs much more effectively in harmonizing the two types of PFT data sets. Such 
harmonization is necessary at least for the current derived PFT products on the Copernicus 
Marine Service, as it is yet not possible to produce consistent long-term PFT products using 
harmonized radiometric data from historic and current sensors. Attempts have been 
carried out for consistent PFT products derived from machine learning ensembles trained 
by incorporating Rrs at only 5-6 merged bands, other ocean color and 
physical/biogeochemical variables (e.g., Zhang et al. 2024), which probably would help to 
upgrade the operational data sets, and such a harmonization might not be necessary 
anymore. The applicability of such an implementation is yet to be testified. However, in our 
previous work (Xi et al. 2020) it was shown that a minimum of eight bands for the EOF-
based PFT algorithms is necessary to produce data sets of high accuracy. 

We agree with the reviewer that more explanation is necessary – and due to the length limit 
– we have added a short discussion as following: 

“Generating long term consistent PFT data from a single set of sensor(s) is challenging due 
to discontinuous satellite missions and different sensor specifications. PFT data derived 

https://oceancolor.gsfc.nasa.gov/data/analysis/global/
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using models established based on different sensor sets bear different levels of 
uncertainties (Xi et al., 2020). OLCI, being the newest sensor, has more spectral bands 
which should be beneficial for PFT retrievals. But, due to limited in situ pigment data set 
available for the model training, it does not show superior performance than the merged 
OC products. Harmonization is so far necessary for the current derived PFT products on the 
Copernicus Marine Service as it is yet not possible to produce consistent long-term PFT 
products using harmonized radiometric data from historic and current sensors. This is 
because the EOF-based algorithms require at least eight bands (Xi et al. 2020). Attempts 
have been carried out for consistent PFT products derived from big data driven deep 
learning ensembles by incorporating Rrs at only 5-6 merged bands, together with other 
ocean color and physical/biogeochemical variables (e.g., Zhang et al. 2024), which shows 
potential to upgrade the operational data sets. Though, the applicability of the 
implementation of such approach for operational products is yet to be testified.” 

2. Overlapping period for model calibration and partitioning of data for model calibration 
and validation. Section 2.1 describes that though the official PFT CMEMS product uses the 
merged GlobColour product only from 2002 to Apr-2016, this was extended by the authors 
to Apr-2017 in order to provide a year of overlap with PFT from OLCI/Sentinel-3 (May-2016 
onwards) for model calibration and validation. It is possible that at least a year of overlap is 
necessary to fully take in account the variability caused by seasonality, but having a single 
year is challenging as that specific year may present conditions that are specific to that year 
only. Considering the argument for not using the merged product beyond 2017 discussed in 
the previous point, I understand that one year is all data that it is available, however, the 
potential impacts of this single overlap year should be discussed. A closely related issue is 
the data splitting between calibration and validation sets described in Section 2.2. A 
random subset can produce “data leakages” (information in the validation set also present 
in the calibration set) that produce overly optimistic performance statistics (e.g., Meyer et 
al., 2018). In the case of this study, the model application (May-2016 to present) is beyond 
the time domain of the model calibration (May-2016 to Apr-2017), so in my view an ideal 
validation strategy should demonstrate that the model can well extrapolate in time, which 
is not possible when the data is randomly split as the calibration and validation sets cover 
the same time period. I note that this is specially necessary because while before 
(regression method of Xi et al., 2023) the correction was a matter of relating two variables 
over a large spatial domain, now the relation depends explicitly on geographical location, 
for which dynamics might be changing in time. This is somewhat a conundrum considering 
again the data availability for the GlobColour merged product as it is (with potentially bias 
data from VIIRS/SNPP from 2017) and the potential need to include all seasons. 
Nonetheless, I believe those aspects to be very relevant and that they should be considered 
in the discussion. 

We appreciate the reviewer’s suggestion and the concern about the ‘data leakage’. We 
understand the logic and reason why the inclusion of temporal partitioning is important. 
However, it is uneasy to apply it to our case here. Our MLBE model is basically a correction 
scheme, that is trained based on 12 months satellite data spanning only one year (the 
overlapping period of the two sensor sets), with the model we wanted to set up a regression 
model through random forest learning trying to identify better the spatial variation of the 
PFT data from the two sensor sets, so that it could fit one pattern to the other on the whole 
global scale. We considered all pixel data (over 4 million available data points) from the 12 
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monthly products, and we wanted to cover as complete as possible the whole global region 
to make sure the training learns the pattern globally. By applying the suggested temporal 
partitioning we would lose data, e.g., in high latitudes, if we exclude a certain month in the 
training. This may cause biases in the learning process. Then the trained model would very 
likely not be applicable to the test set (because though they would be temporally 
independent from the training set, the spatial information which is not included in 
the training set could not be learnt from the training and thus the ML correction 
model might fail in the test data and also in the global products in later years). 
Though we applied a straightforward random splitting in this study, the training and test 
data sets were nearly homogeneously divided over space and time by the random splitting 
due to large amount of the data points (> 4 millions), as shown in Fig. R1 the cumulative 
distribution function (CDF plots for each of the input variables). This makes sure that the 
trained model take the most knowledge of the available data sets within the limited time 
period that can be used in the correction model.  

    
Figure R1. Cumulative distribution functions of input variables (PFT, lat, lon) involved in the 
MBLE training set, taking diatom as representative. 
 
We agree on the reviewer’s comment, as the test set carries very similar information as the 
training set, which can produce overly optimistic performance statistic, and having data for 
only a single year is challenging because the year may present conditions that are specific 
to that year only which can cause wrong predictions for other years.  
 
