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Author Comments in response to Referee #2 

This paper introduces a machine learning-based correction method to harmonize global 
phytoplankton functional type (PFT) data obtained from various ocean color sensors, 
addressing the discrepancies caused by differences in sensor characteristics. The authors 
propose the use of a random forest-based ensemble learning method (MLBE) for this task. By 
correcting the OLCI-derived PFT data to match the merged sensor-derived PFT data, this 
method ensures more consistent and reliable global PFT observations. The study 
demonstrates the utility of this correction for analyzing long-term trends in PFTs, revealing 
significant changes in the biomass of diatoms and dinoflagellates, while showing more stable 
trends for haptophytes and prokaryotes. Additionally, it examines anomalies in PFTs, noting 
significant increases in diatom and dinoflagellate Chla concentrations, particularly in higher 
latitudes and coastal regions. 

Overall, the paper is clear in its objectives, and the methodologies employed are robust. The 
innovative use of machine learning to calibrate and harmonize PFT data from different 
sensors is a particularly valuable contribution. This approach significantly improves the 
accuracy and reliability of the resulting PFT time series, showcasing the potential of machine 
learning in enhancing ocean color application. Given the importance and novelty of this 
research, I recommend the publication of this paper. Before final acceptance, I have a few 
suggestions (listed below) that I hope the authors will consider to further refine and enhance 
the quality of the work. 

We thank very much the reviewer for the positive feedback and constructive comments. We 
have carefully considered the suggestions during the revision. Below please find our 
response/clarificafication to each comment. 

1. During model training, the authors randomly partitioned the dataset into a training 
set (70%) and 100 test sets (30%), achieving good validation results. However, the 
inclusion of latitude and longitude as input features may raise concerns about 
potential data leakage and shortcut learning, as spatial dependencies could result in 
overly optimistic estimates of model accuracy (https://doi.org/10.1038/s41559-023-
02162-1). To mitigate this risk and improve the rigor of the validation, I suggest the 
authors incorporate temporal partitioning in addition to random partitioning. By 
dividing the dataset based on time and ensuring that the training and test sets are 
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strictly independent in terms of temporal coverage, the MLBE model's ability to 
generalize across both time and space can be more rigorously assessed. 

We appreciate the reviewer’s suggestion and the reference provided. We understand 
the logic and reason why the inclusion of temporal partitioning is important. However, 
we don’t think it applies to our case here. Our MLBE model is basically a correction 
scheme, that is trained based on 12 months satellite data spaning only one year (the 
overlapping period of the two sensor sets), with the model we wanted to set up a 
regression model through random forest learning trying to identify better the spatial 
variation of the PFT data from the two sensor sets, so that it can fit one pattern to the 
other on the whole global scale. We considered all pixel data (over 4 million available 
data points) from the 12 monthly products, and we wanted to cover as complete as 
possible the whole global region to make sure the training learns the pattern globally. 
However, by applying the suggested temporal partitioning we would lose data, e.g., in 
high latitudes, if we exclude a certain month in the training. This may cause biases in 
the learning process. Then the trained model would very likely not be applicable to 
the test data set (because though they would be temporally independent from the 
training set, the spatial information in e.g. high latitudes which is not included in the 
training set could not be learnt from the training and thus the ML model might fail in 
the test data and also in the global products in later years).  

Though we applied a straightforward random splitting in this study, the training and 
test data sets were nearly homogeneously divided over space and time by the random 
splitting due to the large amount of the data points (> 4 millions), as shown by (CDF, 
for each of the input variables) in Fig. R1 the cumulative distribution function. This 
ensures that the trained model takes the most of the knowledge of the available data 
sets within the limited time period that can be used in the correction model.  

    
Figure R1. Cumulative distribution functions of input variables (PFT, lat, lon) involved 
in the MBLE training set, taking diatom as representative. 
 
