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Abstract. Ensemble forecasting has emerged as an essential approach for addressing the uncertainties inherent in ocean 

prediction, offering a probabilistic framework that enhances accuracy of both short-term and long-range forecasts. By more 

effectively addressing the intrinsic chaotic nature of mesoscale and sub-mesoscale variability, ensemble methods offer critical 

insights into forecast errors and improve the reliability of predictions. This paper reviews the ensemble methodologies 

currently used in ocean forecasting, including techniques borrowed from weather prediction like virtual ensembles and Monte 15 

Carlo methods. It also explores the latest advancements in ensemble data assimilation, which have been successfully integrated 

into both ocean general circulation models and operational forecasting systems. These advancements enable more accurate 

representation of forecast uncertainties (error-of-the-day) by sampling perturbations conditioned on available observations. 

Despite the progress made, challenges remain in fully realizing the potential of ensemble forecasting, particularly in developing 

tools for analyzing results and incorporating them into decision-making processes. This paper highlights the crucial role of 20 

ensemble forecasting in improving ocean predictions and advocates for its wider adoption in operational systems. 

1 Introduction to Ensemble Forecasting 

Forecasts of the ocean state generated by numerical models are inherently uncertain owing to the nonlinear chaotic nature and 

imperfect internal physics of the ocean models, and inevitable uncertainties in their inputs such as initial and boundary 

conditions, atmospheric forcing, bathymetry, etc. (e.g., Lorenz, 1996; Pinardi et al., 2008; Sandery et al., 2014; Vandenbulcke 25 

and Barth, 2015; Kwon et al., 2016; Sanikommu et al., 2020). Thus, the future ocean cannot be completely described by a 

single forecast model run, and is better described by a set, or ensemble, of forecasts that provides an indication of the range of 

possible future ocean states and that represents the uncertainty in the forecasts, also known as errors-of-the-day (Houtekamer 

and Zhang, 2016; Hoteit et al., 2018) (Figure 1).  

Ensemble forecasting has increasingly become a key aspect of weather and climate predictions – see Du et al. (2019) for a 30 

review – as it provides a basis to communicate forecasts confidence to end users for better decision. Similarly, it should become 
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an integral part of ocean forecasts. Ensemble forecasting was indeed proven to provide extended ocean prediction skills 

compared to deterministic forecasts, especially for extended time-scale predictions (Mullen and Buizza 2002; Ryan et al., 

2015). This ensemble probabilistic framework is also needed for short-range forecasting to better describe the intrinsic chaotic 

nature of the mesoscale and sub-mesoscale variability resolved by the new generation high-resolution ocean models (Thoppil 35 

et al., 2021). Information about forecast uncertainty can be used in many ways. For instance, the probabilistic information that 

ensembles provide are particularly valuable for early warnings of hazardous conditions in the ocean and can be integrated into 

the decision-making process based on economic values (Richardson, 2000; Du and Deng, 2010). On short timescales, the 

probabilistic information is useful to trigger the deployment of environment protection measures in the event of an oil spill 

(Barker et al., 2020), to advise fishermen about the most probable regions of fishing zones, to help coast-guards on the probable 40 

areas to focus for search and rescue operations (Melsom et al., 2012), or to advise on path planning for autonomous marine 

vehicles (Yoo et al., 2021), etc. On climate time scales, ensemble forecasting is useful for providing probabilistic information 

on climate indices such as El Nino and the Indian Ocean Dipole (Schiller et al., 2020). 

 

Figure 1: Schematic illustration of deterministic hindcast (black line at the forecast date 0) and forecast (pink line after day 0), and 45 
ensemble forecasts (black lines after day 0) of the ocean state. The ensemble forecasts were driven by various sources of uncertainties 

(including initial conditions, atmospheric forcing, model physics, bathymetry, …). The ensemble forecast mean and the unknown 

truth are respectively represented by the orange and green lines. Solid red dots denote SST observations. 
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Figure 2: Schematic diagram illustrating the steps involved in various ensemble forecasting methods. Characteristics of each method 50 
are also listed. 

1.1 Methods 

Ensemble forecasts find their roots in weather forecasting and can be generated (i) as virtual ensembles whose members are 

selected from deterministic forecasts and/or historical runs, (Hoffman and Kalnay, 1983; Ebert, 2001; Du, 2004; Schwartz and 

Sobash, 2017), (ii) or by applying some form of Monte Carlo (MC) analysis in which a set of forecasts are produced by 55 

perturbing the model physics and/or inputs, as a way to account for their inherent uncertainties (Martin et al., 2015; Houtekamer 

and Zhang, 2016; Hoteit et al., 2018). Ensemble forecasts may also be generated following a multi-model approach as the 

forecasts of different ocean models, or from their combination with MC forecasts (Figure 4.5-2). Ideally, the actual future 

oceanic state should fall within the predicted ensemble range.  