Reviewer 2 also posted a similar comment and we understand that this is a critical point. 
However, this potential ‘data leakage’ could not be well resolved in this study due to limited 
overlapping data set. We hence add a paragraph below about ‘model caveats’ in the 
discussion to cover this aspect: 
“However, the MLBE model training was based on 12 months satellite data spanning only 
one year (the overlapping period of the two sensor sets), trying to identify the spatial 
variation of the PFT data from the two sensor sets, so that it could fit one pattern to the 
other on the whole global scale. It has been reported that random splitting between training 
and test sets may produce data leakages (Meyer et al., 2018; Stock et al., 2023) which 
result in overoptimistic performance in the test data but less good performance in actual 
applications to other data sets. To avoid data leakage data temporal partitioning has been 
suggested to ensure that the training and data sets are independent. However, random split 
was applied in the study as the temporal partitioning does not apply to our case. The MLBE 
model is basically a correction scheme trained based on all pixel data (over 50 million 
available data points) from 12 monthly PFT products. The purpose was to cover as 
complete as possible the global region to ensure that the training learns the pattern 
globally. By applying the suggested temporal partitioning we would lose data, e.g., in high 
latitudes, if we exclude a certain month in the training. This can cause biases in the learning 
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process, then the trained model would very likely not be applicable to either the test set or 
other data sets that contain the missing periods. The straightforward random splitting in our 
study ensured the homogeneous splitting between the training and test data sets over 
space and time thanks to the large amount of data points, so that the trained model learned 
the most knowledge from the available data within the limited time period. Though such 
random partitioning has been widely used (e.g., Li. et al. 2023; Zoffoli, et al. 2025), one 
should keep in mind that having data for only a single year is challenging because the year 
may present conditions that are specific to that year only which may cause unrealistic 
predictions for other years. It is therefore noteworthy that target-oriented data splitting and 
cross-validation such as considering spatial and temporal blocks should be applied in 
machine learning based studies when data set allows (e.g., Zhang et al. 2024). 

3. Reference PFT from in situ data. Though Section 2.3 provides information about the 
different datasets, their sampling and partitioning, no information is given on how PFT Chla 
is calculated from in situ measurements. The authors have addressed this important issue 
in previous publications, but a summary of the method should also be included here, with 
citations to their previous work where the methodology is discussed in greater detail. In 
addition, any changes to methods or to the base data analysis methods (instruments, 
protocols, operators, etc) for calculation of PFT from in situ measurements should be 
noted, and if it is the case, discussed if they may impact the validation in Figure 3b (dataset 
2, Section 3.2). 

Thanks for pointing out this missing information. The PFT calculation for the validation data 
sets is consistent with that used in the algorithm retuning for the updated version, which 
has been implemented to generate PFT products for Copernicus Marine Service in Nov. 
2024. We have added in the revised manuscript in Section 2.3 “The in situ data were derived 
from quality-controlled in situ HPLC pigment concentrations using the diagnostic pigment 
analysis (DPA) with updated pigment-specific weighting coefficients following Xi et al. 
(2023a; 2023b), consistent with the calculation of the in situ PFT data used for the updated 
EOF-PFT algorithms described in Section 2.1.”  

4. Calculation of spatial averages. The methods do not specify how the regional and global 
averages were calculated, in particular if the area contribution of each pixel was 
compensated for the area distortion of a regular lat/lon grid. It is possible that this was 
taken into account, but since it is not mentioned in the manuscript I ask the authors to 
confirm. This is mostly relevant for the global average, but also applicable to the regional 
averages. In my understanding, the average should contain a weight proportional to the 
cosine of the latitude to make the contributions of each pixel to the average proportional to 
their contributions to the surface ocean area. This would likely change considerably the 
global trend in diatom Chla, as the increase seem to be driven by increases at high 
latitudes. 

We agree with the reviewer about the area distortion when calculating the mean spatially, 
and a latitudinal weighted average can compensate the geographical distortion by taking 
into account proportional contribution. We therefore have modified the calculations of the 
global and the four regional averages when generating PFT time series. The latitude-
weighted averaging was applied to the logarithmic transformed Chla concentrations to get 
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the log based mean which are then converted to their natural values. So, for each monthly 
product over a certain region, the average was calculated based on the equation below: 

𝑀𝑒𝑎𝑛!"#$_&'$()* = exp	(∑,-.(#$()∙23	(5"#$!"#$%&)∑ ,-.(#$()
)   

We have added the following text in the revised manuscript: “PFT time series of different 
spatial scales were calculated by applying the weighted average (taking cosine of the 
latitude as weights) to the monthly PFT data over the defined regions, to take into account 
the proportional contribution of each pixel to the global surface ocean due to area 
distortion in the gridded dataset. The latitude-weighted averaging was applied to the 
logarithmic transformed PFT Chla to get the log-based mean which are then converted to 
natural values.” 

The time series plots in Figure 4 have also been updated, showing overall slight changes in 
the trends, however the Chla magnitudes of the PFT time series at global scale are in 
general slightly lower for the weighted average, except for prokaryotes. This is mainly due to 
much lower prokaryotes Chla concentrations in high latitudes (compared to lower 
latitudes) contributed less with the latitude weighting applied, contrasting to other PFTs 
which have in general higher Chla in higher latitudes. The trend of the global diatom Chla 
was slightly decreased (from 0.0014 to 0.0011 mg m-3 per decade), while their increase at 
high latitudes is still very prominent, as the proportional weights are also considered in the 
‘divider’ which is the weighted total number of observations. Accordingly, we have updated 
Figure 4 and the statistical description related to this figure in Section 3 of the revised 
manuscript.  
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Figure 4. Panel (a): Updated (corrected) time series of the five PFT Chla based on the global mean from 2002 
to 2023. Merged sensor-derived PFT products cover the period of July 2002-April 2017 (indicated with dots), 
and OLCI-derived PFT products are for May 2016-Dec 2023 (indicated with crosses). Note that the OLCI-
derived products have been corrected to merged products based on MLBE. Panel (b): Trends of diatoms, 
haptophytes, dinoflagellates, green algae and prokaryotes Chla on the global scale and four regional scales 
(the North Atlantic Ocean, the Mediterranean Sea, the Arctic Ocean and the Southern Ocean), respectively. 
Trend slopes per decade with uncertainties have been indicated with significant trends marked with an 
asterisk (*). 