Reviewer 1 also posted a similar comment and we understand that there are 
limitations existing in the training and testing procedure and a discussion is necessary 
to clarify this point. Therefore, we add a paragraph of discussion about model caveats 
to cover this aspect: 
“However, the MLBE model training was based on 12 months satellite data spanning 
only one year (the overlapping period of the two sensor sets), trying to identify the 
spatial variation of the PFT data from the two sensor sets, so that it could fit one 
pattern to the other on the whole global scale. It has been reported that random 
splitting between training and test sets may produce data leakages (Meyer et al., 2018; 
Stock et al., 2023) which result in overoptimistic performance in the test data but less 
good performance in actual applications to other data sets. To avoid data leakage data 



temporal partitioning has been suggested to ensure that the training and data sets are 
independent. However, random split was applied in the study as the temporal 
partitioning does not apply to our case. The MLBE model is basically a correction 
scheme trained based on all pixel data (over 50 million available data points) from 12 
monthly PFT products. The purpose was to cover as complete as possible the global 
region to ensure that the training learns the pattern globally. By applying the 
suggested temporal partitioning we would lose data, e.g., in high latitudes, if we 
exclude a certain month in the training. This can cause biases in the learning process, 
then the trained model would very likely not be applicable to either the test set or 
other data sets that contain the missing periods. The straightforward random splitting 
in our study ensured the homogeneous splitting between the training and test data 
sets over space and time thanks to the large amount of data points, so that the trained 
model learned the most knowledge from the available data within the limited time 
period. Though such random partitioning has been widely used (e.g., Li. et al. 2023; 
Zoffoli, et al. 2025), one should keep in mind that having data for only a single year is 
challenging because the year may present conditions that are specific to that year only 
which may cause unrealistic predictions for other years. It is therefore noteworthy 
that target-oriented data splitting and cross-validation such as considering spatial and 
temporal blocks should be applied in machine learning based studies when data set 
allows (e.g., Zhang et al. 2024).” 

2. When calculating the relative difference (RD in %) using PFT data, is the RD 
calculation performed on the log-transformed data or the raw PFT data? It is 
recommended to clarify this in the paper. 

The RD calculation is based on non-log transformed (real) PFT Chla concentrations to 
describe the true relative difference between products from two different sensors, 
similar to the other commonly used statistical parameters in ocean color models such 
as mean percentage difference, which are also based on the Chla concentration (e.g. 
Xi et al. 2020; 2021). This has been clarified in the revised manuscript. We have added 
a subsection to clarify it better: 

2.5 Sta(s(cal metrics 
To evaluate the correcion ensemble performance, relaive difference (RD), median 
absolute difference (MAD) and median absolute relaive difference (MARD) have been 
calculated based on the Chla data of each PFT, which are defined as below. 
RDi = (Chlai

OLCI - Chlai
Merged) / Chlai

Merged, where i is the ith PFT 
RD!"# =

(%&'(_!"#!"#$*%&'(_!"#%&'(&))
%&'(_!"#%&'(&)

∗ 100%                                        (1) 

MAD!"# = median	of		(Chl𝑎_PFT,-%. − Chl𝑎_PFT/01203)                     (2) 

MARD!"# = median	of	
4%&'(_!"#!"#$*%&'(_!"#%&'(&)4

%&'(_!"#%&'(&)
∗ 100%		               (3) 

To validate the corrected PFT Chla data with in situ data, staisical metrics including 
regression slope, determinaion coefficient (R2), root mean square difference (RMSD, 
mg m-3), and median percent difference (MDPD, %) have been used. For definiion 
equaions of these terms please refer to Xi et al. (2020). Note that the slope and R2 are 
calculated in the base 10 logarithmic scale. 



3. Similarly, when calculating the PFT anomaly, is the calculation performed on the log-
transformed data or the raw PFT data? 

The PFT relative anomaly (%) was also calculated based on the original PFT Chl-a values. 
This has been clarified in the revised manuscript in section 2.5. 

4. When calculating the average, it is important to clarify whether the authors 
computed a weighted average based on factors such as latitude, or if they simply 
calculated the unweighted mean of all pixels. Given that PFT variations are primarily 
observed in high-latitude regions, using a latitude-weighted average would be more 
reasonable. 