• Virtual ensemble forecasts. The lower-cost virtual ensembles can be used to quantitatively estimate forecast 60 

uncertainties based on existing forecasts through various techniques including for instance: (a) the time-lagged 

ensemble, which automatically creates a forecast ensemble by pulling multiple forecasts that have been initiated at 

different times, (b) the poor-man ensemble, which gathers single-model forecasts from different sources and is thus 

a multi-model ensemble from existing forecasts, and (c) the analogue ensemble, made of past forecasts matching up 

with the current forecast. These methods are straightforward but may result in restricted ensembles due to the limited 65 
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available sources of existing forecasts. They are also not designed to capture the flow-dependent error-of-the-day (Du 

et al., 2019).  

• Monte Carlo (MC) ensemble forecasts. This kind can be generated by perturbing the ocean model physics and/or 

inputs (Du et al., 2019). Uncertainties in the ocean model could be accounted for by perturbing its internal sources of 

uncertainties which could come from the missing physics, parameterization schemes, and numerical errors. Different 70 

approaches were suggested such as (a) the multi-physics approach which uses a different parameterization scheme 

for each ensemble member, (b) the perturbed parameters approach of a selected parameterization scheme, and (c) the 

stochastic parameterizations approach which injects stochastic perturbations into the physical parameterization 

schemes. Alternatively, given that the short-term predictability of the atmosphere and the ocean is dominated by their 

initial conditions (ICs), various methods to perturb the initial model state have been proposed to generate ensembles. 75 

These include (i) random perturbations sampled from some available error statistics, (ii) the singular vectors and their 

variants designed to represent the perturbations with the fastest error growth, and (iii) the vector breeding approach, 

which computes the initial perturbations as the differences between a pair of past concurrent forecasts. Different 

approaches were also suggested to perturb the open boundaries and the atmospheric forcing, but ensembles of 

atmospheric and oceanic forecasts are now available from the global operational prediction centers and can be readily 80 

used to generate ocean forecasts ensembles.  

Virtual ensemble forecasts were traditionally more common for operational purposes as they do not require major extra 

computations, although their large ensemble spread (measure of uncertainty) was deemed as a disadvantage. The multi-model 

approach involves the tedious task of running and maintaining different ocean general circulation models (OGCMs), though 

this could be handily done by combining the forecasts from different operational centers. Until recently, ensemble forecasts 85 

generated by a MC approach were widely used for research purposes but started to make their way into more operational use. 

Despite their demonstrated skills, these produce adequate forecasts only when the ensemble is a representative sample of the 

probability distribution of the underlying dynamical system (Leith, 1974). Setting the ranges, or more generally, the probability 

distributions of the perturbations and varying them in time for those dynamical variables remains a challenge. The tremendous 

advances in ensemble data assimilation (EnDA) approaches and their successful implementations with ocean general 90 

circulation models (OGCMs), and also operationally, now provide another framework to represent the error-of-the-day, not 

only for the initial conditions but also for the inputs and parameters, by offering the possibility of sampling the perturbations 

from their actual, albeit approximate, distributions conditioned on available observations (Hoteit et al., 2018; Carrassi et al., 

2022). 

1.2 Probabilistic assessment 95 

Forecast ensembles are evaluated through their sample statistics, mainly their mean, which can be directly compared with the 

observations, once available, and their spread – the standard deviation with respect to the ensemble mean, which is an important 

indicator of the confidence in the prediction; a small/large spread indicates low/high uncertainty in the forecast. High-order 
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moments, such as skewness and Kurtosis, are also analyzed for more information about the shape of the ensemble distribution. 

Probabilistic validation and verification methods, including reliability, resolution, sharpness and rank histograms, are also used 100 

to evaluate ensemble forecasts (Johnson and Bowler, 2009). An ensemble is reliable when its sampled probability of a predicted 

event gives an estimate of the expected frequency of the event occurring. Resolution is defined as the degree to which the 

forecast deviates from the climatological event frequency. For a reliable ensemble, increasing this deviation enhances the 

usefulness of the forecast. In the same context, sharpness measures the ability of an ensemble forecast to spread away from 

the climatological average. Ideally, an ensemble forecast needs to be reliable, with as many forecasts as possible away from 105 

the climatological average. Rank histograms are also used to determine the reliability of ensemble forecasts and for diagnosing 

errors in their mean and spread [Hamill, 2000]. These are generated by repeatedly tallying the rank of the observations relative 

to corresponding ensemble values sorted in increasing order. 