North Atlantic Mediterranean
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Arctic Ocean Southern Ocean

Southern OceanArctic Ocean
North Atlantic Mediterranean Sea
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5. Temporal pattern shift after the overlapping period. Despite the efforts in data 
harmonization, the limitations of the cal/val procedure discussed before and the validation 
analysis for high latitude data ask for additional support for the temporal patterns observed 
after the overlapping period. For example, the Chla of diatoms changes considerably from 
2017 onwards (Figure 4). A corresponding change in behaviour is observed for green algae 
and prokaryotes. Maybe the authors can provide independent evidence sourced from the 
literature (specially in situ studies, if any is available) for the temporal / regional patterns 
they observe in given PFT, in order to provide support that the changes are not potentially 
influenced by the correction procedure. The two external supports provided by the authors 
(CMEMS trend product and the study of Van Ostend et al., 2023) concern only bulk Chla, 
that is, without information about increasing or decreasing abundances of specific groups. 
This is also relevant specially considering that validation in Figure 3b suggests poor 
performance of the retrievals against in situ data for the Arctic. This performance results 
should be considered in the discussion of the global average and Arctic average trends - 
currently the discussion states only, and in my opinion incorrectly, that no overestimation 
was observed for the validation with Arctic data in dataset 2. 

We have noticed the insufficient discussion regarding the PFT trends or changes. So far there 
are limited studies which investigated or reported the PFT interannual variability covering the 
recent years. There are also quite limited long term in situ data over large scales. However, our 
recent investigation at a smaller scale, i.e., in the Fram Strait, has indicated that the surface 
diatom from our in situ data collected in the LTER Hausgarten area (75°N to 80°N, 5°W to 10°E) 
since 2009 has shown unanimous pattern with the satellite PFT time series (Figure R3 and R4) – 
i.e., diatoms have shown an overall increase in this region in more recent years (satellite from 
2018 but in situ from 2019 due to lack of data in 2018). The other PFTs show rather more an 
oscillational feature but not as dramatic as seen in diatoms. It should also be noted that the in 
situ data were collected mostly in the spring to summer months (which vary from May to 
September) and can not represent fully the whole season. However, the Fram Strait in situ data 
support our satellite time series showing the elevation of diatoms in the last five years until 
2023 in the Artic region. These results have been presented at the Ocean Optics Conference as 
a poster in Oct 2024 (Xi et al. 2024).  
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Figure R2. Time series of satellite derived total Chla (upper panel) and PFT Chla (bottom panel) 
in the Fram Strait. 

 

Figure R3. Boxplots showing in situ TChla and PFT Chla time series from 2009 to 2023. PFT Chla 
are derived from HPLC pigment data using diagnostic pigment analysis (DPA) following Xi et al. 
(2023a,b). Data were collected from the LTER ‘HAUSGARTEN’ expeditions in the Fram Strait: 
PS74, PS76, PS78, PS80, PS85, PS93.2, PS99, PS106/107, PS121, MSM93, PS126, PS131, 
PS136, available from Xi et al. (2023b) except for the last four expeditions. 
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We have added more discussion regarding the challenges in OC data trends and further 
support to our findings in section 4.3 –  

“Nevertheless, studies have shown that the OC satellite derived surface chlorophyll a 
concentration presents contrasted trends between available products that are generated 
based on different retrieval algorithms and merging methods, e.g., the OC-CCI and GlobColour 
products (Yu et al., 2023), suggesting the need for careful interpretation of the trends for multi-
OC sensor derived products. Inconsistencies between missions remain a significant challenge 
to overcome in order to provide climate-quality time series, which needs efforts from both the 
spatial agencies and scientific communities for correcting the inconsistencies in radiometric 
data with long years’ time series and apply proper harmonization to the merged products 
(Pauthenet et al., 2024).  

So far there are limited studies that investigated or reported the PFT interannual variability 
covering the recent years. There is also quite limited long term in situ PFT data available over 
large scales. However, our recent investigation at a smaller scale in the Fram Strait (Xi et al. 
2024), has indicated that the surface diatom from the in situ data collected in the LTER 
Hausgarten area (75°N to 80°N, 5°W to 10°E) since 2009 has shown unanimous pattern with the 
satellite PFT time series, i.e., diatoms have shown an overall increase in this region in more 
recent years (satellite from 2018 but in situ from 2019 due to lack of data in 2018). The other 
PFTs show rather an oscillational feature but not as dramatic as seen in diatoms. It should also 
be noted that the in situ data were collected mostly in the spring to summer months (which 
vary from May to September) and cannot represent fully the phytoplankton development during 
the whole season or the interannual variabilities. However, these Fram Strait in situ data 
support our satellite time series with the diatom increase in the years from 2018 to 2023 in the 
Artic region.”  

We intend not to put these results in the supplementary materials as they will be included in a 
manuscript that is in preparation. 

6. PFT anomaly in 2023. I’m not convinced this analysis add information to the study. I would 
argue that in principle a given year anomaly is relevant in a specific study about that year 
phenomena, but in the context of global change, a given year anomaly would seem relevant 
to me only if the anomaly is beyond a given range of variability of the data along the 2 
decade of the climatology (e.g., 2 standard deviations). 

We understand the reviewer’s point. We make some clarifications here regarding the 
content of the manuscript. This study was conducted as a contribution to Chapter 2 
“Updated and new pathways in ocean science” of the 9th Edition of the Copernicus Ocean 
State Report, where Essential Ocean Variables and Ocean Monitoring Indicators should be 
included to build the baseline for the scientific studies. Results for the global ocean and for 
European regional seas should be included, and should cover information over the past 
decades, and up to the target year of each Report cycle which is 2023 for the OSR9 
(submission in 2024, final release in 2025). With these guidelines, it is necessary to include 
the state of the PFTs of the latest year (i.e. 2023) into our study as an update, and anomaly 
maps present more meaningful information rather than the plain PFT distribution maps. 
Though the focus of this study is not about this specific year phenomena, it is still 
worthwhile to show that certain PFTs e.g. diatoms of 2023 are dramatically enhanced in 
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higher latitudes compared to the average state of the last two decades. We hence still keep 
the anomaly maps in the revised manuscript.       