We agree with the two reviewers about the area distortion when calculating the mean 
spatially, and that a latitudinal weighted average can compensate the geographical 
distortion by taking into account proportional contribution. We therefore have 
modifed the calculations of the global and the four regional averages when generating 
PFT time series. The latitude-weighted averaging was applied to the logarithmic 
transformed Chla concentrations to get the log based mean which are then converted 
to their natural values. So for each monthly product over a certain region, the average 
was calculated based on the equation below: 
𝑀𝑒𝑎𝑛567(_89(:;< = exp	(∑ >?@(7(:)∙'B	(D67(*+,-./)∑ >?@(7(:)

). 
 
We have added the following text in Section 2.4 of the revised manuscript: “PFT time 
series of different spatial scales were calculated by applying the weighted average 
(taking cosine of the latitude as weights) to the monthly PFT data over the defined 
regions, to take into account the proportional contribution of each pixel to the global 
surface ocean due to area distortion in the gridded dataset. The latitude-weighted 
averaging was applied to the logarithmic transformed PFT Chla to get the log-based 
mean which are then converted to natural values.” 
 
The time series plots in Figure 4 have also been updated, showing overall slight 
changes in the trends, however the Chla magnitudes of the PFT time series at global 
scale are in general slightly lower for the weighted average, except for prokaryotes. 
This is mainly due to much lower prokaryotes Chla concentrations in high latitudes 
(compared to lower latitudes) contributed less with the latitude weighting applied, 
contrasting to other PFTs which have in general higher Chla in higher latitudes. The 
trend of the global diatom Chla was slightly decreased (from 0.0014 to 0.0011 mg m-
3 per decade), while their increase at high latitudes is still very prominent, as the 
proportional weights are also considered in the ‘divider’ which is the weighted total 
number of observations. Accordingly, we have updated Figure 4 and the statistical 
description related to this figure in Section 3 of the revised manuscript.  
 



 
Figure 4. Panel (a): Updated (corrected) 7me series of the five PFT Chla based on the global mean from 2002 
to 2023. Merged products cover the period of July 2002-April 2017 (indicated with dots), and OLCI products 
are for May 2016-Dec 2023 (indicated with crosses). Note that the OLCI products have been corrected to 
merged products based on MLBE. Panel (b): Trends of diatoms, haptophytes, dinoflagellates, green algae and 
prokaryotes Chla on the global scale and four regional scales (the North Atlan7c Ocean, the Mediterranean 
Sea, the Arc7c Ocean and the Southern Ocean), respec7vely. Trend slopes per decade with uncertain7es have 
been indicated with significant trends marked with an asterisk (*). 

5. The MLBE model demonstrates excellent performance, but it would be valuable to 
explore whether it can be applied to data from other sensors. Given the potential for 
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future expansion, I recommend that the authors include a brief discussion in the paper 
about potential future work, particularly how the correction method could be further 
improved or extended to incorporate data from other satellite sensors. This discussion 
would not only highlight the adaptability and scalability of the method to other 
satellite datasets but also significantly enhance the broader impact and relevance of 
this research. I believe that including this discussion would add considerable value to 
the paper. 

We agree with the reviewer. Indeed, such discussion is very necessary. We have added 
the following text in the discussion. We would also like to point out that this 
manuscript as a contribuion to the Ocean State Report needs comply with the length 
limit, hence we tried to include the discussion as concise as possible. 
 
“The correction scheme proposed in this study is specifically designed to address inter-
sensor data inconsistencies in the current Copernicus Marine Service PFT products. 
The present trained model can be only used to correct the OLCI-derived PFT product 
to match the merged sensor-derived product. However, the underlying technical 
framework is adaptable to other common ocean color products, such as optical 
properties derived from multiple sensors, thereby enhancing the overall continuity 
and consistency of ocean color data. As a rapidly emerging and powerful technique, 
machine learning can be further leveraged in ocean color data services, supporting 
agencies and data platforms in delivering high-quality, consistent operational 
products.” 
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