1.1.1 Current status of ensemble forecasts in OOFSs 

Despite the early establishment of ensemble methods for ocean data assimilation and forecasting (Evensen, 1994), ensemble 110 

forecasts only recently found their ways to the operational centers. This is mostly because the centers prioritized using the 

available computational resources to increase the resolution of ocean models. This was due to the need to resolve the mesoscale 

to sub-mesoscales processes to better describe the energy cascade in the ocean (e.g. D'addezio et al., 2019; Davidson et al., 

2021). Recent developments in ocean ensemble forecasting followed the improved coverage in ocean observations that 

provided increased information to accurately constrain the initial ocean state for extended forecast horizons the better 115 

coordination between ocean forecasting groups, the ease of access to atmospheric ensembles, and the ever-increasing 

availability of computational power (Metzger et al., 2010; Smith et al., 2011). Ocean ensemble forecasts are now routinely 

generated at several operational ocean centers on both global and regional scales to cater to different needs as summarized in 

Table 1. 

Table 1: Summary of operational ensemble forecasting systems operating across the globe. 120 

Institution Forecasting 

System 

Domain Ensemble 

Perturbations (Size) 

Type of Forecast Reference 

Met Office, UK FOAM Global Observations + 

Atmosphere (36) 

Short-range ocean 

state 

Lea et al., (2022) 

NRL, USA Navy-ESPC Global Observations (16) Days to 

subseasonal ocean 

state 

Barton et al., 

(2020) 
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Bluelink, Australia OceanMAPS Global Time-lagged (3) Short-range ocean 

state 

Schiller et al., 

(2021) 

NERSC, Norway TOPAZ4 North 

Atlantic and 

Arctic 

Atmosphere (100) Short-range ocean 

state 

Nakanowatari et 

al., (2022) 

BSH, Germany Multiple-models North Sea 

and Baltic 

Sea 

Multi-model (13) Short-range ocean 

state 

CMEMS portal 

KAUST, Saudi 

Arabia 

MITgcm Red Sea Atmosphere + 

Internal physics (50) 

Short-range ocean 

state 

Sanikommu et al., 

(2020) 

MET-Norway Barotropic 

version of ROMS 

Norway Atmosphere (51) Short-range storm 

surge 

Kristensen et al., 

(2022) 

ECMWF IFS Global Internal physics (51) Short-range waves Browne et al., 

(2019) 

NCEP GWES Global Wind (30) Short-range waves Penny et al., 

(2015) 

Bureau of 

Meteorology, 

Australia 

ACCESS-S Global Internal physics + 

Time-lagged (30) 

Multi-week to 

seasonal 

ElNino/IOD 

Hudson et al., 

(2017) 

CMA, China  CMMEv1 Global Multi-model + 

Initial conditions 

(90) 

Multi-week to 

seasonal 

ElNino/IOD 

Ren et al., (2019) 

2 Role of ensemble forecasts in next generation OOFSs 

Recognizing the importance of representing uncertainties in ocean forecasts to meet the need of future demands in probabilistic 

predictions, ensemble forecasts are expected to become a standard output of any operational ocean product. The lack of high-

density ocean observations further leaves the mesoscales and sub-mesoscales poorly unconstrained by the ocean analysis 
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systems. Uncertainties from the unconstrained scales might lead to larger forecast errors due to growing dynamical instabilities 125 

(Sandery et al., 2017), which limits the forecasting skills of high-resolution ocean models (e.g., Thoppil et al., 2021). Ensemble 

forecasting has been proven efficient to extend ocean forecasting horizons when model uncertainties in the initial conditions, 

inputs, and physics are accounted for (Mullen and Buizza 2002; Ryan et al., 2015; Sanikommu et al., 2020). Ensemble forecasts 

are also needed to provide errors statistics for the ocean analysis systems to better exploit the high-density observations to 

come in the future from satellite missions such as Surface Water Ocean Topography (SWOT) (Fu and Ubelmann, 2014). Long 130 

delayed by the desire of the community to increase the resolution of the ocean models to improve their realism, the ever-

increasing computing resources will provide more and more power to integrate these within ensemble forecasting frameworks. 

Ocean forecasts are now produced by data assimilation (DA) systems. Ensemble forecasts could be generated from 

deterministic DA systems, which produce one single-forecast, by simply perturbing the observations (or other parameters of 

the assimilation system), or during the forecasting step using an ensemble forecasting method. Ensemble DA methods, on the 135 

other hand, readily produce ensemble ocean perturbations that (approximately) represent the error-of-the-day and can be 

directly used to generate ensemble forecasts. These could be also combined with standard ensemble forecasting methods to 

further represent the missing information about the error growth in the computationally restricted DA ensembles. To fully 

exploit the benefits from ocean ensemble forecasts, new tools to analyze and visualize, and also integrate these probabilistic 

products in decision making and management of ocean services need to be developed and made available for the end users. 140 
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