7. Relative composition. While the study provides the analysis in terms of Chla as a proxy for 
biomass of each PFT, one could expect that new information is available when normalizing 
the data to evaluate changes in relative composition. For example, even though diatoms 
might be increasing in the a given environment, other groups might be increasing faster and 
so the relative contribution of diatoms be decreasing. I believe such analysis would add 
more to the current study than the 2023 anomaly analysis commented above.  However, 
such analysis is not necessary and the study is sufficient without it. 

We have also thought about changes in the relative composition of PFT to the total biomass 
and have looked at the fraction normalized to the total sum of the PFT Chla, assuming that 
the sum of the 5 PFTs representing the majority of marine phytoplankton (Figure R2). There 
are still other groups such as cryptophytes and pelagophytes, considering their relatively 
low contribution to the total biomass (Zhang et al. 2024) we assume they don’t affect 
significantly the general pattern of the PFT composition time series. Ideally, we could also 
use total Chla product as the base knowledge. However, due to discrepancy between the 
Chla products derived from different processings and algorithms such as OCCCI and 
GlobColour (Brando et al. 2024; Garnesson et al. 2024), the PFT fraction estimates from 
different product can also be quite different (this aspect is however out of the scope of this 
study). Because of this, we chose to simply use the sum of the five PFTs for the fraction 
estimation and as a showcase the global PFT fraction time series are been shown here. We 
decided to include the global PFT fraction time series in this response only, as it will also be 
publicly available after the review process. We would not like to show such plots in the 
manuscript due to length limit of the manuscript and also because they present more or 
less similar information with that of the PFT Chla time series: i.e., with an increase in 
diatom Chla and a decrease in prokaryotes from 2017-2018, though some different 
temporal patterns have also been observed, such as haptophytes and green algae present 
a relatively stable contribution to the total biomass though their absolute quantifications 
showing more inter-annual variability (Figure 4 global time series). 

 

Figure R2. Time series of PFT fraction normalized to total sum of PFT Chla. 

Minor comments 
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1. Abstract: The OLCI acronym is not defined when used in the abstract. 

This has been revised. 

2. Line 16: "the merged sensor-derived PFT" - it not clear to me what the authors are referring 
to. The main text makes clear this is specifically the GlobColour merged dataset, one of the 
inputs to the CMEMS PFT product. While understanding the limitations of space in the 
abstract, the authors are encouraged to modify the abstract to make it more specific. 

We have revised the phrasing in the abstract as below and also clarified it in the 
introduction section due to space limitation of the abstract.  
“The correction scheme is applied to the Sentinel 3A/B Ocean and Land Color Instrument 
(OLCI) derived PFT data, to match them with the PFT data derived from GlobColour merged 
ocean color products using the overlapped period.” 

3. Line 45 and other locations: The study is described as merging PFT products from different 
sensors, but I understood that what is being merged is the PFT products from two datasets: 
PFT from GlobColour merged sensors and PFT from OLCI/Sentinel-3. In that sense, 
phrasing it as merging between sensors can cause confusion. 

We checked and rephrased all related terms throughout the text to avoid the confusion.  

4. Line 68: It seems the potential bias is identified specifically in the VIIRS/SNPP, and not on 
VIIRS/NOAA-20. If that is correct, please add the mission specification to the text. Exactly, 
the GlobColour merged OC data include only SeaWiFS, MODIS, MERIS, and VIIRS-SNPP 
during their life time, VIIRS-J1/NOAA-20 is not included. It has been clarified in the revised 
version. ~ L38-41 

5. Line 86: Please provide a citation (Xi et al., 2021? or “this study”, if it is the case) for the 
statement that PFT from OLCI/Sentinel-3 carries higher uncertainty than PFT data from 
merged GlobColour.  
Xi et al. (2021; 2023) were cited for the uncertainty statement. 
A similar validation analysis to that presented in Figure 3 Section 3.2 could be provided for 
the OLCI data before harmonization to the GlobColour merged sensor data as 
supplementary material. 
During the revision we realized that the validation procedure was not rigorous enough 
which might cause the poorer validation performance for the corrected data than that of 
the original OLCI-derived PFT. This is because the MLBE scheme used in this study was 
trained based on coarse resolution 25 km monthly products. This was the resolution used 
to produce the time series analysis including trends (see section 2.2). However, for finally 
using the daily 4 km PFT products, the MLBE scheme must be trained also on this temporal 
and spatial resolution which is necessary for producing the correct satellite matchup PFT 
data. Applying the monthly 25 km-based correction seems to result in inconsistent spatial 
projection e.g. from larger pixels to much smaller pixels.  
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Figure R3. Original PFT Chla derived from OLCI sensors in comparison with in situ PFT 
dataset 1 (global data set from 2016 to 2020, maximum N=99 but varies for different PFTs 
due to possible absence).   

 

Figure R4. Original PFT Chla derived from OLCI sensors in comparison with in situ PFT 
dataset 2 (only own expeditions in high latitudes from 2021 to 2023, maximum N=134 but 
varies for different PFTs due to possible absence).   

Though the computation was quite heavy and it took a bit more time for the training, we 
managed to obtain a higher resolution-based ensemble by applying the same MLBE 
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concept as described in the manuscript and then re-generate the validation, which shows 
much better statistics than that based on the 25-km data in the original manuscript, and is 
comparable to the validation using the OLCI derived data before the correction (which are 
shown below). We have put these validation results before correction in the supplementary 
material as Figure S1 and S2 and updated in the manuscript the corresponding description 
in Section 3.2, and added further discussions in Section 4.3 (last paragraph). 

6. Line 101: It is not clear to me what the PFT data transformation achieves. It is stated that 
the log-transform and scaling/shifting achieve a normal distribution in the rage [0, 1], but a 
normal distribution is not restricted to a finite range and shifting/scaling does not change 
the data distribution type, just the magnitude of its specific parameters (e.g., mean and 
standard deviation). Authors are encouraged to rephrase or provide further details. In 
addition, they are encouraged to provide more information on the transformation used to 
achieve latitude and longitude data in normal distribution and in the range [-1, 1]. 

We apologize for the confusing statement in the original manuscript. The geographic 
information (latitude and longitude) was just simply normalized to the range [-1,1] given 
their original ranges of [-89.875, 89.875] and [-179.875, 179.875] (with 0.25° resolution) and 
they follow uniform distribution. They were not transformed to a normal distributed set. The 
PFT Chla datasets, similar to the total Chla product, basically follow the log-normal 
distribution (Campbell, 1995). Therefore, they were just log-transformed in the ensemble 
training. As the purpose of the learning scheme is to correct OLCI-derived PFT data set to 
the merged sensor derived PFT data set, the scaling of the input log-based PFT to [0,1] is not 
really necessary. During this study we tried both scaling and non-scaling, the results 
showed no difference and the ensemble used in this manuscript was actually generated 
with the non-scaling but log transformed PFT data.  

Therefore, we have modified this statement in the manuscript by revising the sentence 
“Before performing the training, latitude and longitude were normalized to [-1, 1], and 
natural log-transformed PFT data were normalized to [0, 1] so that these parameters are in 
Gaussian distribution” to “Before performing the training, the PFT data sets were log-
transformed due to their nature of log-normal distribution (Xi et al. 2021). The geographic 
information (latitude and longitude) was simply normalized to the range [-1,1] by scaling 
their original ranges of [-89.875, 89.875] and [-179.875, 179.875] (with 0.25° pixel size).” 

7. Line 123: The acronym CMEMS is used for the first time here, but not defined. Note that 
Copernicus Marine Service is mentioned for the first time in Line 42, where the acronym 
could be defined. 

We now use ‘Copernicus Marine Service’ everywhere in the manuscript, as it is not 
recommended anymore by the Mercator Ocean International (MOi)* to use any acronyms 
such as CMEMS or CMS in reports, publications and presentations. It was emphasized 
specifically at the last Copernicus Marine Phase II Kickoff Meeting in Jan 2025 in Toulouse, 
so we will follow the new recommendation.  
*MOi is an intergovernmental organization selected by the European Commission (EC) in 
2014 to implement the Copernicus Marine Service.  
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8. Line 175: The authors evaluate that only diatoms, dinoflagellates and prokaryotes show 
some relation between sensor-derived and in situ PFT data in the validation analysis 
presented in Figure 3b. However, in my perspective the Arctic dataset shows no relation for 
any group except perhaps prokaryotes. This suggests that the Arctic dataset (or region) is 
the most problematic (not necessarily polar regions or high latitudes in general), and where 
future work could focus. 

We strongly agree with the reviewer. In the manuscript we have also emphasized that the 
future work should focus more on the high latitudes to provide a better PFT monitoring 
there (second last paragraph in Section 4). Fortunately through our lately funded 
Copernicus project ML-PhyTAO we are now able to investigate this issue further: 
https://marine.copernicus.eu/about/research-development-projects/2022-2024/ml-
phytao    

9. Line 269: First use of the acronym OMI, but it is not defined in the manuscript. 

We have added the full name ‘Ocean Monitoring Indicator’ in the revised manuscript. 

10. Table 1: This is likely planned to be updated upon acceptance, but currently the 
documentation for the third row, concerning the new in situ PFT data states only “data to be 
submitted to PANGEA” and adds a citation that is not in the reference list. Considering that 
PANGEA offers the possibility of data publication with moratorium specifically to address 
situations of peer-review, I recommend that the data submission process, which might take 
time, be initiated and the information on the manuscript updated to reflect final 
citations/references and links. This point is also applicable to the data availability 
statement in lines 118-119 and 298-299. 

We agree with the reviewer to get a valid reference link of the data submitted to PANGAEA. 
The data set was submitted in March and luckily has been issued in early May with an 
available doi. Current status is still ‘in review’ and will be publicly available upon 
publication. 

Xi, H., Wiegmann, S., Hohe, C., Schmidt, I., and Bracher, A.: A validation data set of 
phytoplankton pigment concentrations and phytoplankton groups measured on water 
samples collected from various expeditions. PANGAEA [data set], 
https://doi.org/10.1594/PANGAEA.982433 (dataset in review), 2025. 

11. Figure 1: The reference data set is presented in the Y-axis in subfigures (c) and (d). While 
this is unconventional, it is not per se an issue, however some statistics (regression slope, 
R2 and MARD) are not symmetrical and do depend on which variable is taken as reference. 
The exception is model II regression for slope when using major axis estimation (cf. 
Legendre and Legendre, 2012), but that is not indicated. 

Type II regression is used considering that both variables carry errors. We have now 
indicated it and defined all statistical terms involved in this study by adding section 2.5 in 
the revised manuscript. 

https://marine.copernicus.eu/about/research-development-projects/2022-2024/ml-phytao
https://marine.copernicus.eu/about/research-development-projects/2022-2024/ml-phytao
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12. Figure 3: The plots present values of “MDPD” though the acronym is not defined in the main 
text or figure caption. I note that in the main text MARD is defined, so even if it is a typo, the 
acronym for percentage still need to be formally defined. 

As responded above, subsection 2.5 has been is added to define all statistical terms used 
in the study. 

2.5 Statistical metrics 
To evaluate the correction ensemble performance, relative difference (RD), median 
absolute difference (MAD) and median absolute relative difference (MARD) have been 
calculated based on the Chla data of each PFT, which are defined as below. 
RDi = (Chlai

OLCI - Chlai
Merged) / Chlai

Merged, where i is the ith PFT 

RD678 =
(9:2$_678'()*;9:2$_678+,-.,/)

9:2$_678+,-.,/
∗ 100%                                        (1) 

MAD678 = median	of		|Chl𝑎_PFT<=9> − Chl𝑎678?@AB@C|                     (2) 

MARD678 = median	of	
D9:2$_678'()*;9:2$_678+,-.,/D

9:2$_678+,-.,/
∗ 100%		               (3) 

To validate the corrected PFT Chla data with in situ data, statistical metrics including 
regression slope, determination coefficient (R2), root mean square difference (RMSD, mg m-

3), and median percent difference (MDPD, %) have been used. For definition equations of 
these terms please refer to Xi et al. (2020). Note that the slope and R2 are calculated in the 
base 10 logarithmic scale. 

13. Figure 4: The indication of the regions in the map is not very legible. Though I believe there is 
no ambiguity where the regions are and what they cover, I think the visual presentation can 
be improved. The authors could consider using semitransparent filled boxes with a colour 
as in the legend by the side of the figure (removing the diagonal lines and names, and the 
grey shading of the polar areas). 

We have considered the reviewer’s comment and updated map. 

Suggestions 

1. Chlorophyll a is presented both with italicized (abstract) and roman (main body) "a". I 
suggest using the italicized form, as that is the form used in reference documents in the 
field of photosynthetic pigment analysis (e.g., Roy et al., 2011). 

We have corrected all and used the italicized form, chlorophyll a (Chla), in the revised 
manuscript. 

2. Communities vs Assemblages vs Ensembles vs Guild. Some terms in ecological literature 
have been used so loosely over the years such as to lose meaning. Currently, my opinion is 
to follow Fauth et al. (1996), who provides a classification and definition based on an 
intersection of three major areas: Phylogeny, Geography, and Resources. In their 
nomenclature, an ensemble is a "phylogenetically bounded group of species that use a 
similar set of resources within a community". Alternatively, assemblages are 
"phylogenetically related groups within a community". And "local guild" (though in this 
case, "local" seems inappropriate) is a group of "species that share a common resource 
and occur in the same community". While not a perfect system, at least it is a structured 
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one. Admittedly, I have used "phytoplankton assemblage" in my own work, though 
"ensemble" in their nomenclature or "guild" (considering phylogeny in algae is a loose link, 
and that phytoplankton includes cyanos) seem superior descriptors. I encourage the 
authors to consider this nomenclature system. 

Thanks for the comment and the reference. We admit that we used phytoplankton 
community (composition) throughout the text as it is thought to be the most well accepted 
term used within the community (e.g., Cetinic et al. 2024) though it might not be 
ecologically rigorous. We have already used the term ‘ensemble’ for the machine learning 
approach, and “guild” is rather rarely seen in the literature though has been used in a few 
biological studies related to phytoplankton sizes (e.g. Sabbeta et al. 2005; Laraib et al. 
2024).  

3. "Composition structure" appears several times in the text. Consider using just 
"composition". It has been revised. 

4. Line 33: The start of the phrase, “Dedicated to marine biogeochemistry, ”, is unclear to me 
and seems unnecessary. Maybe just use a connector like “Therefore,”? It has been revised. 

5. Line 39: Chla was already defined in line 28. It has been revised. 

6. Line 50: “correction skill” -> “correction procedure”. It has been revised. 

7. Line 52: The corrected PFT time series” -> “The harmonized PFT time series”. It has been 
revised. 

8. Line 54: “For a longer goal” -> “Considering that ocean colour missions are planned to be 
continued into the next decade and beyond, ”. It has been revised. 

9. Line 59: "The PFT datasets with per-pixel uncertainty (product ref. no. 1 in Table 1) have 
been generated by the EOF-PFT approach adapted based on the version proposed by Xi et 
al. (2021). The updated algorithms (...)" -> "The PFT datasets with per-pixel uncertainty 
(product ref. no. 1 in Table 1) are produced with a modified version of the EOF-PFT 
approach proposed by Xi et al. (2021). The modified algorithms (...)". It has been revised. 

10. Line 135: “cannot be assured” -> “could not be assured”? It has been revised. 

11. Line 151: “The slope of the corrected dataset is close to one” -> “The slope of 
the regression when using the corrected dataset is close to one”. It has been revised. 

12. Line 289: I’m not sure if “white ocean” and “green ocean” are well established jargon, but if 
the jargon is not necessary to facilitate communication, I suggest describing the intended 
concepts directly.  
They were defined by the Copernicus Marine Service and have been widely spread in the 
community: https://marine.copernicus.eu/services/monitoring-ocean. We added in the 
brackets after “white ocean” and “green ocean” their brief definitions.  

13. Equation 1: As it is, it seems to me a bit lost in the manuscript and it could be generalized. 
Maybe include after the call to it in line 143, “relative difference (RD in %) between the 
OLCI-derived and merged sensor-derived diatom Chla. RDs were calculated as: RDi = 
(Chlai

OLCI - Chlai
Merged) / Chlai

Merged, where i is the ith PFT.” 

We modified and moved the equation to section 2.5. 

https://marine.copernicus.eu/services/monitoring-ocean
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14. All figures that include a global map: For visual consistency, I suggest that all global maps 
are presented in the same projection. I recommend the projection of Figure 6 to also be 
used in Figures 1, 2 and 5, or the Mollweide projection (equal area) to be use for all global 
maps. 

We have applied the same projection for all other figures as in Figure 6 (Robinson projection 
in this case) in the revised manuscript. 

15. Figure 3: A recommendation is to not extend the regression lines beyond the range of the X-
axis data, as this is beyond the domain of the data used to calculate the regression. 

We have modified the plots and kept the regression line in the range of the data in the X-
axis. 
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Author Comments in response to Referee #2 

This paper introduces a machine learning-based correction method to harmonize global 
phytoplankton functional type (PFT) data obtained from various ocean color sensors, addressing 
the discrepancies caused by differences in sensor characteristics. The authors propose the use of 
a random forest-based ensemble learning method (MLBE) for this task. By correcting the OLCI-
derived PFT data to match the merged sensor-derived PFT data, this method ensures more 
consistent and reliable global PFT observations. The study demonstrates the utility of this 
correction for analyzing long-term trends in PFTs, revealing significant changes in the biomass of 
diatoms and dinoflagellates, while showing more stable trends for haptophytes and prokaryotes. 
Additionally, it examines anomalies in PFTs, noting significant increases in diatom and 
dinoflagellate Chla concentrations, particularly in higher latitudes and coastal regions. 

Overall, the paper is clear in its objectives, and the methodologies employed are robust. The 
innovative use of machine learning to calibrate and harmonize PFT data from different sensors is a 
particularly valuable contribution. This approach significantly improves the accuracy and reliability 
of the resulting PFT time series, showcasing the potential of machine learning in enhancing ocean 
color application. Given the importance and novelty of this research, I recommend the publication 
of this paper. Before final acceptance, I have a few suggestions (listed below) that I hope the 
authors will consider to further refine and enhance the quality of the work. 

We thank very much the reviewer for the positive feedback and constructive comments. We have 
carefully considered the suggestions during the revision. Below please find our 
response/clarificafication to each comment. Please note that we have also revised massively the 
manuscript and included more discussion according the other reviewer’s comments. 

1. During model training, the authors randomly partitioned the dataset into a training set 
(70%) and 100 test sets (30%), achieving good validation results. However, the inclusion of 
latitude and longitude as input features may raise concerns about potential data leakage 
and shortcut learning, as spatial dependencies could result in overly optimistic estimates 
of model accuracy (https://doi.org/10.1038/s41559-023-02162-1). To mitigate this risk and 
improve the rigor of the validation, I suggest the authors incorporate temporal partitioning 
in addition to random partitioning. By dividing the dataset based on time and ensuring that 
the training and test sets are strictly independent in terms of temporal coverage, the MLBE 
model's ability to generalize across both time and space can be more rigorously assessed. 

We appreciate the reviewer’s suggestion and the reference provided. We understand the 
logic and reason why the inclusion of temporal partitioning is important. However, we don’t 
think it applies to our case here. Our MLBE model is basically a correction scheme, that is 
trained based on 12 months satellite data spanning only one year (the overlapping period of 
the two sensor sets), with the model we wanted to set up a regression model through 
random forest learning trying to identify better the spatial variation of the PFT data from the 
two sensor sets, so that it can fit one pattern to the other on the whole global scale. We 
considered all pixel data (over 4 million available data points) from the 12 monthly 
products, and we wanted to cover as complete as possible the whole global region to make 
sure the training learns the pattern globally. However, by applying the suggested temporal 
partitioning we would lose data, e.g., in high latitudes, if we exclude a certain month in the 
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training. This may cause biases in the learning process. Then the trained model would very 
likely not be applicable to the test data set (because though they would be temporally 
independent from the training set, the spatial information in e.g. high latitudes which is not 
included in the training set could not be learnt from the training and thus the ML model 
might fail in the test data and also in the global products in later years).  

Though we applied a straightforward random splitting in this study, the training and test 
data sets were nearly homogeneously divided over space and time by the random splitting 
due to the large amount of the data points (> 4 millions), as shown by (CDF, for each of the 
input variables) in Fig. R1 the cumulative distribution function. This ensures that the trained 
model takes the most of the knowledge of the available data sets within the limited time 
period that can be used in the correction model.  

    
Figure R1. Cumulative distribution functions of input variables (PFT, lat, lon) involved in the 
MBLE training set, taking diatom as representative. 
 
Reviewer 1 also posted a similar comment and we understand that there are limitations 
existing in the training and testing procedure and a discussion is necessary to clarify this 
point. Therefore, we add a paragraph of discussion about model caveats to cover this 
aspect: 
“However, the MLBE model training was based on 12 months satellite data spanning only 
one year (the overlapping period of the two sensor sets), trying to identify the spatial 
variation of the PFT data from the two sensor sets, so that it could fit one pattern to the 
other on the whole global scale. It has been reported that random splitting between training 
and test sets may produce data leakages (Meyer et al., 2018; Stock et al., 2023) which 
result in overoptimistic performance in the test data but less good performance in actual 
applications to other data sets. To avoid data leakage data temporal partitioning has been 
suggested to ensure that the training and data sets are independent. However, random split 
was applied in the study as the temporal partitioning does not apply to our case. The MLBE 
model is basically a correction scheme trained based on all pixel data (over 50 million 
available data points) from 12 monthly PFT products. The purpose was to cover as 
complete as possible the global region to ensure that the training learns the pattern 
globally. By applying the suggested temporal partitioning we would lose data, e.g., in high 
latitudes, if we exclude a certain month in the training. This can cause biases in the learning 
process, then the trained model would very likely not be applicable to either the test set or 
other data sets that contain the missing periods. The straightforward random splitting in our 
study ensured the homogeneous splitting between the training and test data sets over 
space and time thanks to the large amount of data points, so that the trained model learned 
the most knowledge from the available data within the limited time period. Though such 
random partitioning has been widely used (e.g., Li. et al. 2023; Zoffoli, et al. 2025), one 
should keep in mind that having data for only a single year is challenging because the year 
may present conditions that are specific to that year only which may cause unrealistic 
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predictions for other years. It is therefore noteworthy that target-oriented data splitting and 
cross-validation such as considering spatial and temporal blocks should be applied in 
machine learning based studies when data set allows (e.g., Zhang et al. 2024).” 

2. When calculating the relative difference (RD in %) using PFT data, is the RD calculation 
performed on the log-transformed data or the raw PFT data? It is recommended to clarify 
this in the paper. 

The RD calculation is based on non-log transformed (real) PFT Chla concentrations to 
describe the true relative difference between products from two different sensors, similar 
to the other commonly used statistical parameters in ocean color models such as mean 
percentage difference, which are also based on the Chla concentration (e.g. Xi et al. 2020; 
2021). This has been clarified in the revised manuscript. We have added a subsection to 
clarify it better: 

2.5 Statistical metrics 
To evaluate the correction ensemble performance, relative difference (RD), median 
absolute difference (MAD) and median absolute relative difference (MARD) have been 
calculated based on the Chla data of each PFT, which are defined as below. 
RDi = (Chlai

OLCI - Chlai
Merged) / Chlai

Merged, where i is the ith PFT 

RD678 =
(9:2$_678'()*;9:2$_678+,-.,/)

9:2$_678+,-.,/
∗ 100%                                        (1) 

MAD678 = median	of		|Chl𝑎678'()* − Chl𝑎678?@AB@C|                    (2) 

MARD678 = median	of	
D9:2$_678'()*;9:2$_678+,-.,/D

9:2$_678+,-.,/
∗ 100%		               (3) 

To validate the corrected PFT Chla data with in situ data, statistical metrics including 
regression slope, determination coefficient (R2), root mean square difference (RMSD, mg m-

3), and median percent difference (MDPD, %) have been used. For definition equations of 
these terms please refer to Xi et al. (2020). Note that the slope and R2 are calculated in the 
base 10 logarithmic scale. 

3. Similarly, when calculating the PFT anomaly, is the calculation performed on the log-
transformed data or the raw PFT data? 

The PFT relative anomaly (%) was also calculated based on the original PFT Chl-a values. 
This has been clarified in the revised manuscript in section 2.5. 

4. When calculating the average, it is important to clarify whether the authors computed a 
weighted average based on factors such as latitude, or if they simply calculated the 
unweighted mean of all pixels. Given that PFT variations are primarily observed in high-
latitude regions, using a latitude-weighted average would be more reasonable. 

We agree with the two reviewers about the area distortion when calculating the mean 
spatially, and that a latitudinal weighted average can compensate the geographical 
distortion by taking into account proportional contribution. We therefore have modified the 
calculations of the global and the four regional averages when generating PFT time series. 
The latitude-weighted averaging was applied to the logarithmic transformed Chla 
concentrations to get the log based mean which are then converted to their natural values. 
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So for each monthly product over a certain region, the average was calculated based on the 
equation below: 
𝑀𝑒𝑎𝑛!"#$_&'$()* = exp	(∑,-.(#$()∙23	(5"#$!"#$%&)∑ ,-.(#$()

). 
 
We have added the following text in Section 2.4 of the revised manuscript: “PFT time series 
of different spatial scales were calculated by applying the weighted average (taking cosine 
of the latitude as weights) to the monthly PFT data over the defined regions, to take into 
account the proportional contribution of each pixel to the global surface ocean due to area 
distortion in the gridded dataset. The latitude-weighted averaging was applied to the 
logarithmic transformed PFT Chla to get the log-based mean which are then converted to 
natural values.” 
 
The time series plots in Figure 4 have also been updated, showing overall slight changes in 
the trends, however the Chla magnitudes of the PFT time series at global scale are in 
general slightly lower for the weighted average, except for prokaryotes. This is mainly due to 
much lower prokaryotes Chla concentrations in high latitudes (compared to lower 
latitudes) contributed less with the latitude weighting applied, contrasting to other PFTs 
which have in general higher Chla in higher latitudes. The trend of the global diatom Chla 
was slightly decreased (from 0.0014 to 0.0011 mg m-3 per decade), while their increase at 
high latitudes is still very prominent, as the proportional weights are also considered in the 
‘divider’ which is the weighted total number of observations. Accordingly, we have updated 
Figure 4 and the statistical description related to this figure in Section 3 of the revised 
manuscript.  
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Figure 4. Panel (a): Updated (corrected) time series of the five PFT Chla based on the global mean from 
2002 to 2023. Merged sensor-derived PFT products cover the period of July 2002-April 2017 (indicated 
with dots), and OLCI-derived PFT products are for May 2016-Dec 2023 (indicated with crosses). Note 
that the OLCI-derived products have been corrected to merged products based on MLBE. Panel (b): 
Trends of diatoms, haptophytes, dinoflagellates, green algae and prokaryotes Chla on the global scale 
and four regional scales (the North Atlantic Ocean, the Mediterranean Sea, the Arctic Ocean and the 
Southern Ocean), respectively. Trend slopes per decade with uncertainties have been indicated with 
significant trends marked with an asterisk (*). 

North Atlantic Mediterranean
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Arctic Ocean Southern Ocean
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5. The MLBE model demonstrates excellent performance, but it would be valuable to explore 
whether it can be applied to data from other sensors. Given the potential for future 
expansion, I recommend that the authors include a brief discussion in the paper about 
potential future work, particularly how the correction method could be further improved or 
extended to incorporate data from other satellite sensors. This discussion would not only 
highlight the adaptability and scalability of the method to other satellite datasets but also 
significantly enhance the broader impact and relevance of this research. I believe that 
including this discussion would add considerable value to the paper. 

We agree with the reviewer. Indeed, such discussion is very necessary. We have added the 
following text in the discussion. We would also like to point out that this manuscript as a 
contribution to the Ocean State Report needs to comply with the length limit, hence we 
tried to include the discussion as concise as possible. 
 
“The correction scheme proposed in this study is specifically designed to address inter-
sensor data inconsistencies in the current Copernicus Marine Service PFT products. The 
present trained model can be only used to correct the OLCI-derived PFT product to match 
the merged sensor-derived product. However, the underlying technical framework is 
adaptable to other common ocean color products, such as optical properties derived from 
multiple sensors, thereby enhancing the overall continuity and consistency of ocean color 
data. As a rapidly emerging and powerful technique, machine learning can be further 
leveraged in ocean color data services, supporting agencies and data platforms in 
delivering high-quality, consistent operational products.” 
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